首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we have demonstrated that an altered endogenous nitric oxide (NO) mechanism within the paraventricular nucleus (PVN) contributes to increased renal sympathetic nerve activity (RSNA) in heart failure (HF) rats. The goal of this study was to examine the effect of exercise training (ExT) in improving the endogenous NO mechanism within the PVN involved in the regulation of RSNA in rats with HF. ExT significantly restored the decreased number of neuronal NO synthase (nNOS)-positive neurons in the PVN (129 +/- 17 vs. 99 +/- 6). nNOS mRNA expression and protein levels in the PVN were also significantly increased in HF-ExT rats compared with HF-sedentary rats. To examine the functional role of NO within the PVN, an inhibitor of NOS, N(G)-monomethyl-L-arginine, was microinjected into the PVN. Dose-dependent increases in RSNA, arterial blood pressure (BP), and heart rate (HR) were produced in all rats. There was a blunted increase in these parameters in HF rats compared with the sham-operated rats. ExT significantly augmented RSNA responses in rats with HF (33% vs. 20% at the highest dose), thus normalizing the responses. The NO donor sodium nitroprusside, microinjected into the PVN, produced dose-dependent decreases in RSNA, BP, and HR in both sham and HF rats. ExT significantly improved the blunted decrease in RSNA in HF rats (36% vs. 17% at the highest dose). In conclusion, our data indicate that ExT improves the altered NO mechanism within the PVN and restores NO-mediated changes in RSNA in rats with HF.  相似文献   

2.
The present study was performed to determine whether sympathetic outflow and arterial blood pressure in water-deprived rats are dependent on the ongoing neuronal activity of the hypothalamic paraventricular nucleus (PVN). Renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MAP), and heart rate were recorded in urethane-alpha-chloralose-anesthetized rats that were deprived of water but not food for 48 h before experiments. Acute inhibition of the PVN by bilateral microinjection of the GABA(A) agonist muscimol (100 pmol/side) significantly decreased RSNA in water-deprived rats (-26.7 +/- 4.7%, n = 7) but was without effect in control rats (1.3 +/- 6.3%, n = 7). Similarly, injection of muscimol produced a greater decrease in MAP in water-deprived rats than in control rats (-46 +/- 3 vs. -16 +/- 3 mmHg, respectively), although baseline MAP was not different between groups (105 +/- 4 vs. 107 +/- 4 mmHg, respectively). Neither bilateral microinjection of isotonic saline vehicle (100 nl/side) into the PVN nor muscimol (100 pmol/side) outside the PVN altered RSNA or MAP in either group. In addition, ganglionic blockade with hexamethonium (30 mg/kg i.v.) significantly decreased MAP in both groups; however, the decrease in MAP was significantly greater in water-deprived rats than in control rats (62 +/- 2 vs. 48 +/- 2 mmHg, respectively). Collectively, these findings suggest that sympathetic outflow contributes more to the maintenance of blood pressure in the water-deprived rat, and this depends, at least partly, on the ongoing activity of PVN neurons.  相似文献   

3.
Studies have shown that the superoxide mechanism is involved in angiotensin II (ANG II) signaling in the central nervous system. We hypothesized that ANG II activates sympathetic outflow by stimulation of superoxide anion in the paraventricular nucleus (PVN) of streptozotocin (STZ)-induced diabetic rats. In α-chloralose- and urethane-anesthetized rats, microinjection of ANG II into the PVN (50, 100, and 200 pmol) produced dose-dependent increases in renal sympathetic nerve activity (RSNA), arterial pressure (AP), and heart rate (HR) in control and STZ-induced diabetic rats. There was a potentiation of the increase in RSNA (35.0 ± 5.0 vs. 23.0 ± 4.3%, P < 0.05), AP, and HR due to ANG II type I (AT(1)) receptor activation in diabetic rats compared with control rats. Blocking endogenous AT(1) receptors within the PVN with AT(1) receptor antagonist losartan produced significantly greater decreases in RSNA, AP, and HR in diabetic rats compared with control rats. Concomitantly, there were significant increases in mRNA and protein expression of AT(1) receptor with increased superoxide levels and expression of NAD(P)H oxidase subunits p22(phox), p47(phox), and p67(phox) in the PVN of rats with diabetes. Pretreatment with losartan (10 mg·kg(-1)·day(-1) in drinking water for 3 wk) significantly reduced protein expression of NAD(P)H oxidase subunits (p22(phox) and p47(phox)) in the PVN of diabetic rats. Pretreatment with adenoviral vector-mediated overexpression of human cytoplasmic superoxide dismutase (AdCuZnSOD) within the PVN attenuated the increased central responses to ANG II in diabetes (RSNA: 20.4 ± 0.7 vs. 27.7 ± 2.1%, n = 6, P < 0.05). These data support the concept that superoxide anion contributes to an enhanced ANG II-mediated signaling in the PVN involved with the exaggerated sympathoexcitation in diabetes.  相似文献   

4.
Cardiac sympathetic afferent reflex (CSAR) is involved in sympathetic activation. The present study was designed to investigate the contribution of enhanced CSAR to sympathetic activation in the early stage of diabetes and the involvement of AT(1) receptors in the paraventricular nucleus (PVN). Diabetes was induced by a single intravenous injection of streptozotocin in rats. Acute experiments were carried out under anesthesia after 3 wk. The CSAR was evaluated by the responses of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) to epicardial application of capsaicin or bradykinin. Sympathetic activity and CSAR were enhanced in diabetic rats. Plasma norepinephrine and angiotensin II were increased, but the transient receptor potential vanilloid 1 (TRPV1) in the left ventricle wall was not significantly increased in diabetic rats. Pericardial injection of resiniferatoxin to desensitize cardiac afferents or PVN microinjection of lidocaine attenuated the CSAR and decreased the RSNA and MAP in diabetic rats. The AT(1) receptor expression in the PVN increased in diabetic rats. Angiotensin II in the PVN caused greater increases in the RSNA and MAP and enhancement in the CSAR in diabetic rats, which were abolished by the losartan pretreatment. Losartan decreased the RSNA and MAP and attenuated the CSAR in diabetic rats but not in control rats. These results indicate that the CSAR is enhanced in the early stage of diabetic rats, which contributes to the sympathetic activation. AT(1) receptors in the PVN are involved in the enhanced CSAR in diabetic rats.  相似文献   

5.
A central mechanism participates in sympathetic overdrive during insulin resistance (IR). Nitric oxide synthase (NOS) and nitric oxide (NO) modulate sympathetic nerve activity (SNA) in the paraventricular nucleus (PVN), which influences the autonomic regulation of cardiovascular responses. The aim of this study was to explore whether the NO system in the PVN is involved in the modulation of SNA in fructose-induced IR rats. Control rats received ordinary drinking water, whereas IR rats received 12.5% fructose-containing drinking water for 12 wks to induce IR. Basal SNA was assessed based on the changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to chemicals administered to the PVN. We found an increased plasma norepinephrine level but significantly reduced NO content and neuronal NOS (nNOS) and endothelial NOS (eNOS) protein expression levels in the PVN of IR rats compared to Control rats. No difference in inducible NOS (iNOS) protein expression was observed between the two groups. In anesthetized rats, the microinjection of sodium nitroprusside (SNP), an NO donor, or Nω-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of NOS, into the PVN significantly decreased and increased basal SNA, respectively, in both normal and IR rats, but these responses to SNP and L-NAME in IR rats were smaller than those in normal rats. The administration of selective inhibitors of nNOS or eNOS, but not iNOS, to the PVN significantly increased basal SNA in both groups, but these responses were also smaller in IR rats. Moreover, IR rats exhibited reduced nNOS and eNOS activity in the PVN. In conclusion, these data indicate that the decreased protein expression and activity levels of nNOS and eNOS in the PVN lead to a reduction in the NO content in the PVN, thereby contributing to a subsequent enhancement in sympathoexcitation during IR.  相似文献   

6.
Angiotensin (ANG)-converting enzyme (ACE)2 in brain regions such as the paraventricular nucleus (PVN) controlling cardiovascular function may be involved in the regulation of sympathetic outflow in chronic heart failure (CHF). The purpose of this study was to determine if ACE2 plays a role in the central regulation of sympathetic outflow by regulating neuronal nitric oxide (NO) synthase (nNOS) in the PVN. We investigated ACE2 and nNOS expression within the PVN of rats with CHF. We then determined the effects of ACE2 gene transfer in the PVN on the contribution of NO-mediated sympathoinhibition in rats with CHF. The results showed that there were decreased expressions for ACE2, the ANG-(1-7) receptor, and nNOS within the PVN of rats with CHF. After the application of adenovirus vectors encoding ACE2 (AdACE2) into the PVN, the increased expression of ACE2 in the PVN was confirmed by Western blot analysis. AdACE2 transfection significantly increased nNOS protein levels (change of 50 ± 5%) in the PVN of CHF rats. In anesthetized rats, AdACE2 treatment attenuated the responses of renal sympathetic nerve activity (RSNA), mean arterial pressure, and heart rate to the NOS inhibitor N-monomethyl-L-arginine in rats with CHF (RSNA: 28 ± 3% vs. 16 ± 3%, P < 0.05) compared with CHF + AdEGFP group. Furthermore, neuronal NG-108 cells incubated with increasing doses of AdACE2 showed a dose-dependent increase in nNOS protein expression (60% at the highest dose). Taken together, our data highlight the importance of increased expression and subsequent interaction of ACE2 and nNOS within the PVN, leading to a reduction in sympathetic outflow in the CHF condition.  相似文献   

7.
Using neuronal NO synthase (nNOS)-specific antisense oligonucleotides, we examined the role of nitric oxide (NO) in the paraventricular nucleus (PVN) on control of blood pressure and heart rate (HR) in conscious sham rats and rats with chronic heart failure (CHF). After 6-8 wk, rats with chronic coronary ligation showed hemodynamic and echocardiographic signs of CHF. In sham rats, we found that microinjection of sodium nitroprusside (SNP, 20 nmol, 100 nl) into the PVN induced a significant decrease in mean arterial pressure (MAP). SNP also induced a significant decrease in HR over the next 10 min. In contrast, the NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 200 pmol, 100 nl) significantly increased MAP and HR over the next 18-20 min. After injection of nNOS antisense, MAP was significantly increased in sham rats over the next 7 h. The peak response was 27.6 +/- 4.1% above baseline pressure. However, in the CHF rats, only MAP was significantly increased. The peak magnitude was 12.9 +/- 5.4% of baseline, which was significantly attenuated compared with sham rats (P < 0.01). In sham rats, the pressor response was completely abolished by alpha-receptor blockade. HR was significantly increased from hour 1 to hour 7 in sham and CHF rats. There was no difference in magnitude of HR responses. The tachycardia could not be abolished by the beta(1)-blocker metoprolol. However, the muscarinic receptor antagonist atropine did not further augment the tachycardia. We conclude that NO induces a significant depressor and bradycardiac response in normal rats. The pressor response is mediated by an elevated sympathetic tone, whereas the tachycardia is mediated by withdrawal of parasympathetic tone in sham rats. These data are consistent with a downregulation of nNOS within the PVN in CHF.  相似文献   

8.
We hypothesized that gene transfer of neuronal nitric oxide synthase (nNOS) into the rostral ventrolateral medulla (RVLM) improves baroreflex function in rats with chronic heart failure (CHF). Six to eight weeks after coronary artery ligation, rats showed hemodynamic signs of CHF. A recombinant adenovirus, either Ad.nNOS or Ad.beta-Gal, was transfected into the RVLM. nNOS expression in the RVLM was confirmed by Western blot analysis, NADPH-diaphorase, and immunohistochemical staining. We studied baroreflex control of the heart rate (HR) and renal sympathetic nerve activity (RSNA) in the anesthetized state 3 days after gene transfer by intravenous injections of phenylephrine and nitroprusside. Baroreflex sensitivity was depressed for HR and RSNA regulation in CHF rats (2.0 +/- 0.3 vs. 0.8 +/- 0.2 beats.min-1.mmHg-1, P < 0.01 and 3.8 +/- 0.3 vs. 1.2 +/- 0.1% max/mmHg, P < 0.01, respectively). Ad.nNOS transfer into RVLM significantly increased the HR and RSNA ranges (152 +/- 19 vs. 94 +/- 12 beats/min, P < 0.05 and 130 +/- 16 vs. 106 +/- 5% max/mmHg, P < 0.05) compared with the Ad.beta-Gal in CHF rats. Ad.nNOS also improved the baroreflex gain for the control of HR and RSNA (1.8 +/- 0.2 vs. 0.8 +/- 0.2 beats.min-1.mmHg-1, P < 0.01 and 2.6 +/- 0.2 vs. 1.2 +/- 0.1% max/mmHg, P < 0.01). In sham-operated rats, we found that Ad.nNOS transfer enhanced the HR range compared with Ad.beta-Gal gene transfer (188 +/- 15 vs. 127 +/- 14 beats/min, P < 0.05) but did not alter any other parameter. This study represents the first demonstration of altered baroreflex function following increases in central nNOS in the CHF state. We conclude that delivery of Ad.nNOS into the RVLM improves baroreflex function in rats with CHF.  相似文献   

9.
We have previously shown that acute intravenous injection of the angiotensin-converting enzyme (ACE) inhibitor enalapril in diabetic rats evokes a baroreflex-independent sympathoexcitatory effect that does not occur with angiotensin receptor blockade alone. As ACE inhibition also blocks bradykinin degradation, we sought to determine whether bradykinin mediated this effect. Experiments were performed in conscious male Sprague-Dawley rats, chronically instrumented to measure mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), 2 wk after streptozotocin (55 mg/kg iv, diabetic, n = 11) or citrate vehicle (normal, n = 10). Enalapril (2.5 mg/kg iv) decreased MAP in normal rats (-15 +/- 3 mmHg), while a smaller response (-4 +/- 1 mmHg) occurred in diabetic rats. Despite these different depressor responses to enalapril, HR (+44 +/- 8 vs. +26 +/- 7 bpm) and RSNA (+90 +/- 21 vs +71 +/- 8% baseline) increased similarly between the groups (P > or = 0.22 for both). Pretreatment with the bradykinin B2 receptor antagonist Hoe 140 (10 microg/kg bolus followed by 0.8.mug(-1)kg.min(-1) infusion) attenuated the decrease in MAP observed with enalapril in normal rats but had no effect in diabetic rats. Moreover, the normal group had smaller HR and RSNA responses (HR: +13 +/- 8 bpm; RSNA: +32 +/- 13% baseline) that were abolished in the diabetic group (HR: -4 +/- 5 bpm; RSNA: -5 +/- 9% baseline; P < 0.05 vs. preenalapril values). Additionally, bradykinin (20 microg/kg iv) evoked a larger, more prolonged sympathoexcitatory effect in diabetic compared with normal rats that was further potentiated after treatment with enalapril. We conclude that enhanced bradykinin signaling mediates the baroreflex-independent sympathoexcitatory effect of enalapril in diabetic rats.  相似文献   

10.
Erectile dysfunction is a serious and common complication of diabetes mellitus. The proposed mechanisms for erectile dysfunction in diabetes include central and autonomic neuropathy, endothelial dysfunction, and smooth muscle dysfunction. The paraventricular nucleus (PVN) of the hypothalamus is known to be involved in centrally mediated penile erection. This study was designed to examine the role of nitric oxide (NO) within the central nervous system component of the behavioral responses including erection in diabetic rats. N-methyl-D-aspartic acid (NMDA)-induced erection, yawning, and stretch through the PVN can be blocked by prior administration of NO synthase (NOS) blocker, L-NMMA, in freely moving, conscious male normal rats. Four weeks after streptozotocin (STZ) and vehicle injections, NMDA-induced erection, yawning, and stretch responses through the PVN are significantly blunted in diabetic rats compared with control rats. Examination of neuronal NOS (nNOS) protein by Western blot analysis indicated a reduced amount of nNOS protein in the PVN of rats with diabetes compared with control rats. Furthermore, restoring nNOS within the PVN by gene transfer using adenoviral transfection significantly restored the erectile and yawning responses to NMDA in diabetic rats. These data demonstrate that a blunted NO mechanism within the PVN may contribute to NMDA-induced erectile dysfunction observed in diabetes mellitus.  相似文献   

11.
Small conductance Ca(2+)-activated K(+) (SK) channels regulate membrane properties of rostral ventrolateral medulla (RVLM) projecting hypothalamic paraventricular nucleus (PVN) neurons and inhibition of SK channels increases in vitro excitability. Here, we determined in vivo the role of PVN SK channels in regulating sympathetic nerve activity (SNA) and mean arterial pressure (MAP). In anesthetized rats, bilateral PVN microinjection of SK channel blocker with peptide apamin (0, 0.125, 1.25, 3.75, 12.5, and 25 pmol) increased splanchnic SNA (SSNA), renal SNA (RSNA), MAP, and heart rate (HR) in a dose-dependent manner. Maximum increases in SSNA, RSNA, MAP, and HR elicited by apamin (12.5 pmol, n = 7) were 330 ± 40% (P < 0.01), 271 ± 40% (P < 0.01), 29 ± 4 mmHg (P < 0.01), and 34 ± 9 beats/min (P < 0.01), respectively. PVN injection of the nonpeptide SK channel blocker UCL1684 (250 pmol, n = 7) significantly increased SSNA (P < 0.05), RSNA (P < 0.05), MAP (P < 0.05), and HR (P < 0.05). Neither apamin injected outside the PVN (12.5 pmol, n = 6) nor peripheral administration of the same dose of apamin (12.5 pmol, n = 5) evoked any significant changes in the recorded variables. PVN-injected SK channel enhancer 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO, 5 nmol, n = 4) or N-cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidin]amine (CyPPA, 5 nmol, n = 6) did not significantly alter the SSNA, RSNA, MAP, and HR. Western blot and RT-PCR analysis of punched PVN tissue showed abundant expression of SK1-3 channels. We conclude that SK channels expressed in the PVN play an important role in the regulation of sympathetic outflow and cardiovascular function.  相似文献   

12.
We have demonstrated a decreased neuronal nitric oxide (NO) synthase (nNOS) message in the hypothalamus of rats with heart failure (HF). Subsequently, we have demonstrated that NADPH diaphorase (a commonly used marker for nNOS activity) positive neurons are decreased in paraventricular nucleus (PVN) of rats with coronary artery ligation model of HF. The goal of the present study was to examine the influence of endogenous NO within the PVN on renal sympathetic nerve discharge (RSND) during HF. In alpha-chloralose- and urethane-anesthetized rats, an inhibitor of NO synthase, N(G)-monomethyl-L-arginine (L-NMMA) microinjected into the PVN (50, 100, and 200 pmol in 50-200 nl) produced a dose-dependent increase in RSND, blood pressure, and heart rate in control and HF rats. These responses were attenuated in rats with HF compared with control rats. On the other hand, the NO agonist, sodium nitroprusside, microinjected in PVN produced a dose-dependent decrease in RSND and blood pressure in control and HF rats. These responses were less in rats with HF compared with control rats. These data suggest that the endogenous NO-mediated effect within the PVN of HF rats is less potent in suppressing RSND compared with control rats. These data support the conclusion that the NO system within the PVN involved in controlling autonomic outflow is altered during HF and may contribute to the elevated levels of renal sympathoexcitation commonly observed in HF.  相似文献   

13.
Nitric oxide (NO) has been implicated in the pathogenesis of renal hemodynamic changes in diabetes mellitus (DM). However, the role of NO in the pathophysiology of diabetic nephropathy remains controversial. Renal hemodynamic changes in experimental DM can be acutely normalized by selective inhibition of neuronal NO synthase (nNOS). This observation suggests a nephroprotective potential of nNOS inhibition in DM. To explore this issue we assessed the long-term effects (12 weeks) of selective nNOS inhibition with the specific inhibitor S-methyl-L-thiocitrulline (SMTC) in uninephrectomized control and streptozotocin-diabetic rats. No beneficial effects of SMTC were observed in nondiabetic controls. In contrast, SMTC delayed the development of proteinuria (32+/-8 vs. 53+/-9 mg/24h, week 8, p < 0.05) and glomerulosclerosis (GS, 0.30+/-0.08 vs. 0.57+/-0.05, p < 0.05) in diabetic rats. These effects coincided with early effects of treatment on the glomerular filtration rate, and were associated with lower renal expression of nNOS. Furthermore, SMTC-treated diabetic rats demonstrated reduced weight gain and urinary sodium excretion as compared to vehicle-treated counterparts, despite similar metabolic control and blood pressure. In summary, long-term nNOS inhibition had modest nephroprotective effects in uninephrectomized diabetic rats. These effects may be mediated by renal hemodynamic mechanisms, as well as by lower food (protein) intake.  相似文献   

14.
Myocardial ischemia stimulates cardiac spinal afferents to initiate a sympathoexcitatory reflex. However, the pathways responsible for generation of increased sympathetic outflow in this reflex are not fully known. In this study, we determined the role of the paraventricular nucleus (PVN) in the cardiogenic sympathetic reflex. Renal sympathetic nerve activity (RSNA) and blood pressure were recorded in anesthetized rats during epicardial application of 10 microg/ml bradykinin. Bilateral microinjection of muscimol (0.5 nmol), a GABA(A) receptor agonist, was performed to inhibit the PVN. In 10 vehicle-injected rats, epicardial bradykinin significantly increased RSNA 178.4 +/- 48.5% from baseline, and mean arterial pressure from 76.9 +/- 2.0 to 102.3 +/- 3.3 mmHg. Microinjection of muscimol into the PVN significantly reduced the basal blood pressure and RSNA (n = 12). After muscimol injection, the bradykinin-induced increases in RSNA (111.6 +/- 35.9% from baseline) and mean arterial pressure (61.2 +/- 1.3 to 74.5 +/- 2.7 mmHg) were significantly reduced compared with control responses. The response remained attenuated even when the basal blood pressure was restored to the control. In a separate group of rats (n = 9), bilateral microinjection of the ionotropic glutamate antagonist kynurenic acid (4.82 or 48.2 nmol in 50 nl) had no significant effect on the RSNA and blood pressure responses to bradykinin compared with controls. These results suggest that the tonic PVN activity is important for the full manifestation of the cardiogenic sympathoexcitatory response. However, ionotropic glutamate receptors in the PVN are not directly involved in this reflex response.  相似文献   

15.
We tested the hypothesis that glucocorticoids attenuate changes in arterial pressure and renal sympathetic nerve activity (RSNA) in response to activation and blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors within the nucleus of the solitary tract (NTS). Experiments were performed in Inactin-anesthetized male Sprague-Dawley rats treated for 7 +/- 1 days with a subcutaneous corticosterone (Cort) pellet or in control rats. Baseline mean arterial pressure (MAP) was significantly higher in Cort-treated rats (109 +/- 2 mmHg, n = 39) than in control rats (101 +/- 1 mmHg, n = 48, P < 0.05). In control rats, microinjection of AMPA (0.03, 0.1, and 0.3 pmol/100 nl) into the NTS significantly decreased MAP at all doses and decreased RSNA at 0.1 and 0.3 pmol/100 nl. Responses to AMPA in Cort-treated rats were attenuated at all doses of AMPA (P < 0.05). Responses to the AMPA-kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were also significantly reduced in Cort-treated rats relative to control rats. Blockade of glucocorticoid type II receptors with mifepristone significantly enhanced responses to CNQX in both control and Cort rats. We conclude that glucocorticoids attenuate MAP and RSNA responses to activation and blockade of AMPA receptors in the NTS.  相似文献   

16.
An enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation in renovascular hypertension. The present study was designed to determine the role of superoxide anions in the paraventricular nucleus (PVN) in mediating the enhanced CSAR and sympathetic activity in renovascular hypertension in the two-kidney, one-clip (2K1C) model. Sinoaortic denervation and vagotomy were carried out, and renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded under anesthesia. The CSAR was evaluated by the response of RSNA to the epicardial application of capsaicin. Superoxide anion levels and NAD(P)H oxidase activity in the PVN increased in 2K1C rats and were much higher in 2K1C rats than in sham-operated (sham) rats after the epicardial application of capsaicin or PVN microinjection of ANG II. In both 2K1C and sham rats, PVN microinjection of the superoxide anion scavenger tempol or the NAD(P)H oxidase inhibitor apocynin abolished the CSAR, whereas the SOD inhibitor diethyldithiocarbamic acid (DETC) potentiated the CSAR. Tempol and apocynin decreased but DETC increased baseline RSNA and MAP. ANG II in the PVN caused larger responses of the CSAR, baseline RSNA, and baseline MAP in 2K1C rats than in sham rats. The effects of ANG II were abolished by pretreatment with tempol or apocynin in both 2K1C and sham rats and augmented by DETC in the PVN in 2K1C rats. These results indicate that superoxide anions in the PVN mediate the CSAR and the effects of ANG II in the PVN. Increased superoxide anions in the PVN contribute to the enhanced CSAR and sympathetic activity in renovascular hypertension.  相似文献   

17.
Congestive heart failure (CHF) induces abnormal regulation of peripheral blood flow during exercise. Previous studies have suggested that a reflex from contracting muscle is disordered in this disease. However, there has been very little investigation of the muscle reflex regulating sympathetic outflows in CHF. Myocardial infarction (MI) was induced by the coronary artery ligation in rats. Echocardiography was performed to determine fractional shortening (FS), an index of the left ventricular function. We examined renal and lumbar sympathetic nerve activities (RSNA and LSNA, respectively) during 1-min repetitive (1- to 4-s stimulation to relaxation) contraction or stretch of the triceps surae muscles. During these interventions, the RSNA and LSNA responded synchronously as tension was developed. The RSNA and LSNA responses to contraction were significantly greater in MI rats (n = 13) with FS <30% than in control animals (n = 13) with FS >40% (RSNA: +49 +/- 7 vs. +19 +/- 4 a.u., P < 0.01; LSNA: +28 +/- 7 vs. +8 +/- 2 a.u., P < 0.01) at the same tension development. Stretch also increased the RSNA and LSNA to a larger degree in MI (n = 13) than in control animals (n = 13) (RSNA: +36 +/- 6 vs. +19 +/- 3 a.u., P < 0.05; LSNA: +24 +/- 3 vs. +9 +/- 2 a.u., P < 0.01). The data demonstrate that CHF exaggerates sympathetic nerve responses to muscle contraction as well as stretch. We suggest that muscle afferent-mediated sympathetic outflows contribute to the abnormal regulation of peripheral blood flow seen during exercise in CHF.  相似文献   

18.
Aging is associated with altered autonomic control of cardiovascular function, but baroreflex function in animal models of aging remains controversial. In this study, pressor and depressor agent-induced reflex bradycardia and tachycardia were attenuated in conscious old (24 mo) rats [57 and 59% of responses in young (10 wk) Wistar rats, respectively]. The intrinsic heart rate (HR, 339 +/- 5 vs. 410 +/- 10 beats/min) was reduced in aged animals, but no intergroup differences in resting mean arterial blood pressure (MAP, 112 +/- 3 vs. 113 +/- 5 mmHg) or HR (344 +/- 9 vs. 347 +/- 9 beats/min) existed between old and young rats, respectively. The aged group also exhibited a depressed (49%) parasympathetic contribution to the resting HR value (vagal effect) but preserved sympathetic function after intravenous methylatropine and propranolol. An implantable electrode revealed tonic renal sympathetic nerve activity (RSNA) was similar between groups. However, old rats showed impaired baroreflex control of HR and RSNA after intravenous nitroprusside (-0.63 +/- 0. 18 vs. -1.84 +/- 0.4 bars x cycle(-1) x mmHg(-1) x s(-1)). Therefore, aging in rats is associated with 1) preserved baseline MAP, HR, and RSNA, 2) impaired baroreflex control of HR and RSNA, and 3) altered autonomic control of resting HR.  相似文献   

19.
It was hypothesized that renal sympathetic nerve activity (RSNA) and neuronal nitric oxide synthase (nNOS) are involved in the acute inhibition of renin secretion and the natriuresis following slow NaCl loading (NaLoad) and that RSNA participates in the regulation of arterial blood pressure (MABP). This was tested by NaLoad after chronic renal denervation with and without inhibition of nNOS by S-methyl-thiocitrulline (SMTC). In addition, the acute effects of renal denervation on MABP and sodium balance were assessed. Rats were investigated in the conscious, catheterized state, in metabolic cages, and acutely during anesthesia. NaLoad was performed over 2 h by intravenous infusion of hypertonic solution (50 micromol.min(-1).kg body mass(-1)) at constant body volume conditions. SMTC was coinfused in amounts (20 microg.min(-1).kg(-1)) reported to selectively inhibit nNOS. Directly measured MABPs of acutely and chronically denervated rats were less than control (15% and 9%, respectively, P < 0.005). Plasma renin concentration (PRC) was reduced by renal denervation (14.5 +/- 0.2 vs. 19.3 +/- 1.3 mIU/l, P < 0.005) and by nNOS inhibition (12.4 +/- 2.3 vs. 19.6 +/- 1.6 mlU/l, P < 0.005). NaLoad reduced PRC (P < 0.05) and elevated MABP modestly (P < 0.05) and increased sodium excretion six-fold, irrespective of renal denervation and SMTC. The metabolic data demonstrated that renal denervation lowered sodium balance during the first days after denervation (P < 0.001). These data show that renal denervation decreases MABP and renin secretion. However, neither renal denervation nor nNOS inhibition affects either the renin down-regulation or the natriuretic response to acute sodium loading. Acute sodium-driven renin regulation seems independent of RSNA and nNOS under the present conditions.  相似文献   

20.
The paraventricular nucleus (PVN) of the hypothalamus is involved in the neural control of sympathetic drive, but the precise mechanism(s) that influences the PVN is not known. The activation of the PVN may be influenced by input from higher forebrain areas, such as the median preoptic nucleus (MnPO) and the subfornical organ (SFO). We hypothesized that activation of the MnPO or SFO would drive the PVN through a glutamatergic pathway. Neuroanatomical connections were confirmed by the recovery of a retrograde tracer in the MnPO and SFO that was injected bilaterally into the PVN in rats. Microinjection of 200 pmol of N-methyl-d-aspartate (NMDA) or bicuculline-induced activation of the MnPO and increased renal sympathetic activity (RSNA), mean arterial pressure, and heart rate in anesthetized rats. These responses were attenuated by prior microinjection of a glutamate receptor blocker AP5 (4 nmol) into the PVN (NMDA - ΔRSNA 72 ± 8% vs. 5 ± 1%; P < 0.05). Using single-unit extracellular recording, we examined the effect of NMDA microinjection (200 pmol) into the MnPO on the firing activity of PVN neurons. Of the 11 active neurons in the PVN, 6 neurons were excited by 95 ± 17% (P < 0.05), 1 was inhibited by 57%, and 4 did not respond. The increased RSNA after activation of the SFO by ANG II (1 nmol) or bicuculline (200 pmol) was also reduced by AP5 in the PVN (for ANG II - ΔRSNA 46 ± 7% vs. 17 ± 4%; P < 0.05). Prior microinjection of ANG II type 1 receptor blocker losartan (4 nmol) into the PVN did not change the response to ANG II or bicuculline microinjection into the SFO. The results from this study demonstrate that the sympathoexcitation mediated by a glutamatergic mechanism in the PVN is partially driven by the activation of the MnPO or SFO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号