首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
The Gnaphalieae are a group of sunflowers that have their greatest diversity in South America, Southern Africa, and Australia. The objective of this study was to reconstruct a phylogeny of the South African Gnaphalieae using sequence data from two noncoding chloroplast DNA sequences, the trnL intron and trnL/trnF intergenic spacer. Included in this investigation are the genera of the Gnaphalieae from the African basal groups, members of the subtribes Cassiniinae, Gnaphaliinae, and Relhaniinae, and African representatives from the large Old World genus Helichrysum. Results indicate that two Gnaphaloid genera, Printzia and Callilepis, should be excluded from the Gnaphalieae. In most trees the Relhaniinae s.s. (sensu stricto) and some of the basal taxa comprise a clade that is sister to the remainder of the tribe Gnaphalieae. The Relhaniinae, which are restricted to Africa, are not a monophyletic group as presently circumscribed, nor are the South African members of Helichrysum, the Cassiniinae and Gnaphaliinae. There is general agreement between our molecular analysis and that of morphology, particularly in the terminal branches of the trees.  相似文献   

2.
This review summarizes reports on flavonoids from the Cichorieae (Lactuceae) tribe of the Asteraceae family. A total of 135 different compounds have been reported from 354 taxa belonging to 299 species, including many cultivars of common vegetables like chicory and lettuce. The reported compounds encompass flavanones (11 compounds), flavanonols (2 compounds), flavones (72 compounds), flavonols (35 compounds), anthocyanidins (9 compounds), isoflavonoids (2 compounds), chalcones (3 compounds), and an aurone. So far only 43 of the approximately 100 currently recognized genera of the tribe Cichorieae have been investigated for the occurrence of flavonoids. The distribution of the various classes of flavonoids is analyzed with regards to data from the current molecular-based reassessment of the systematics of the tribe.  相似文献   

3.
Asteraceae account for 10% of all flowering plant species, and 35%–40% of these are in five closely related tribes that total over 10 000 species. These tribes include Anthemideae, Astereae, Calenduleae, Gnaphalieae, and Senecioneae, which form one of two enormous clades within Subfamily Asteroideae. We took a phylogenomics approach to resolve evolutionary relationships among these five tribes. We sampled the nuclear and plastid genomes via HybSeq target enrichment and genome skimming, and recovered 74 plastid genes and nearly 1000 nuclear loci, known as Conserved Orthologous Sequences. We tested for conflicting support in both data sets and used network analyses to assess patterns of reticulation to explain the early evolutionary history of this lineage, which has experienced whole‐genome duplications and rapid radiations. We found concordance and conflicting support in both data sets and documented four ancient hybridization events. Due to the timing of the early radiation of this five‐tribe lineage, shortly before the Eocene–Oligocene extinction event (34 MYA), early lineages were likely lost, obscuring some details of their early evolutionary history.  相似文献   

4.
Forty-five sequences from members of all genera of Asteraceae indigenous to New Zealand and 50 published sequences representing the tribal diversity in the family were analyzed to assess the utility of ITS sequences to resolve phylogenetic relationships. Previous studies using chloroplast DNA sequences and morphology provided support for several clades in the Asteraceae, yet the relationships among some of these were uncertain. The results from ITS analysis were largely consistent with these earlier studies. The New Zealand species are included in at least six clades, most of these corresponding to recognized tribes. Our results have also clarified the tribal affinities of a few anomalous genera. Haastia, previously aligned with the Gnaphalieae or the Astereae, is nested in the Senecioneae. Centipeda, previously included in the Astereae or Anthemideae, emerges near the Heliantheae. The relationships of Abrotanella remain unresolved. Received August 8, 2001 Accepted November 6, 2001  相似文献   

5.
Anaphalis is the largest Asian genus in the tribe Gnaphalieae (Asteraceae) and has its greatest species diversity in the eastern Himalayas. The nuclear internal and external transcribed spacers were sequenced for Anaphalis species, with an emphasis on the eastern Himalayan taxa to examine the monophyly and construct the phylogenetic relationships of and within the genus. The results suggest that all species of Anaphalis are nested with Helichrysum, showing a close relationship with a Mediterranean–Asian group of Helichrysum. Although the monophyly of Anaphalis is only weakly supported, two clades within the genus are well recognized, each consisting of two subgroups. The inferred phylogenetic relationships within Anaphalis correspond to the shape of leaf base, rather than the morphology of the capitula and phyllaries that are usually used for species delimitation and classification in the genus. All four subgroups of Anaphalis are common and diversified in the eastern Himalayas with multiple dispersals out of this region. The sole North American species of Anaphalis is best hypothesized to be the result of long-distance dispersal or overland migration via Bering land bridge from Asia. Our analyses suggest that the extant distribution of Anaphalis has most likely resulted one radiation into the eastern Himalayas followed by repeated independent dispersals and/or radiations mostly into eastern Asia but also into the western Himalayas, North America, and southeast Asia.  相似文献   

6.
Anthemideae (Asteraceae) is primarily a north temperate, Old World tribe of 109 genera and approximately 1740 species. We sequenced a 1200-bp portion of chloroplast gene ndhF for representative genera and subtribes and constructed a phylogeny for the tribe. There is support for monophyly of subtribes Chrysantheminae and Gonosperminae and for portions of some subtribes. However, our molecular phylogeny differs significantly from traditional classifications and from previously published morphological phylogenies of the tribe. Many South African genera from several different subtribes form a basal grade, indicating multiple, relictual lineages. Eurasian genera form a recently derived clade that includes the Mediterranean genera of the Iberian Peninsula and North Africa. There is little resolution or support for the placement of eastern Asian genera. Apparently, the tribe originated in the Southern Hemisphere, presumably in Africa, with the Eurasian and Mediterranean members being derived from a common ancestor.  相似文献   

7.
The new species, Jalcophila boliviensis (Asteraceae: Gnaphalieae) is described and illustrated. A discussion of the systematic position of Jalcophila Dillon & Sagást. and a key to the three species of the genus are presented.  相似文献   

8.
The sunflower family (Asteraceae) is the largest and the most diverse flowering plant family, comprising 24 000–30 000 species and 1600–1700 genera. In China, Asteraceae are also the largest family, with approximately 2336 indigenous species in 248 genera. In the past two decades, molecular phylogenetic analyses has contributed greatly to our understanding of the systematics of Asteraceae. Nevertheless, the large-scale analyses and knowledge about the relationships of Chinese Asteraceae at the generic level as a whole are far from complete due to difficulties in sampling. In this study, we presented a three-marker (rbcL, ndhF, and matK) phylogeny of Asteraceae, including 506 genera (i.e., approximately one-third of Asteraceae genera). The study sampled 200 Chinese genera (i.e., approximately 80% of Chinese Asteraceae genera). The backbones of the new phylogeny were largely congruent with earlier studies, with 13 subfamilies and 45 tribes recognized. Chinese Asteraceae were distributed in 7 subfamilies (Mutisioideae, Wunderlichioideae, Carduoideae, Pertyoideae, Gymnarrhenoideae, Cichorioideae, and Asteroideae) and 22 tribes (Mutiseae, Hyalideae, Cardueae, Pertyeae, Gymnarrheneae, Vernonieae, Cichorieae, Doroniceae, Senecioneae, Astereae, Anthemideae, Gnaphalieae, Calenduleae, Inuleae, Athroismeae, Helenieae, Coreopsideae, Neurolaeneae, Tageteae, Millieae, Eupatorieae, and Heliantheae). Chinese Asteraceae lacked 6 basal subfamilies and 23 tribes. Several previously ambiguous relationships were clarified. Our analyses also resolved some unplaced genera within Chinese Asteraceae. Finally, our phylogenetic tree was used to revise the classification for all genera of Chinese Asteraceae. In total, 255 genera, 22 tribes, and 7 subfamilies in China are recognized.  相似文献   

9.
This review summarizes the flavonoids isolated from three genera, namely, Aconitum, Delphinium, and Consolida, belonging to tribe Delphineae in the Ranunculaceae family for the first time. A total of 104 distinct flavonoid components, including 85 flavonols, 13 anthocyanins, four flavones, and two neoflavones, have been isolated from 44 members of tribe Delphineae. Flavonols account for the largest proportion and can be regarded as the dominant group of flavonoids in this tribe. Of the 104 isolated flavonoids, 55 are novel, indicating the high chemical diversity among the flavonoid constituents of Delphineae plants. Flavonoids in Delphineae plants exhibit chemotaxonomic significance, characterizing certain Delphineae species well. Flavonol glycosides, as the major flavonoid constituents in the investigated Delphineae species, could also serve as valuable chemotaxonomic markers in addition to diterpenoid alkaloids for the identification of Delphineae species.  相似文献   

10.
To understand the evolution of host-parasite relationships in the genus Golovinomyces (Ascomycete: Erysiphaceae), which are obligate parasitic fungi of plants, we investigated the phylogenetic relationships of the genus based on 60 internal transcribed spacer (ITS) and 41 28S rDNA sequences. Five major groups, each represented by isolates from a single tribe of the Asteraceae, were identified in the taxa analyzed in this study. Host plants of four groups were strictly restricted to the Asteraceae. The fifth group, the Lactuceae group, is a large group composed of isolates collected from the tribe Lactuceae of the Asteraceae and all other plant families, which suggests a close affinity between Golovinomyces and the Asteraceae in the early stages of their evolution. Tree topology comparisons between the asteraceous hosts and their parasites suggest that Golovinomyces diverged along with the phylogeny of host tribes Carsueae, Astereae, Heliantheae, and Lactuceae of the Asteraceae. However, a conflict of branching order between the tribe Anthemideae and their parasites suggests that host-jumping has occurred in the tribe Anthemideae. Consequently, we suggest that there are two different phases in the evolutionary history of the host-parasite relationships of Golovinomyces. One phase is divergence in accord with the phylogeny of their hosts, which occurred within the Asteraceae. The another phase is host-jumping, which occurred from the Asteraceae to other families and within the Asteraceae.  相似文献   

11.
Foliar flavonoids of 31 species of the Annonaceae native to Brazil, amounting to 76 compounds, were isolated and identified. All phenols found were glycosides of either flavones (apigenin, scutellarein, hispidulin and luteolin) or flavonols (kaempferol, rhamnocitrin, 6-hydroxyrhamnocitrin, quercetin, isorhamnetin and rhamnetin), with the latter predominating. Some members of the tribe Bocageeae are distinctive for accumulating 6-oxygenated flavones and flavonols, in addition to 7-O-methylated flavonols, a feature possibly linked to the assumed advanced condition of the tribe within the family. Members of Duguetia stand out for the apparent absence of quercetin glycosides. Anaxagorea dolichocharpa seemingly lacks flavones and flavonols entirely. A UPGMA analysis based on the distribution of flavonoids does not group the analyzed species according to the available tribal division of the Annonaceae. However, several taxonomically meaningful groupings emerged through the multivariate analysis.  相似文献   

12.
Anderberg, A. A. & Karis, P. O. 1995. Psednotrichia , a genus of the tribe Senecioneae hitherto misplaced in the Astereae (Asteraceae). — Nord. J. Bot. 15: 375–379. Copenhagen. ISSN 0107–055X.
The tribal position for the little known genus Psednorrichia , is established. This monotypic genus, hitherto placed in the tribe Astereae, is a congener of Xyridopsis of the tribe Senecioneae (Asteraceae). The two species of Xyridopsis are here transferred to Psednotrichia and the new combinations P. xyridopsis and P. newtonii are made. A brief discussion of the morphology of the genus, and its systematic position within the tribe Senecioneae is provided.  相似文献   

13.
The Vernonieae is one of the major tribes of the largest family of flowering plants, the sunflower family (Compositae or Asteraceae), with ca. 25,000 species. While the family's basal members (the Barnadesioideae) are found in South America, the tribe Vernonieae originated in the area of southern Africa/Madagascar. Its sister tribe, the Liabeae, is New World, however. This is the only such New/Old World sister tribe pairing anywhere in the family. The Vernonieae is now found on islands and continents worldwide and includes more than 1500 taxa. The Vernonieae has been called the "evil tribe" because overlapping character states make taxonomic delimitations difficult at all levels from the species to the subtribe for the majority of taxa. Juxtaposed with these difficult-to-separate entities are monotypic genera with highly distinctive morphologies and no obvious affinities to any other members of the tribe. The taxonomic frustration generated by these contrary circumstances has resulted in a lack of any phylogeny for the tribe until now. A combined approach using DNA sequence data from two chloroplast regions, the ndhF gene and the noncoding spacer trnL-F, and from the nuclear rDNA ITS region for 90 taxa from throughout the world was used to reconstruct the evolutionary history of the tribe. The data were analyzed separately and in combination using maximum parsimony (MP), minimum evolution neighbor-joining (NJ), and Bayesian analysis, the latter producing the best resolved and most strongly supported tree. In general, the phylogeny shows Old World taxa to be basal and New World taxa to be derived, but this is not always the case. Old and New World species are found together in two separate and only distantly related clades. This is best explained by long-distance dispersal with a minimum of two trans-oceanic exchanges. Meso/Central America has had an important role in ancient dispersals between the Old and New World and more recent movements from South to North America in the New World.  相似文献   

14.
The large daisy tribe Gnaphalieae occurs in extra-tropical habitats worldwide, but is most diverse in southern Africa and in Australia. We explore the age and evolutionary history of the tribe by means of a phylogenetic hypothesis based on Bayesian analysis of plastid and nuclear DNA sequences, maximum likelihood reconstruction of ancestral areas, and relaxed Bayesian dating. Early diversification occurred in southern Africa in the Eocene-Oligocene, resulting in a grade of mostly Cape-centred lineages which subsequently began speciating in the Miocene, consistent with diversification times for many Cape groups. Gnaphalieae from other geographic regions are embedded within a southern African paraphylum, indicating multiple dispersals out of southern Africa since the Oligocene to Miocene which established the tribe in the rest of the world. Colonisation of Australia via direct long-distance trans-oceanic dispersal in the Miocene resulted in the radiation which produced the Australasian gnaphalioid flora. The similarly diverse regional gnaphalioid floras of Australasia and southern Africa thus exhibit very different temporal species accumulation histories. An examination of the timing and direction of trans-Indian Ocean dispersal events in other angiosperms suggests a role for the West Wind Drift in long-distance dispersal eastwards from southern Africa.  相似文献   

15.
Metalasia is a genus in tribe Gnaphalieae (Asteraceae), endemic to South Africa and with its main distribution in the Cape Floristic Region. The genus comprises 57 species and, with a number of closely related genera, it constitutes the ‘Metalasia clade’. A species‐level phylogenetic analysis is presented, based on DNA sequences from two nuclear (internal and external transcribed spacer: ITS, ETS) and two plastid (psbA‐trnH, trnL‐trnF) regions together with morphological data. Analyses combining molecular and morphological data attempt not only to resolve species interrelationships, but also to detect patterns in character evolution. Phylogenetic analyses corroborate our earlier study and demonstrate that Metalasia is formed of two equally sized, well‐supported sister groups, one of which is characterized by papillose cypselas. The results differ greatly from earlier hypotheses based on morphology alone, as few morphological characters support the phylogenetic patterns obtained. The two clades of Metalasia do, however, appear to differ in distribution, corresponding to the different rainfall regimes of South Africa. Analyses show a few taxa to be problematic; one example is the widely distributed M. densa which appears to be an intricate species complex. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 173–198.  相似文献   

16.
Emilia fosbergii is a member of the tribe Senecioneae (Asteraceae), most species of which contain pyrrolizidine alkaloids. Notwithstanding, the phytochemistry of E. fosbergii is poorly understood, and pyrrolizidine alkaloids produced by this species have yet to be characterized. In this work, the presence of 11 pyrrolizidine alkaloids, three caffeoylquinic acid derivatives, and six flavonoids were detected by liquid chromatography coupled to high-resolution mass spectrometry analyses. Pyrrolizidine alkaloids of otonecine, retronecine, and platynecine bases are annotated in different parts of the plant. Furthermore, emiline was isolated, possibly indicating that E. fosbergii has a close phylogenetic relationship with E. coccinea. The chemophenetic implications of the presence of pyrrolizidine alkaloids in E. fosbergii and tribe Senecioneae are discussed.  相似文献   

17.
Recent molecular studies in Asteraceae have divided tribe Mutisieae (sensu Cabrera) into 13 tribes and eight subfamilies. Each of the major clades is well supported but the relationships among them are not always clear. Some of the new taxa are easily characterized by morphological data but others are not, chief among the latter being three subfamilies (Stifftioideae, Wunderlichioideae and Gochnatioideae) and the tribe Hyalideae. To understand evolution in the family it is critical to investigate potential morphological characters that can help to evaluate the basal lineages of the Asteraceae. The data for this study were taken from 52 species in 24 genera representing the basal groups in the family. Many characters were examined but most of the useful ones were from reproductive structures. Several apomorphies supported a few of the clades. For instance, members of subfamily Wunderlichioideae (Hyalideae and Wunderlichieae) share predominantly ten‐ribbed achenes and members of Wunderlichioideae + Stifftioideae share two synapomorphies: 100–150 (200) pappus elements, arranged in (three) four or five series. These apomorphies can be viewed as an indication of a sister‐group relationship between the two subfamilies as the placement of Stifftieae was not well resolved by the molecular data. Members of Wunderlichieae are characterized by having a paleaceous receptacle, style branches that are strongly papillose above and below the bifurcation, and a pappus of scales. Hyalis and Ianthopappus (Hyalideae) share venation type and an apiculate anther appendage but these are also found in Gochnatieae. Other clades have fewer supporting characters. These characters are just a beginning. Cladograms with morphology characters plotted, illustrations and a key to the basal grade of Asteraceae are provided. © 2013 The Linnean Society of London  相似文献   

18.
The relationships among the species of Balsamorhiza and Wyethia (Asteraceae: Heliantheae) were examined using data from the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA. The ITS sequences were obtained from nine species of Balsamorhiza and 14 species of Wyethia as well as seven outgroup genera. Five of the outgroup genera were members of the subtribe Engelmanniinae of the tribe Heliantheae, the subtribe that includes Balsamorhiza and Wyethia. The resulting trees show that Balsamorhiza and Wyethia together form a monophyletic group. Balsamorhiza alone is monophyletic, but neither of its two sections is monophyletic. Wyethia is paraphyletic. One group of Wyethia species, including all members of sections Alarconia and Wyethia as well as W. bolanderi from section Agnorhiza, is monophyletic and sister to Balsamorhiza. The other species of Wyethia (all placed in section Agnorhiza) are part of a polytomy along with the clade composed of Balsamorhiza plus the rest of Wyethia.  相似文献   

19.
This study encompasses 25 chromosome counts of 18 species in the subtribe Artemisiinae (tribe Anthemideae) of the family Asteraceae, from Mongolia. Most (15 species) belong to Artemisia , the largest genus of the subtribe, whereas the others come from two genera very closely related to it: Ajania (two species) and Neopallasia (one species). Eleven counts are new reports, three are not consistent with previous reports and the remainder confirm scanty earlier information. The majority of the species have x  = 9 as their basic chromosome number, but there are some taxa with x  = 8. Ploidy levels range from 2 x to 6 x . The presence of B-chromosomes was detected in Ajania fruticulosa .  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 203–210.  相似文献   

20.
Twenty-two chromosome counts of 19 taxa (21 populations) in the tribe Anthemideae and one member (one population) of the tribe Inuleae of the family Asteraceae are reported. The Anthemideae studied belong to the subtribes Artemisiinae (14 Artemisia taxa, and one species each of the genera Dendranthema , Filifolium and Neopallasia ) and Tanacetinae (one species each of the genera Lepidolopha and Tanacetopsis ). From the Inuleae, we studied one Inula species. Five counts are new reports (including two at generic level), six are not consistent with previous counts and the remainder are confirmations of very limited (one to four records) previous data. Most of populations of Anthemideae studied have the basic chromosome number x  = 9, with ploidy levels ranging from 2 x to 10 x . Dysploidy is also present, with two x  = 8 diploid taxa. The species of Inuleae studied is a diploid with x  = 10, also indicating dysploidy, other members of the same genus Inula having basic numbers of x  = 9 or 8.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 148 , 77–85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号