首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute volume expansion (VE) produces a suppression of renal sympathetic nerve discharge (RSND) resulting in diuresis and natriuresis. Recently, we have demonstrated that the endogenous nitric oxide (NO) system within the paraventricular nucleus (PVN) produces a decrease in RSND. We hypothesized that endogenous NO in the PVN is involved in the suppression of RSND leading to diuretic and natriuretic responses to acute VE. To test this hypothesis, we first measured the VE-induced increase in renal sodium excretion and urine flow with and without blockade of NO, with microinjection of NG-monomethyl-L-arginine (L-NMMA; 200 pmol in 200 nl), within the PVN of Inactin-anesthetized male Sprague-Dawley rats. Acute VE produced significant increases in urine flow and sodium excretion, which were diminished in rats treated with L-NMMA within the PVN. This effect of NO blockade within the PVN on VE-induced diuresis and natriuresis was abolished by renal denervation. Consistent with these data, acute VE induced a decrease in RSND (52% of the baseline level), which was significantly blunted by prior administration of L-NMMA into the PVN (28% of the baseline level) induced by a comparable level of acute VE. Using the push-pull perfusion technique, we found that acute VE induced a significant increase in NOx concentration in the perfusate from the PVN region. Taken together, these results suggest that acute VE induces an increase in NO production within the PVN that leads to renal sympathoinhibition, resulting in diuresis and natriuresis. We conclude that NO within the PVN plays an important role in regulation of sodium and water excretions in the volume reflex via modulating renal sympathetic outflow.  相似文献   

2.
We have demonstrated a decreased neuronal nitric oxide (NO) synthase (nNOS) message in the hypothalamus of rats with heart failure (HF). Subsequently, we have demonstrated that NADPH diaphorase (a commonly used marker for nNOS activity) positive neurons are decreased in paraventricular nucleus (PVN) of rats with coronary artery ligation model of HF. The goal of the present study was to examine the influence of endogenous NO within the PVN on renal sympathetic nerve discharge (RSND) during HF. In alpha-chloralose- and urethane-anesthetized rats, an inhibitor of NO synthase, N(G)-monomethyl-L-arginine (L-NMMA) microinjected into the PVN (50, 100, and 200 pmol in 50-200 nl) produced a dose-dependent increase in RSND, blood pressure, and heart rate in control and HF rats. These responses were attenuated in rats with HF compared with control rats. On the other hand, the NO agonist, sodium nitroprusside, microinjected in PVN produced a dose-dependent decrease in RSND and blood pressure in control and HF rats. These responses were less in rats with HF compared with control rats. These data suggest that the endogenous NO-mediated effect within the PVN of HF rats is less potent in suppressing RSND compared with control rats. These data support the conclusion that the NO system within the PVN involved in controlling autonomic outflow is altered during HF and may contribute to the elevated levels of renal sympathoexcitation commonly observed in HF.  相似文献   

3.
Studies have shown that the superoxide mechanism is involved in angiotensin II (ANG II) signaling in the central nervous system. We hypothesized that ANG II activates sympathetic outflow by stimulation of superoxide anion in the paraventricular nucleus (PVN) of streptozotocin (STZ)-induced diabetic rats. In α-chloralose- and urethane-anesthetized rats, microinjection of ANG II into the PVN (50, 100, and 200 pmol) produced dose-dependent increases in renal sympathetic nerve activity (RSNA), arterial pressure (AP), and heart rate (HR) in control and STZ-induced diabetic rats. There was a potentiation of the increase in RSNA (35.0 ± 5.0 vs. 23.0 ± 4.3%, P < 0.05), AP, and HR due to ANG II type I (AT(1)) receptor activation in diabetic rats compared with control rats. Blocking endogenous AT(1) receptors within the PVN with AT(1) receptor antagonist losartan produced significantly greater decreases in RSNA, AP, and HR in diabetic rats compared with control rats. Concomitantly, there were significant increases in mRNA and protein expression of AT(1) receptor with increased superoxide levels and expression of NAD(P)H oxidase subunits p22(phox), p47(phox), and p67(phox) in the PVN of rats with diabetes. Pretreatment with losartan (10 mg·kg(-1)·day(-1) in drinking water for 3 wk) significantly reduced protein expression of NAD(P)H oxidase subunits (p22(phox) and p47(phox)) in the PVN of diabetic rats. Pretreatment with adenoviral vector-mediated overexpression of human cytoplasmic superoxide dismutase (AdCuZnSOD) within the PVN attenuated the increased central responses to ANG II in diabetes (RSNA: 20.4 ± 0.7 vs. 27.7 ± 2.1%, n = 6, P < 0.05). These data support the concept that superoxide anion contributes to an enhanced ANG II-mediated signaling in the PVN involved with the exaggerated sympathoexcitation in diabetes.  相似文献   

4.
One characteristic of heart failure (HF) is increased sympathetic activation. The paraventricular nucleus (PVN) of the hypothalamus (involved in control of sympathetic outflow) has been shown to have increased neuronal activation during HF. This study examined the influence of endogenous GABA input (inhibitory in nature) into the PVN on renal sympathetic nerve discharge (RSND), arterial blood pressure (BP), and heart rate (HR) in rats with HF induced by coronary artery ligation. In alpha-chloralose- and urethane-anesthetized rats, microinjection of bicuculline (a GABA antagonist) into the PVN produced a dose-dependent increase in RSND, BP, and HR in both sham-operated control and HF rats. Bicuculline attenuated the increase in RSND and BP in HF rats compared with control rats. Alternatively, microinjection of the GABA agonist muscimol produced a dose-dependent decrease in RSND, BP, and HR in both control and HF rats. Muscimol was also less effective in decreasing RSND, BP, and HR in HF rats than in control rats. These results suggest that endogenous GABA-mediated input into the PVN of rats with HF is less effective in suppressing RSND and BP compared with control rats. This is partly due to the post-release actions of GABA, possibly caused by altered function of post-synaptic GABA receptors in the PVN of rats with HF. Reduced GABA-mediated inhibition in the PVN may contribute to increased sympathetic outflow, which is commonly observed during HF.  相似文献   

5.
The aims of present study were to determine whether angiotensin II (ANG II) in the paraventricular nucleus (PVN) is involved in the central integration of the cardiac sympathetic afferent reflex and whether this effect is mediated by the ANG type 1 (AT(1)) receptor. While the animals were under alpha-chloralose and urethane anesthesia, mean arterial pressure, heart rate, and renal sympathetic nerve activity (RSNA) were recorded in sinoaortic-denervated and cervical-vagotomized rats. A cannula was inserted into the left PVN for microinjection of ANG II. The cardiac sympathetic afferent reflex was tested by electrical stimulation (5, 10, 20, and 30 Hz in 10 V and 1 ms) of the afferent cardiac sympathetic nerves or epicardial application of bradykinin (BK) (0.04 and 0.4 microg in 2 microl). Microinjection of ANG II (0.03, 0.3, and 3 nmol) into the PVN resulted in dose-related increases in the RSNA responses to electrical stimulation. The percent change of RSNA response to 20- and 30-Hz stimulation increased significantly at the highest dose of ANG II (3 nmol). The effects of ANG II were prevented by pretreatment with losartan (50 nmol) into the PVN. Microinjection of ANG II (0.3 nmol) into the PVN significantly enhanced the RSNA responses to epicardial application of BK, which was abolished by pretreatment with losartan (50 nmol) into the PVN. These results suggest that exogenous ANG II in the PVN augments the cardiac sympathetic afferent reflex evoked by both electrical stimulation of cardiac sympathetic afferent nerves and epicardial application of BK. These central effects of ANG II are mediated by AT(1) receptors.  相似文献   

6.
Angiotensin II (ANG II) has complex actions on the cardiovascular system. ANG II may act to increase sympathetic vasomotor outflow, but acutely the sympathoexcitatory actions of exogenous ANG II may be opposed by ANG II-induced increases in arterial pressure (AP), evoking baroreceptor-mediated decreases in sympathetic nerve activity (SNA). To examine this hypothesis, the effect of ANG II infusion on lumbar SNA was measured in unanesthetized chronic sinoaortic-denervated rats. Chronic sinoaortic-denervated rats had no reflex heart rate (HR) responses to pharmacologically evoked increases or decreases in AP. Similarly, in these denervated rats, nitroprusside-induced hypotension had no effect on lumbar SNA; however, phenylephrine-induced increases in AP were still associated with transient decreases in SNA. In control rats, infusion of ANG II (100 ng x kg(-1) x min(-1) iv) increased AP and decreased HR and SNA. In contrast, ANG II infusion increased lumbar SNA and HR in sinoaortic-denervated rats. In rats that underwent sinoaortic denervation surgery but still had residual baroreceptor reflex-evoked changes in HR, the effect of ANG II on HR and SNA was variable and correlated to the extent of baroreceptor reflex impairment. The present data suggest that pressor concentrations of ANG II in rats act rapidly to increase lumbar SNA and HR, although baroreceptor reflexes normally mask these effects of ANG II. Furthermore, these studies highlight the importance of fully characterizing sinoaortic-denervated rats used in experiments examining the role of baroreceptor reflexes.  相似文献   

7.
Exercise training (ExT) normalizes the increased sympathetic outflow in heart failure (HF), but the underlying mechanisms are not known. We hypothesized ExT would normalize the augmented activation of the paraventricular nucleus (PVN) via an angiotensinergic mechanism during HF. Four groups of rats used were the following: 1) sham-sedentary (Sed); 2) sham-ExT; 3) HF-Sed, and 4) HF-ExT. HF was induced by left coronary artery ligation. Four weeks after surgery, 3 wk of treadmill running was performed in ExT groups. The number of FosB-positive cells in the PVN was significantly increased in HF-Sed group compared with the sham-Sed group. ExT normalized (negated) this increase in the rats with HF. In anesthetized condition, the increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) in response to microinjection of angiotensin (ANG) II (50~200 pmol) in the PVN of HF-Sed group were significantly greater than of the sham-Sed group. In the HF-ExT group the responses to microinjection of ANG II were not different from sham-Sed or sham-ExT groups. Blockade of ANG II type 1 (AT(1)) receptors with losartan in the PVN produced a significantly greater decrease in RSNA, MAP, and HR in HF-Sed group compared with sham-Sed group. ExT prevented the difference between HF and sham groups. AT(1) receptor protein expression was increased 50% in HF-Sed group compared with sham-Sed group. In the HF-ExT group, AT(1) receptor protein expression was not significantly different from sham-Sed or sham-ExT groups. In conclusion, one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of angiotensinergic mechanisms within the PVN.  相似文献   

8.
Chronic heart failure (CHF) is characterized by sympathoexcitation, and the cardiac sympathetic afferent reflex (CSAR) is a sympathoexcitatory reflex. Our previous studies have shown that the CSAR was enhanced in CHF. In addition, central angiotensin II (ANG II) is an important modulator of this reflex. This study was performed to determine whether the CSAR evoked by stimulation of cardiac sympathetic afferent nerves (CSAN) in rats with coronary ligation-induced CHF is enhanced by ANG II in the paraventricular nucleus (PVN). Under alpha-chloralose and urethane anesthesia, renal sympathetic nerve activity (RSNA) was recorded. The RSNA responses to electrical stimulation (5, 10, 20, and 30 Hz) of the CSAN were evaluated. Bilateral microinjection of the AT1-receptor antagonist losartan (50 nmol) into the PVN had no significant effects in the sham group, but it abolished the enhanced RSNA response to stimulation in the CHF group. Unilateral microinjection of three doses of ANG II (0.03, 0.3, and 3 nmol) into the PVN resulted in dose-related increases in the RSNA responses to stimulation. Although ANG II also potentiated the RSNA response to electrical stimulation in sham rats, the RSNA responses to stimulation after ANG II into the PVN in rats with CHF were much greater than in sham rats. The effects of ANG II were prevented by pretreatment with losartan into the PVN in CHF rats. These results suggest that the central gain of the CSAR is enhanced in rats with coronary ligation-induced CHF and that ANG II in the PVN augments the CSAR evoked by CSAN, which is mediated by the central angiotensin AT1 receptors in rats with CHF.  相似文献   

9.
Zhao XY  Jiang ZY  Peng JZ 《生理学报》2000,52(6):473-478
在麻醉大鼠侧脑室注射左旋一叶Qiu碱(L-Sec),记录动脉血压(AP)、心率(HR)及肾交感神经放电(RSND),观察前脑室周系统GABA能紧张性活动改变引起的心血管效应。结果如下:(1)L-Sec可引起RSND增加、AP升高和HR加快,并呈一定剂量-效应关系;但L-S盈余 于bicuculline(Bic)。(2)L-Sec既能拮抗muscimol(Mus),又能拮抗baclofen(Bac)  相似文献   

10.
Birth is characterized by a surge in sympathetic outflow, heart rate (HR), mean arterial blood pressure (MABP) and circulating catecholamines. The paraventricular nucleus (PVN) of the hypothalamus is an important central regulatory site of sympathetic activity, but its role in the regulation of sympathoexcitation at birth is unknown. To test the hypothesis that the PVN regulates sympathetic activity at birth, experiments were performed in chronically instrumented near-term (137- to 142-day gestation, term 145 days) sheep before and after delivery by cesarean section. Stereotaxic guided electrolytic lesioning of the PVN (n = 6) or sham lesioning (n = 6) was performed 48 h before study. At 30 min after birth, renal sympathetic nerve activity (RSNA) increased 128 +/- 26% above fetal values in the sham-lesioned animals (P < 0.05). In contrast, at a similar time point, RSNA decreased to 52 +/- 12% of the fetal value in the PVN-lesioned animals. Lesioning of the PVN did not affect the usual postnatal increases in MABP and epinephrine levels although HR failed to rise above fetal values. ANG II but not arginine vasopressin or norepinephrine levels increased in PVN-lesioned animals after birth, whereas all three hormones increased (P < 0.05) in sham-lesioned animals. Fetal and newborn HR baroreflex responses were similar in both groups. However, the usual postnatal attenuation of baroreflex-mediated inhibition of RSNA was blunted in the PVN-lesioned group. The results of this study demonstrate that ablation of the PVN abolishes sympathoexcitation with birth at near-term gestation. The PVN may play a critical role in physiological adaptation at birth.  相似文献   

11.
Blockade of GABA-A receptors in the hypothalamic paraventricular nucleus (PVN) has been repeatedly shown to increase arterial blood pressure (ABP), heart rate (HR), and sympathetic nerve activity (SNA), but the mechanism(s) that underlies this response has not been determined. Here, we tested whether full expression of the response requires activation of local ANG II AT1 receptors. ABP, HR, and renal SNA responses to PVN microinjection of bicuculline methobromide (BIC; 0.1 nmol) were recorded before and after microinjection of vehicle (saline); losartan (or L-158809), to block local AT1 receptors; or PD123319, to block AT2 receptors. After PVN microinjection of vehicle or PD123319 (10 nmol), BIC significantly (P < 0.05) increased mean arterial pressure (MAP), HR, and renal SNA. However, PVN microinjection of 2 and 20 nmol of losartan dose dependently reduced responses to PVN-injected BIC, with the 20-nmol dose nearly abolishing MAP (P < 0.005), HR (P < 0.05), and renal SNA (P < 0.005) responses. Another AT1 receptor antagonist, L-158809 (10 nmol), produced similar effects. Neither losartan nor L-158809 altered baseline parameters. Responses to PVN injection of BIC were unchanged by losartan (20 nmol) given intravenously or into the PVN on the opposite side. MAP, HR, and renal SNA responses to PVN microinjection of l-glutamate (10 nmol) were unaffected by PVN injection of losartan (20 nmol), indicating that effects of losartan were not due to nonspecific depression of neuronal excitability. We conclude that pressor, tachycardic, and renal sympathoexcitatory responses to acute blockade of GABA-A receptors in the PVN depend on activation of local AT1 receptors.  相似文献   

12.
The paraventricular nucleus (PVN) of the hypothalamus is involved in the neural control of sympathetic drive, but the precise mechanism(s) that influences the PVN is not known. The activation of the PVN may be influenced by input from higher forebrain areas, such as the median preoptic nucleus (MnPO) and the subfornical organ (SFO). We hypothesized that activation of the MnPO or SFO would drive the PVN through a glutamatergic pathway. Neuroanatomical connections were confirmed by the recovery of a retrograde tracer in the MnPO and SFO that was injected bilaterally into the PVN in rats. Microinjection of 200 pmol of N-methyl-d-aspartate (NMDA) or bicuculline-induced activation of the MnPO and increased renal sympathetic activity (RSNA), mean arterial pressure, and heart rate in anesthetized rats. These responses were attenuated by prior microinjection of a glutamate receptor blocker AP5 (4 nmol) into the PVN (NMDA - ΔRSNA 72 ± 8% vs. 5 ± 1%; P < 0.05). Using single-unit extracellular recording, we examined the effect of NMDA microinjection (200 pmol) into the MnPO on the firing activity of PVN neurons. Of the 11 active neurons in the PVN, 6 neurons were excited by 95 ± 17% (P < 0.05), 1 was inhibited by 57%, and 4 did not respond. The increased RSNA after activation of the SFO by ANG II (1 nmol) or bicuculline (200 pmol) was also reduced by AP5 in the PVN (for ANG II - ΔRSNA 46 ± 7% vs. 17 ± 4%; P < 0.05). Prior microinjection of ANG II type 1 receptor blocker losartan (4 nmol) into the PVN did not change the response to ANG II or bicuculline microinjection into the SFO. The results from this study demonstrate that the sympathoexcitation mediated by a glutamatergic mechanism in the PVN is partially driven by the activation of the MnPO or SFO.  相似文献   

13.
Nitric oxide (NO) appears to inhibit sympathetic tone in anesthetized rats. However, whether NO tonically inhibits sympathetic outflow, or whether endogenous angiotensin II (ANG II) promotes NO-mediated sympathoinhibition in conscious rats is unknown. To address these questions, we determined the effects of NO synthase (NOS) inhibition on renal sympathetic nerve activity (RSNA) and heart rate (HR) in conscious, unrestrained rats on normal (NS), high-(HS), and low-sodium (LS) diets, in the presence and absence of an ANG II receptor antagonist (AIIRA). When arterial pressure was kept at baseline with intravenous hydralazine, NOS inhibition with l-NAME (10 mg/kg i.v.) resulted in a profound decline in RSNA, to 42 +/- 11% of control (P < 0.01), in NS animals. This effect was not sustained, and RSNA returned to control levels by 45 min postinfusion. l-NAME also caused bradycardia, from 432 +/- 23 to 372 +/- 11 beats/min postinfusion (P < 0.01), an effect, which, in contrast, was sustained 60 min postdrug. The effects of NOS inhibition on RSNA and HR did not differ between NS, HS, and LS rats. However, when LS and HS rats were pretreated with AIIRA, the initial decrease in RSNA after l-NAME infusion was absent in the LS rats, while the response in the HS group was unchanged by AIIRA. These findings indicate that, in contrast to our hypotheses, NOS activity provides a stimulatory input to RSNA in conscious rats, and that in LS animals, but not HS animals, this sympathoexcitatory effect of NO is dependent on the action of endogenous ANG II.  相似文献   

14.
Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT(1)R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT(1)R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT(1)R expression in the PVN and sympathetic drive. The present study was undertaken to determine whether aldosterone also activates the sympathetic nervous system via MAPK signaling and, if so, whether its effect is independent of ANG II and AT(1)R. In anesthetized rats, a 4-h intravenous infusion of aldosterone induced increases (P < 0.05) in phosphorylated (p-) p44/42 MAPK in PVN, PVN neuronal excitation, renal sympathetic nerve activity (RSNA), mean blood pressure (MBP), and heart rate (HR). Intracerebroventricular or bilateral PVN microinjection of the p44/42 MAPK inhibitor PD-98059 reduced the aldosterone-induced RSNA, HR, and MBP responses. Intracerebroventricular pretreatment (5 days earlier) with pooled small interfering RNAs targeting p44/42 MAPK reduced total and p-p44/42 MAPK, aldosterone-induced c-Fos expression in the PVN, and the aldosterone-induced increases in RSNA, HR, and MBP. Intracerebroventricular infusion of either the mineralocorticoid receptor antagonist RU-28318 or the AT(1)R antagonist losartan blocked aldosterone-induced phosphorylation of p44/42 MAPK and prevented the increases in RSNA, HR, and MBP. These data suggest that aldosterone-induced sympathetic excitation depends upon that AT(1)R-induced MAPK signaling in the brain. The short time course of this interaction suggests a nongenomic mechanism, perhaps via an aldosterone-induced transactivation of the AT(1)R as described in peripheral tissues.  相似文献   

15.
Angiotensin (ANG)-converting enzyme (ACE)2 in brain regions such as the paraventricular nucleus (PVN) controlling cardiovascular function may be involved in the regulation of sympathetic outflow in chronic heart failure (CHF). The purpose of this study was to determine if ACE2 plays a role in the central regulation of sympathetic outflow by regulating neuronal nitric oxide (NO) synthase (nNOS) in the PVN. We investigated ACE2 and nNOS expression within the PVN of rats with CHF. We then determined the effects of ACE2 gene transfer in the PVN on the contribution of NO-mediated sympathoinhibition in rats with CHF. The results showed that there were decreased expressions for ACE2, the ANG-(1-7) receptor, and nNOS within the PVN of rats with CHF. After the application of adenovirus vectors encoding ACE2 (AdACE2) into the PVN, the increased expression of ACE2 in the PVN was confirmed by Western blot analysis. AdACE2 transfection significantly increased nNOS protein levels (change of 50 ± 5%) in the PVN of CHF rats. In anesthetized rats, AdACE2 treatment attenuated the responses of renal sympathetic nerve activity (RSNA), mean arterial pressure, and heart rate to the NOS inhibitor N-monomethyl-L-arginine in rats with CHF (RSNA: 28 ± 3% vs. 16 ± 3%, P < 0.05) compared with CHF + AdEGFP group. Furthermore, neuronal NG-108 cells incubated with increasing doses of AdACE2 showed a dose-dependent increase in nNOS protein expression (60% at the highest dose). Taken together, our data highlight the importance of increased expression and subsequent interaction of ACE2 and nNOS within the PVN, leading to a reduction in sympathetic outflow in the CHF condition.  相似文献   

16.
We tested the hypothesis that central angiotensin II (ANG II) administration would activate splenic sympathetic nerve discharge (SND), which in turn would alter splenic cytokine gene expression. Experiments were completed in sinoaortic nerve-lesioned, urethane-chloralose-anesthetized, splenic nerve-intact (splenic-intact) and splenic nerve-lesioned (splenic-denervated) Sprague-Dawley rats. Splenic cytokine gene expression was determined using gene-array and real-time RT-PCR analyses. Splenic SND was significantly increased after intracerebroventricular administration of ANG II (150 ng/kg, 10 microl), but not artificial cerebrospinal fluid (aCSF). Splenic mRNA expression of IL-1beta, IL-6, IL-2, and IL-16 genes was increased in ANG II-treated splenic-intact rats compared with aCSF-treated splenic-intact rats. Splenic IL-1beta, IL-2, and IL-6 gene expression responses to ANG II were significantly reduced in splenic-denervated compared with splenic-intact rats. Splenic gene expression responses did not differ significantly in ANG II-treated splenic-denervated and aCSF-treated splenic-intact rats. Splenic blood flow responses to intracerebroventricular ANG II administration did not differ between splenic-intact and splenic-denervated rats. These results provide experimental support for the hypothesis that ANG II modulates the immune system through activation of splenic SND, suggesting a novel relation between ANG II, efferent sympathetic nerve outflow, and splenic cytokine gene expression.  相似文献   

17.
Previously, we have demonstrated that an altered endogenous nitric oxide (NO) mechanism within the paraventricular nucleus (PVN) contributes to increased renal sympathetic nerve activity (RSNA) in heart failure (HF) rats. The goal of this study was to examine the effect of exercise training (ExT) in improving the endogenous NO mechanism within the PVN involved in the regulation of RSNA in rats with HF. ExT significantly restored the decreased number of neuronal NO synthase (nNOS)-positive neurons in the PVN (129 +/- 17 vs. 99 +/- 6). nNOS mRNA expression and protein levels in the PVN were also significantly increased in HF-ExT rats compared with HF-sedentary rats. To examine the functional role of NO within the PVN, an inhibitor of NOS, N(G)-monomethyl-L-arginine, was microinjected into the PVN. Dose-dependent increases in RSNA, arterial blood pressure (BP), and heart rate (HR) were produced in all rats. There was a blunted increase in these parameters in HF rats compared with the sham-operated rats. ExT significantly augmented RSNA responses in rats with HF (33% vs. 20% at the highest dose), thus normalizing the responses. The NO donor sodium nitroprusside, microinjected into the PVN, produced dose-dependent decreases in RSNA, BP, and HR in both sham and HF rats. ExT significantly improved the blunted decrease in RSNA in HF rats (36% vs. 17% at the highest dose). In conclusion, our data indicate that ExT improves the altered NO mechanism within the PVN and restores NO-mediated changes in RSNA in rats with HF.  相似文献   

18.
Using neuronal NO synthase (nNOS)-specific antisense oligonucleotides, we examined the role of nitric oxide (NO) in the paraventricular nucleus (PVN) on control of blood pressure and heart rate (HR) in conscious sham rats and rats with chronic heart failure (CHF). After 6-8 wk, rats with chronic coronary ligation showed hemodynamic and echocardiographic signs of CHF. In sham rats, we found that microinjection of sodium nitroprusside (SNP, 20 nmol, 100 nl) into the PVN induced a significant decrease in mean arterial pressure (MAP). SNP also induced a significant decrease in HR over the next 10 min. In contrast, the NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 200 pmol, 100 nl) significantly increased MAP and HR over the next 18-20 min. After injection of nNOS antisense, MAP was significantly increased in sham rats over the next 7 h. The peak response was 27.6 +/- 4.1% above baseline pressure. However, in the CHF rats, only MAP was significantly increased. The peak magnitude was 12.9 +/- 5.4% of baseline, which was significantly attenuated compared with sham rats (P < 0.01). In sham rats, the pressor response was completely abolished by alpha-receptor blockade. HR was significantly increased from hour 1 to hour 7 in sham and CHF rats. There was no difference in magnitude of HR responses. The tachycardia could not be abolished by the beta(1)-blocker metoprolol. However, the muscarinic receptor antagonist atropine did not further augment the tachycardia. We conclude that NO induces a significant depressor and bradycardiac response in normal rats. The pressor response is mediated by an elevated sympathetic tone, whereas the tachycardia is mediated by withdrawal of parasympathetic tone in sham rats. These data are consistent with a downregulation of nNOS within the PVN in CHF.  相似文献   

19.
Large interindividual differences exist in resting sympathetic nerve activity (SNA) among normotensive humans with similar arterial pressure (AP). We recently showed inverse relationships of resting SNA with cardiac output (CO) and vascular adrenergic responsiveness that appear to balance the influence of differences in SNA on blood pressure. In the present study, we tested whether nitric oxide (NO)-mediated vasodilation has a role in this balance by evaluating hemodynamic responses to systemic NO synthase (NOS) inhibition in individuals with low and high resting muscle SNA (MSNA). We measured MSNA via peroneal microneurography, CO via acetylene uptake and AP directly, at baseline and during increasing systemic doses of the NOS inhibitor NG-monomethyl-L-arginine (L-NMMA). Baseline MSNA ranged from 9 to 38 bursts/min (13 to 68 bursts/100 heartbeats). L-NMMA caused dose-dependent increases in AP and total peripheral resistance and reflex decreases in CO and MSNA. Increases in AP with L-NMMA were greater in individuals with high baseline MSNA (PANOVA<0.05). For example, after 8.5 mg/kg of L-NMMA, in the low MSNA subgroup (n=6, 28+/-4 bursts/100 heartbeats), AP increased 9+/-1 mmHg, whereas in the high-MSNA subgroup (n=6, 58+/-3 bursts/100 heartbeats), AP increased 15+/-2 mmHg (P<0.01). The high-MSNA subgroup had lower baseline CO and smaller decreases in CO with L-NMMA, but changes in total peripheral resistance were not different between groups. We conclude that differences in CO among individuals with varying sympathetic traffic have important hemodynamic implications during disruption of NO-mediated vasodilation.  相似文献   

20.
Our previous study demonstrated a contribution of the paraventricular nucleus (PVN) of the hypothalamus in the processing of the carotid body (CB) chemoreflex. Nitric oxide (NO) (within the PVN), known to modulate autonomic function, is altered in rats with heart failure (HF). Therefore, the goal of the present study was to examine the influence of endogenous and exogenous NO within the PVN on the sympathoexcitatory component of the peripheral chemoreflex in normal and HF states. We measured mean arterial blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and phrenic nerve activity (PNA) in sham-operated and HF rats (6-8 wk after coronary artery ligation) after incremental doses of potassium cyanide (25-100 mug/kg iv). There was potentiation of the reflex responses in HF compared with sham-operated rats. Bilateral microinjection of an inhibitor of NO synthase, N(G)-monomethyl-l-arginine (50 pmol), into the PVN augmented the RSNA and PNA response to peripheral chemoreceptor stimulation in sham-operated rats but had no effect in HF rats. Conversely, bilateral microinjection of a NO donor, sodium nitroprusside (50 nmol), into the PVN attenuated the RSNA response of the peripheral chemoreflex in sham-operated rats but to a smaller extent in HF rats. These data indicate that 1) NO within the PVN plays an important role in the processing of the CB chemoreflex and 2) there is an impairment of the NO function within the PVN of HF rats, which contributes to an augmented peripheral chemoreflex and subsequent elevation of sympathetic activity in HF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号