共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of immune cells with restricted specificities for the treatment of cancer is a rapidly emerging area of clinical research. Chimeric receptors composed of the single-chain variable domain of murine antibodies and human signaling molecules are a promising tool to redirect the specificity of autologous or allogeneic immune cells. The success of this approach depends on the identification of target molecules expressed preferentially on cancer cells. Moreover, appropriate primary and secondary stimuli must be delivered to generate vigorous and durable immune responses. Since cancer cells often lack ligands for key co-stimulatory molecules, the addition of molecules such as CD28 or 4-1BB to the chimeric receptors can significantly improve their function. Studies in vitro and in animal models indicate that immune cells expressing chimeric receptors can have remarkable anti-cancer activity, while experimental and clinical data indicate that long-term persistence of adoptively transferred cells is feasible. Therefore, testing of this approach in clinical trials is warranted. We here review the principles and methodologies for designing chimeric receptors and delivering them into immune cells, as well as some of the potential complications associated with this form of cell therapy. 相似文献
2.
Clinical studies of adoptive immunotherapy with T cells have shown activity directed at hematologic and solid malignancies and viral infections. Genetic modification of infused T cells offers the prospect of improving such therapies and has already been used to track infused T cells, insert suicide genes and redirect the immune response towards specific Ag. Pre-clinical studies are evaluating novel approaches to genetically modify T cells to confer resistance to tumor evasion mechanisms. There is also increasing interest in developing suicide gene strategies as a failsafe mechanism to eradicate genetically modified cells should adverse effects occur. 相似文献
3.
Carl H. June Marcela V. Maus Gabriela Plesa Laura A. Johnson Yangbing Zhao Bruce L. Levine Stephan A. Grupp David L. Porter 《Cancer immunology, immunotherapy : CII》2014,63(9):969-975
It is now well established that the immune system can control and eliminate cancer cells. Adoptive T cell transfer has the potential to overcome the significant limitations associated with vaccine-based strategies in patients who are often immune compromised. Application of the emerging discipline of synthetic biology to cancer, which combines elements of genetic engineering and molecular biology to create new biological structures with enhanced functionalities, is the subject of this focused research review. 相似文献
4.
Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies.KEY WORDS: Immunotherapies, Gene modification, TCR, CAR, T cell, Oncology, Efficacy, Safety, Regulation, Manufacturing, Clinical trial 相似文献
5.
Kershaw MH Jackson JT Haynes NM Teng MW Moeller M Hayakawa Y Street SE Cameron R Tanner JE Trapani JA Smyth MJ Darcy PK 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(3):2143-2150
The major limiting factor in the successful application of adjuvant therapy for metastatic disease is the lack of adjuvant specificity that leads to severe side effects. Reasoning that T cells of the immune system are highly specific, we generated tumor-specific T cells by genetic modification of mouse primary T cells with a chimeric receptor reactive with the human breast cancer-associated Ag erbB-2. These T cells killed breast cancer cells and secreted IFN-gamma in an Ag-specific manner in vitro. We investigated their use against metastatic breast cancer in mice in an adjuvant setting, and compared their effectiveness with the commonly applied adjuvants doxorubicin, 5-fluorouracil, and herceptin. Mice were inoculated orthotopically with the human erbB-2-expressing spontaneously metastatic mouse breast cancer 4T1.2 in mammary tissue, and the primary tumor was surgically removed 8 days later. Significant metastatic disease was demonstrated in lung and liver at the time of surgery on day 8 with increased tumor burden at later time points. T cell adjuvant treatment of day 8 metastatic disease resulted in dramatic increases in survival of mice, and this survival was significantly greater than that afforded by either doxorubicin, 5-fluorouracil, or herceptin. 相似文献
6.
Targeted gene modification for gene therapy of stem cells 总被引:1,自引:0,他引:1
S S Boggs 《International journal of cell cloning》1990,8(2):80-96
Ideally, gene therapy would correct the specific gene defect without adding potentially harmful extraneous DNA sequences. Such correction can be obtained with homologous recombination between input DNA sequences and identical (homologous) sequences in the genomic target gene. The development of techniques for obtaining virtually pure populations of hematopoietic stem cells should permit the use of the highly efficient nuclear microinjection methods for transfer of DNA. These techniques combined with new highly sensitive methods for detecting cells with the specified genetic modification of nonexpressed genes would make homologous recombination-mediated gene therapy feasible for hematopoietic stem cells. These advances are reviewed with particular emphasis on approaches to targeted gene modification of hematopoietic stem cells and speculation on directions for future research. 相似文献
7.
Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential. 相似文献
8.
Michálek J Büchler T Hájek R 《Physiological research / Academia Scientiarum Bohemoslovaca》2004,53(5):463-469
The rationale for the use of T lymphocytes to fight cancer is the immunogenicity of tumor cells. T cells are capable to recognize and finally to kill tumor cells. Adoptive cell transfer therapies provide the opportunity to overcome tolerogenic mechanisms by enabling the selection and activation of highly reactive T cell subpopulations and by manipulation of the host environment into which the T cells are introduced. The aim of this article is to review the possibilities, limitations and recent clinical experience with this novel anticancer treatment, namely with adoptive immunotherapy using antigen-specific T cells. 相似文献
9.
Mariëtte I. E. van Poelgeest Valeria V. Visconti Zohara Aghai Vanessa J. van Ham Moniek Heusinkveld Maarten L. Zandvliet A. Rob P. M. Valentijn Renske Goedemans Caroline E. van der Minne Els M. E. Verdegaal J. Baptist M. Z. Trimbos Sjoerd H. van der Burg Marij J. P. Welters 《Cancer immunology, immunotherapy : CII》2016,65(12):1451-1463
10.
Costa M Dottori M Sourris K Jamshidi P Hatzistavrou T Davis R Azzola L Jackson S Lim SM Pera M Elefanty AG Stanley EG 《Nature protocols》2007,2(4):792-796
The ability to genetically modify human embryonic stem cells (HESCs) will be critical for their widespread use as a tool for understanding fundamental aspects of human biology and pathology and for their development as a platform for pharmaceutical discovery. Here, we describe a method for the genetic modification of HESCs using electroporation, the preferred method for introduction of DNA into cells in which the desired outcome is gene targeting. This report provides methods for cell amplification, electroporation, colony selection and screening. The protocol we describe has been tested on four different HESC lines, and takes approximately 4 weeks from electroporation to PCR screening of G418-resistant clones. 相似文献
11.
Pancreatic cancer (PC) is the fourth most frequent cause of cancer death in the United States. Emerging evidence suggests that pancreatic cancer stem cells (CSCs) play a crucial role in the development and progression of PC. Recently, there is increasing evidence showing that chemopreventive agents commonly known as nutraceuticals could target and eliminate CSCs that have been proposed as the root of the tumor progression, which could be partly due to attenuating cell signaling pathways involved in CSCs. Therefore, targeting pancreatic CSCs by nutraceuticals for the prevention of tumor progression and treatment of PC may lead to the development of novel strategy for achieving better treatment outcome of PC patients. In this review article, we will summarize the most recent advances in the pancreatic CSC field, with particular emphasis on nutraceuticals that target CSCs, for fighting this deadly disease. 相似文献
12.
The recent identification of colon cancer tumor-initiating cells adds further support to the cancer stem cell hypothesis. Ongoing basic and translational research efforts are aimed at gaining an increased understanding of the biology of these cells, as well as methods of targeting them. In addition, the relationship between colon carcinogenesis and inflammatory conditions, such as longstanding colitis and inherited syndromes, might be linked to the effect of the processes on stem cells in the colon. This review summarizes current literature on colon cancer stem cells and proposes strategies aimed at targeting these cells for colon cancer prevention and therapy. 相似文献
13.
Popescu NC 《Journal of cellular and molecular medicine》2000,4(3):151-163
Human cancer is viewed as a disorder of genes originating from the progeny of a single cell that has accumulated multiple genetic alterations. The genetic alterations include point mutation, chromosomal rearrangements and imbalances. Amplifications primarily involve oncogenes whose overexpression leads to growth deregulation, while deletions commonly target tumor suppressor genes that control cell cycle checkpoints and DNA repair mechanisms. With the advent of molecular cytogenetics procedures for global detection of genomic imbalances and for multicolor visualization of structural chromosome changes, as well as the completion of human genome mapping and the development of microarray technology for serial gene expression analysis of the entire genomes, a significant progress has been made in uncovering the molecular basis of cancer. The major challenge in cancer biology is to decipher the molecular anatomy of various cancers and to identify cancer-related genes that now comprise only a fraction of human genes. The complete genetic anatomy of specific cancers would allow a better understanding of the role of genetic alterations in carcinogenesis, provide diagnostic and prognostic markers and discriminate between cells at different stages of progression toward malignancy. This review highlights current technologies that are available to explore cancer cells and outlines their application to investigations in human hepatocellular carcinoma. 相似文献
14.
15.
Yu-Quan Wei 《中国科学:生命科学英文版》2016,59(4):331-332
正The development of genetic engineering has enabled the modification of stem cells and somatic cells.T cells exert immune responses against cancer cells.Efforts to redirect T cell specificity of a chimeric antigen receptor(CAR)to a desired antigen began in the 1990s(Gross et al.,1989;Kuwana et al.,1987).In 2006,the first clinical trial using carbonic anhydrase IX CAR-T cells to fight renal cancer was conducted(Lamers et al.,2006).Until 2011,Porter et al.exploited CD19 CAR-T to treat refractory/relapsed chronic lymphoid leukemia(Porter et al.,2011).Subsequently,trials 相似文献
16.
Realizing the potential of human embryonic stem cells (hESCs) in research and commercial applications requires generic protocols for culture, expansion and genetic modification that function between multiple lines. Here we describe a feeder-free hESC culture protocol that was tested in 13 independent hESC lines derived in five different laboratories. The procedure is based on Matrigel adaptation in mouse embryonic fibroblast conditioned medium (CM) followed by monolayer culture of hESC. When combined, these techniques provide a robust hESC culture platform, suitable for high-efficiency genetic modification via plasmid transfection (using lipofection or electroporation), siRNA knockdown and viral transduction. In contrast to other available protocols, it does not require optimization for individual lines. hESC transiently expressing ectopic genes are obtained within 9 d and stable transgenic lines within 3 weeks. 相似文献
17.
Jayesh Sagar Boussad Chaib Kevin Sales Marc Winslet Alexander Seifalian 《Cancer cell international》2007,7(1):9
For over 30 years, stem cells have been used in the replenishment of blood and immune systems damaged by the cancer cells
or during treatment of cancer by chemotherapy or radiotherapy. Apart from their use in the immuno-reconstitution, the stem
cells have been reported to contribute in the tissue regeneration and as delivery vehicles in the cancer treatments. The recent
concept of 'cancer stem cells' has directed scientific communities towards a different wide new area of research field and
possible potential future treatment modalities for the cancer. Aim of this review is primarily focus on the recent developments
in the use of the stem cells in the cancer treatments, then to discuss the cancer stem cells, now considered as backbone in
the development of the cancer; and their role in carcinogenesis and their implications in the development of possible new
cancer treatment options in future. 相似文献
18.
《World journal of stem cells》2017,(10)
Tumors consist of a mixture of heterogeneous cell types. Cancer stem cells(CSCs) are a minor sub-population within the bulk cancer fraction which has been foundto reconstitute and propagate the disease and to be frequently resistant to chemotherapy, irradiation, cytotoxic drugs and probably also against immune attack. CSCs are considered as the seeds of tumor recurrence, driving force of tumorigenesis and metastases. This underlines the urgent need for innovative methods to identify and target CSCs. However, the role and existence of CSCs in therapy resistance and cancer recurrence remains a topic of intense debate. The underlying biological properties of the tumor stem cells are extremely dependent on numerous signals, and the targeted inhibition of these stem cell signaling pathways is one of the promising approaches of the new antitumor therapy approaches. This perspective review article summarizes the novel methods of tracing CSCs and discusses the hallmarks of CSC identification influenced by the microenvironment or by having imperfect detection markers. In addition, explains the known molecular mechanisms of therapy resistance in CSCs as reliable and clinically predictive markers that could enable the use of new targeted antitumor therapy in the sense of personalized medicine. 相似文献
19.