首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

There is limited available data on the strain diversity of M tuberculosis in Peru, though there may be interesting lessons to learn from a setting where multidrug resistant TB has emerged as a major problem despite an apparently well-functioning DOTS control programme.

Methods

Spoligotyping was undertaken on 794 strains of M tuberculosis collected between 1999 and 2005 from 553 community-based patients and 241 hospital-based HIV co-infected patients with pulmonary tuberculosis in Lima, Peru. Phylogenetic and epidemiologic analyses permitted identification of clusters and exploration of spoligotype associations with drug resistance.

Results

Mean patient age was 31.9 years, 63% were male and 30.4% were known to be HIV+. Rifampicin mono-resistance, isoniazid mono-resistance and multidrug resistance (MDR) were identified in 4.7%, 8.7% and 17.3% of strains respectively. Of 794 strains from 794 patients there were 149 different spoligotypes. Of these there were 27 strains (3.4%) with novel, unique orphan spoligotypes. 498 strains (62.7%) were clustered in the nine most common spoligotypes: 16.4% SIT 50 (clade H3), 12.3% SIT 53 (clade T1), 8.3% SIT 33 (LAM3), 7.4% SIT 42 (LAM9), 5.5% SIT 1 (Beijing), 3.9% SIT 47 (H1), 3.0% SIT 222 (clade unknown), 3.0% SIT1355 (LAM), and 2.8% SIT 92 (X3). Amongst HIV-negative community-based TB patients no associations were seen between drug resistance and specific spoligotypes; in contrast HIV-associated MDRTB, but not isoniazid or rifampicin mono-resistance, was associated with SIT42 and SIT53 strains.

Conclusion

Two spoligotypes were associated with MDR particularly amongst patients with HIV. The MDR-HIV association was significantly reduced after controlling for SIT42 and SIT53 status; residual confounding may explain the remaining apparent association. These data are suggestive of a prolonged, clonal, hospital-based outbreak of MDR disease amongst HIV patients but do not support a hypothesis of strain-specific propensity for the acquisition of resistance-conferring mutations.  相似文献   

2.
Compared with other developed countries, vancomycin‐resistant enterococci (VRE) are not widespread in clinical environments in Japan. There have been no VRE outbreaks and only a few VRE strains have sporadically been isolated in our university hospital in Gunma, Japan. To examine the drug susceptibility of Enterococcus faecalis and nosocomial infection caused by non‐VRE strains, a retrospective surveillance was conducted in our university hospital. Molecular epidemiological analyses were performed on 1711 E. faecalis clinical isolates collected in our hospital over a 6‐year period [1998–2003]. Of these isolates, 1241 (72.5%) were antibiotic resistant and 881 (51.5%) were resistant to two or more drugs. The incidence of multidrug resistant E. faecalis (MDR‐Ef) isolates in the intensive care unit increased after enlargement and restructuring of the hospital. The major group of MDR‐Ef strains consisted of 209 isolates (12.2%) resistant to the five drug combination tetracycline/erythromycin/kanamycin/streptomycin/gentamicin. Pulsed‐field gel electrophoresis analysis of the major MDR‐Ef isolates showed that nosocomial infections have been caused by MDR‐Ef over a long period (more than 3 years). Multilocus sequence typing showed that these strains were mainly grouped into ST16 (CC58) or ST64 (CC8). Mating experiments suggested that the drug resistances were encoded on two conjugative transposons (integrative conjugative elements), one encoded tetracycline‐resistance and the other erythromycin/kanamycin/streptomycin/gentamicin‐resistance. To our knowledge, this is the first report of nosocomial infection caused by vancomycin‐susceptible MDR‐Ef strains over a long period in Japan.  相似文献   

3.
COX‐2 (cyclo‐oxygenase 2), an inducible form of the enzyme that catalyses the first step in the synthesis of prostanoids, is associated with inflammatory diseases and carcinogenesis, which is suspected to promote angiogenesis and tissue invasion of tumours and resistance to apoptosis. COX‐2 is also involved in drug resistance and poor prognosis of many neoplastic diseases or cancers. The activation of the COX‐2/PGE2 (prostaglandin E2)/prostaglandin E receptor signal pathway can up‐regulate the expression of all three ABC (ATP‐binding‐cassette) transporters, MDR1/P‐gp (multidrug resistance/P‐glycoprotein), MRP1 (multidrug‐resistance protein 1) and BCRP (breast‐cancer‐resistance protein), which encode efflux pumps, playing important roles in the development of multidrug resistance. In addition, COX inhibitors inhibit the expression of MDR1/P‐gp, MRP1 and BCRP and enhance the cytotoxicity of anticancer drugs. Therefore we can use the COX inhibitors to potentialize the effects of chemotherapeutic agents and reverse multidrug resistance to facilitate the patient who may benefit from addition of COX inhibitors to standard cytotoxic therapy.  相似文献   

4.
This review considers the mechanisms associated with the pleiotropic resistance of cancer cells to chemotherapeutic drugs, and more particularly those related to intracellular pH (pHi). The multidrug resistance (MDR) phenomenon responsible for the decreased accumulation and increased efflux of cytotoxic drugs is generally associated with excess levels of P-glycoproteins (Pgps) encoded by MDR genes and/or the multidrug resistance-associated protein (MRP). MDR cell lines, derived from normal or tumor cells, frequently exhibit abnormally elevated pHi and changes in the production of various proteins. Recent studies have suggested that, in addition to the impact of the ATP-dependent membrane transporters Pgp and MRP on drug transport, other mechanisms linked to pHi changes in MDR cells may play an important role in drug resistance. We have shown that alkalinization of the acidic compartments (endosomes and lysosomes) by lysosomotropic agents could stimulate the efflux of vinblastine from drug-resistant mouse renal proximal tubule cells. The fact that weak base chemotherapeutic drugs can be sequestered within the acidic organelles of MDR cells sheds new light on the cellular mechanisms of drug resistance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
AIM: To compare the incidence of antimicrobial resistance among Salmonella serotypes isolated in a pig slaughterhouse in Zaragoza (Spain) during 1993 and 2001. METHODS AND RESULTS: A total of 168 isolates representing 10 serotypes were examined by disc diffusion method using 17 antibiotics. Data showed that the majority of the strains were resistant to streptomycin (97%), sulfadiazine (93.4%) and tetracycline (83.3%). A large proportion of the collection was multidrug resistant (MDR, resistance to four or more antibiotics) with a greater incidence in 2001. The findings imply an increasing incidence of MDR amongst S. Typhimurium, and all S. Typhimurium-definitive phage type (DT) 104 isolates were resistant to ampicillin, chloramphenicol, streptomycin, sulphonamide and tetracycline (R-ACSSuT). This resistance phenotype had spread among other phage and serotypes. Salmonella Ohio was also a MDR serotype and this is not a serotype normally associated with drug resistance. CONCLUSIONS: A large proportion of the strains were MDR and this showed that pork products could be a potential vehicle of MDR Salmonella food-borne infections. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings may have significant public health consequences and could contribute to the development of useful practices aimed at limiting the transmission of MDR Salmonella serotypes through the food chain.  相似文献   

6.
7.
Although a variable proportion of multiple myeloma patients can achieve response with conventional chemotherapy, residual tumor cells, which are refractory, finally reemerge leading to disease progression. The expression of the multidrug resistance protein (MDR1) has been one of the most extensively explored mechanisms of drug resistance and has been related to a poor response to chemotherapy in several human tumors. Nevertheless, a careful analysis of the literature on MDR1 expression in multiple myeloma (MM) shows the existence of disturbing discrepancies as regards both the incidence of MDR1 over-expression and its clinical value. A prerequisite for the assessment of MDR1 in tumor cells should be the identification of the neoplastic cells present in the sample. This is particularly important in MM, where the percentage of tumor cells in bone marrow (BM) is relatively low. In the present study we have analyzed the functional expression of MDR1 in BM plasma cells (PC), from a group of 40 untreated MM patients. For that purpose, the rhodamine 123 efflux assay was used in combination with specific staining for plasma cells (CD38 strong+). The mean fluorescence channel (MFC) of rhodamine 123 in myelomatous PC from MM patients was 311 and 110 after incubating cells with this fluorochrome for 15 and 60 min, respectively. The median percentage of rhodamine 123 elimination by BM PC was of 61% (range: 0.29 to 88%). Upon analyzing the relationship between the ability of myelomatous PC to eliminate rhodamine 123 and other clinical and biological disease characteristics we found that, within the group of patients displaying high MDR1 expression (>61% rhodamine efflux), there was a higher incidence of cases with bone disease (P = 0.014) and advanced clinical stages (P = 0.031), greater calcium (P = 0.007) and creatinine serum levels (P = 0.061), and lower levels of albumin in serum (P = 0.015). All these parameters are usually associated with a poor prognosis. When we analyzed the possible relationship between the ability of BM PC to eliminate rhodamine 123 and the presence of numerical chromosome abnormalities we observed that a low MDR1 expression was related to a higher incidence of trisomies of chromosomes 6 and 17, although these differences did not reach statistical significance (P = 0.06). In spite of these associations, from the prognostic point of view, MDR1 expression did not correlate with other relevant prognostic factors, response to treatment (P = 0.38) or overall survival (P = 0.12).  相似文献   

8.
Fungicide resistance frequencies of Botrytis cinerea populations in the German Wine Road region were determined for 4 years. Strains showing specific resistance against carbendazim, iprodione or fenhexamid were found to occur wide‐spread, but at low frequencies. In contrast, cyprodinil resistance increased from 5.4% in 2006 to 21.9% in 2008 and 16% in 2009, and strains resistant to boscalid increased from 2% in 2006 to 26.7% in 2009. Strains with multidrug resistance (MDR) phenotypes were found at high frequencies. One of the three MDR phenotypes, MDR1, with reduced sensitivity to cyprodinil and fludioxonil, was dominating, representing 19% to 35% of the total population. Strains with a combination of cyprodinil resistance and MDR1 were found to be strongly increasing in 2008 and 2009.  相似文献   

9.
Drug resistant tuberculosis is a man made problem. While tuberculosis is hundred percent curable, multidrug resistant tuberculosis (MDR-TB) is difficult to treat. Inadequate and incomplete treatment and poor treatment adherence has led to a newer form of drug resistance known as extensively drug resistant tuberculosis (XDR-TB). XDR-TB is defined as tuberculosis caused by Mycobacterium tuberculosis strain, which is resistant to at least rifampicin and isoniazid among the first line anti tubercular drugs (MDR-TB) in addition to resistance to any fluroquinolones and at least one of three injectable second line anti tubercular drugs i.e. amikacin, kanamycin and/or capreomycin. Mismanagement of tuberculosis paves the way to drug resistant tuberculosis. Emergence of XDR-TB is reported world wide. Reported prevalence rates of XDR-TB of total MDR cases are; 6.6% overall worldwide, 6.5% in industrialized countries, 13.6% in Russia and Eastern Europe, 1.5% in Asia, 0.6% in Africa and Middle East and 15.4% in Republic of Korea. Better management and control of tuberculosis specially drug resistant TB by experienced and qualified doctors, access to standard microbiology laboratory, co-morbitidy of HIV and tuberculosis, new anti-TB drug regimens, better diagnostic tests, international standards for second line drugs (SLD)-susceptibility testing, invention of newer antitubercular molecules and vaccines and knowing the real magnitude of XDR-TB are some of the important issues to be addressed for effective prevention and management of XDR-TB.  相似文献   

10.
11.
The refractory nature of many human cancers to multi-agent chemotherapy is termed multidrug resistance (MDR). In the past several decades, a major focus of clinical and basic research has been to characterize the genetic and biochemical mechanisms mediating this phenomenon. To provide model systems in which to study mechanisms of multidrug resistance,in vitro studies have established MDR cultured cell lines expressing resistance to a broad spectrum of unrelated drugs. In many of these cell lines, the expression of high levels of multidrug resistance developed in parallel to the appearance of cytogenetically-detectable chromosomal anomalies resulting from gene amplification. This review describes cytogenetic and molecular-based studies that have characterized DNA amplification structures in MDR cell lines and describes the important role gene amplification played in the cloning and characterization of the mammalian multidrug resistance genes (mdr). In addition, this review discusses the genetic selection generally used to establish the MDR cell lines, and how drug selections performed in transformed cell lines generally favor the genetic process of gene amplification, which is still exploited to identify drug resistance genes that may play an important role in clinical MDR.  相似文献   

12.
13.
Organochlorine (OC) pesticides constitute a major class of persistent and toxic organic pollutants, known to modulate drug‐detoxifying enzymes. In the present study, OCs were demonstrated to also alter the activity and expression of human hepatic drug transporters. Activity of the sinusoidal influx transporter OCT1 (organic cation transporter 1) was thus inhibited by endosulfan, chlordane, heptachlor, lindane, and dieldrine, but not by dichlorodiphenyltrichloroethane isomers, whereas those of the canalicular efflux pumps MRP2 (multidrug resistance‐associated protein 2) and BCRP (breast cancer resistance protein) were blocked by endosulfan, chlordane, heptachlor, and chlordecone; this latter OC additionally inhibited the multidrug resistance gene 1 (MDR1)/P‐glycoprotein (P‐gp) activity. OCs, except endosulfan, were next found to induce MDR1/P‐gp and MRP2 mRNA expressions in hepatoma HepaRG cells; some of them also upregulated BCRP. By contrast, expression of sinusoidal transporters was not impaired (organic anion‐transporting polypeptide (OATP) 1B1 and OATP2B1) or was downregulated (sodium taurocholate co‐transporting polypeptide (NTCP) and OCT1). Such regulations of drug transporter activity and expression, depending on the respective nature of OCs and transporters, may contribute to the toxicity of OC pesticides.  相似文献   

14.
Nuclear transport as an ultimate step of multidrug resistance   总被引:2,自引:0,他引:2  
Adriamycin (ADM) incorporation into nuclei of whole multidrug resistant (MDR) CEM cells is lower than into sensitive ones (S), that is mostly thought to be the consequence of a decrease of drug related to the activity of the multidrug resistance plasma membrane protein P 170. Isolated nuclei of the lymphoblastic tumor cell line CEM, which structures were controlled by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal microscopy, where incubated with 10(-6) mole/l of ADM. Incorporation into DNA was quantified by spectrofluorimetry. It was lower and slower into MDR nuclei than into S ones. Different modulators of active transport influence drug transfer into S nuclei and had no effect in MDR nuclei. The nuclear transfer into S nuclei appeared divided into two components: one was decreased by WGA, increased by cytosolic factors and an other part was purely passive in an identical intensity to MDR nuclei. Resistance of MDR nuclei seemed indebt to a defect, in these cells, of factors that mediate and/or activate nuclear transport of drug.  相似文献   

15.
Overexpression of the Multiple Drug Resistance gene (MDR1) has been proposed as a major mechanism related to both intrinsic and acquired resistance to chemotherapeutic agents. The gene product is a membrane protein (P-glycoprotein), that acts as an energydependent drug efflux pump decreasing drug accumulation in resistant tumor cells. We have characterized MDR1 and P-Glycoprotein expression in human gastric adenocarcinoma and in precursor lesions. MDR1 mRNAs, analyzed by dot-blot technique, were detected in 9 of 10 non-tumoral gastric mucosae and in 8 of 10 gastric adenocarcinomas. Immunohistochemical analysis, using the MRK16 monoclonal antibody, revealed heterogeneous expression of P-Glycoprotein in individual cells. The P-Glycoprotein was found on the surface of cells of gastric areas with intestinal metaplasia subtype III. This type of intestinal metaplasia, also called “colonic metaplasia”, has been strongly associated with a high risk for the development of gastric cancer. The fact that the P-Glycoprotein was detected in this precursor lesion is consistent with the intestinal metaplasia dysplasia and carcinoma sequence proposed in the histogenesis of this tumor. The finding that P-Glycoprotein was heterogeneously expressed in malignant cells of some gastric adenocarcinomas also suggests that this transporter system probably contributes to primary and secondary multidrug resistance in this neoplasm.  相似文献   

16.

Background

Drug resistance among tuberculosis patients in sub-Saharan Africa is increasing, possibly due to association with HIV infection. We studied drug resistance and HIV infection in a representative sample of 533 smear-positive tuberculosis patients diagnosed in Kampala, Uganda.

Methods/Principal Findings

Among 473 new patients, multidrug resistance was found in 5 (1.1%, 95% CI 0.3–2.5) and resistance to any drug in 57 (12.1%, 9.3–15.3). Among 60 previously treated patients this was 7 (11.7%, 4.8–22.6) and 17 (28.3%; 17.5–41.4), respectively. Of 517 patients with HIV results, 165 (31.9%, 27.9–36.1) tested positive. Neither multidrug (adjusted odds ratio (ORadj) 0.7; 95% CI 0.19–2.6) nor any resistance (ORadj 0.7; 0.43–1.3) was associated with HIV status. Primary resistance to any drug was more common among patients who had worked in health care (ORadj 3.5; 1.0–12.0).

Conclusion/Significance

Anti-tuberculosis drug resistance rates in Kampala are low and not associated with HIV infection, but may be associated with exposure during health care.  相似文献   

17.

Background

Foreign-born individuals comprise >50% of tuberculosis (TB) cases in the U.S. Since anti-TB drug resistance is more common in most other countries, when evaluating a foreign-born individual for TB, one must consider the risk of drug resistance. Naturally, clinicians query The Global Project on Anti-tuberculosis Drug Resistance Surveillance (Global DRS) which provides population-based data on the prevalence of anti-TB drug resistance in 127 countries starting in 1994. However, foreign-born persons in the U.S. are a biased sample of the population of their countries of origin, and Global DRS data may not accurately predict their risk of drug resistance. Since implementing drug resistance surveillance in 1993, the U.S. National TB Surveillance System (NTSS) has accumulated systematic data on over 130,000 foreign-born TB cases from more than 200 countries and territories. Our objective was to determine whether the prevalence of drug resistance among foreign-born TB cases correlates better with data from the Global DRS or with data on foreign-born TB cases in the NTSS.

Methods and Findings

We compared the prevalence of resistance to isoniazid and rifampin among foreign-born TB cases in the U.S., 2007–2009, with US NTSS data from 1993 to 2006 and with Global DRS data from 1994–2007 visually with scatterplots and statistically with correlation and linear regression analyses. Among foreign-born TB cases in the U.S., 2007–2009, the prevalence of isoniazid resistance and multidrug resistance (MDR, i.e. resistance to isoniazid and rifampin), correlated much better with 1993–2006 US surveillance data (isoniazid: r = 0.95, P<.001, MDR: r = 0.75, P<.001) than with Global DRS data, 1994–2007 (isoniazid: r = 0.55, P = .001; MDR: r = 0.50, P<.001).

Conclusion

Since 1993, the US NTSS has accumulated sufficient data on foreign-born TB cases to estimate the risk of drug resistance among such individuals better than data from the Global DRS.  相似文献   

18.
MDR1 is highly expressed in MDR A2780DX5 ovarian cancer cells, MDR SGC7901R gastric cancer cells and recurrent tumours. It pumps cytoplasmic agents out of cells, leading to decreased drug accumulation in cells and making cancer cells susceptible to multidrug resistance. Here, we identified that miR‐495 was predicted to target ABCB1, which encodes protein MDR1. To reduce the drug efflux and reverse MDR in cancer cells, we overexpressed a miR‐495 mimic in SGC7901R and A2780DX cells and in transplanted MDR ovarian tumours in vivo. The results indicated that the expression of MDR1 in the above cells or tumours was suppressed and that subsequently the drug accumulation in the MDR cells was decreased, cell death was increased, and tumour growth was inhibited after treatment with taxol‐doxorubicin, demonstrating increased drug sensitivity. This study suggests that pre‐treatment with miR‐495 before chemotherapy could improve the curative effect on MDR1‐based MDR cancer.  相似文献   

19.
Drug efflux transporters in the placenta can significantly influence the materno-fetal transfer of a diverse array of drugs and other xenobiotics. To determine if clinically important drug efflux transporter expression is altered in pregnancies complicated by gestational diabetes mellitus (GDM-I) or type 1 diabetes mellitus (T1DM-I), we compared the expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and the breast cancer resistance protein (BCRP) via western blotting and quantitative real-time polymerase chain reaction in samples obtained from insulin-managed diabetic pregnancies to healthy term-matched controls. At the level of mRNA, we found significantly increased expression of MDR1 in the GDM-I group compared to both the T1DM-I (p<0.01) and control groups (p<0.05). Significant changes in the placental protein expression of MDR1, MRP2, and BCRP were not detected (p>0.05). Interestingly, there was a significant, positive correlation observed between plasma hemoglobin A1c levels (a retrospective marker of glycemic control) and both BCRP protein expression (r = 0.45, p<0.05) and BCRP mRNA expression (r = 0.58, p<0.01) in the insulin-managed DM groups. Collectively, the data suggest that the expression of placental efflux transporters is not altered in pregnancies complicated by diabetes when hyperglycemia is managed; however, given the relationship between BCRP expression and plasma hemoglobin A1c levels it is plausible that their expression could change in poorly managed diabetes.  相似文献   

20.
Subcellular localization and activity of multidrug resistance proteins   总被引:10,自引:0,他引:10       下载免费PDF全文
The multidrug resistance (MDR) phenotype is associated with the overexpression of members of the ATP-binding cassette family of proteins. These MDR transporters are expressed at the plasma membrane, where they are thought to reduce the cellular accumulation of toxins over time. Our data demonstrate that members of this family are also expressed in subcellular compartments where they actively sequester drugs away from their cellular targets. The multidrug resistance protein 1 (MRP1), P-glycoprotein, and the breast cancer resistance protein are each present in a perinuclear region positive for lysosomal markers. Fluorescence-activated cell sorting analysis suggests that these three drug transporters do little to reduce the cellular accumulation of the anthracycline doxorubicin. However, whereas doxorubicin enters cells expressing MDR transporters, this drug is sequestered away from the nucleus, its subcellular target, in vesicles expressing each of the three drug resistance proteins. Using a cell-impermeable inhibitor of MRP1 activity, we demonstrate that MRP1 activity on intracellular vesicles is sufficient to confer a drug resistance phenotype, whereas disruption of lysosomal pH is not. Intracellular localization and activity for MRP1 and other members of the MDR transporter family may suggest different strategies for chemotherapeutic regimens in a clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号