首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a microspectrophotometric study, photographic emulsions and a computer are used for measuring the hemoglobin content of a large number (about 50,000) of erythroid cells in fetal mice. Histograms of the hemoglobin content in erythroid cells illustrate the kinetics of erythropoiesis in yolk sac derived nucleated cells in the fetal peripheral blood, in fetal liver, and in fetal spleen. After the occasional extrusion of their nucleus, yolk sac derived erythrocytes remain as “macrocytes” in fetal circulation two or three days longer than the nucleated yolk sac derived erythrocytes do. Erythrocytes in fetal liver have a constant hemoglobin content of 28 pg 2 until day 17 of gestation. During further erythropoiesis in liver and then in the spleen, this amount is gradually adapted to the normal hemoglobin content in red blood cells of 16 pg.  相似文献   

2.
The early maturation stages of definitive erythroid cells are observed in the embryonic circulation of the chick yolk sac at 4.5--5 days of incubation. Light and electron microscope observation of the mesoderm of the yold sac membrane indicate that individual presumptive precursors of the definitive-line are present as early as 2 days of incubation and give rise to sequestered populations of immature erythroblasts within sinusoids during the period of 2.5-6 days incubation. Such isolated populations of definitive-line erythroblasts eventually connect with the established capillary circulation of yolk sac membrane but a large proportion of the erythroblasts temporarily remain associated with the endothelium prior to free circulation.  相似文献   

3.
To contribute to our understanding of nitrogen metabolism in the developing chick we have studied in liver, intestine and yolk sac membrane the ontogeny of both aspartate- and alanine transaminases, glutamate dehydrogenase, adenylate deaminase, glutamine synthetase and xanthine dehydrogenase activities. Liver enzyme activities were much higher than those of the same enzymes in intestine and yolk sac membrane, the latter having the lowest activities. In the liver, both alanine transaminase and glutamate dehydrogenase increased their activity just before hatching, xanthine dehydrogenase and glutamine synthetase develop their highest activity just after hatching, while aspartate transaminase and adenylate deaminase attained the highest levels just with adulthood. From the pattern of enzyme activity in yolk sac membrane and intestine it can be inferred that after hatching, the amino-acid metabolism in these tissues is considerably enhanced, with higher production of ammonia from amino acids, as indicated by the rise in adenylate deaminase, as well as increased potentiality in production of both alanine and glutamine. It can be concluded that hatching coincides with a deep change of pace in amino-acid metabolism in the organs studied fully comparable with that observed in Mammals at the end of lactation, with the difference that the adaptation to the new diet in the case of the chick is much more sudden than weaning is for the rat.  相似文献   

4.
Summary The halibut hatching gland (HG) cells are first observed as a cellular disc in front of the embryonic head around the midpoint of intra ovo development. The disc is subsequently transformed into a loop of increasing diameter as the HG cells migrate over the anterior part of the yolk sac. When the HG disc is transformed into a loop, the density of HG cells is highest at the migratory front. Some HG cells lag behind the migrating front at the early stages of HG development. At maturity, all cells are contained in a narrow belt which is about 10 cells wide. The HG belt structure consists of a monolayer of HG cells, and is maintained while the cells migrate between the two epidermal cell layers. Migration is halted about 2 days before normal hatching when the HG cells reach a destination at about a right angle to on the embryonic axis. Under the scanning electron microscope, the differentiating HG cells protrude as a ridge the yolk sac surface. The HG cells immunostain with antiserum to hatching enzyme when the HG is observed as a crescent structure around the embryonic head. By counting the number of immunostaining cells in composite photos of the entire yolk sac membrane, we found that the HG belt consists of approximately 2000 secretory cells at maturity. This cell number stays fairly constant throughout the period of HG cell migration. Accordingly, mitoses of the halibut HG cells have generally ceased prior to morphogenesis, and cytodifferentiation is already quite advanced when cell migration starts. Offprint requests to: J.V. Helvik  相似文献   

5.
6.
Using light microscopy the morphology, the mitotic index and levels of erythroid cell types were detected from 48 h pike Esox lucius embryos before hatching to adult specimens. At the same developmental stages, the haemoglobins and globin chains expressed were electrophoretically characterized. The erythroid cells of the primitive generation were the most abundant from 48 h before hatching until 15–20 days after hatching, then their number decreased and only rare cells remained in the 3 month‐old juvenile specimens. These cells divided and differentiated in the blood and were substituted by the definitive erythrocyte series. As in other vertebrates, the immature cells of the two generations differed in morphological properties and in the synthetized haemoglobin. The circulating erythroid cells of the definitive population cell lineage were, at all differentiation stages, smaller than those of the primitive generation. The definitive erythrocytes appeared in blood smears of 7 days post‐hatching larvae, they increased rapidly and at 20 days they represented the predominant red blood cell population in the circulation of young pike. Electrophoretic analysis of haemolysates obtained from different developmental stages indicated the presence of distinct embryonic, larval and adult haemoglobins. The embryonic haemoglobins differed from those of the older larva and juvenile specimens and were detectable within the first week of post‐hatching development when only primitive erythrocytes were present in the blood.  相似文献   

7.
Summary The cytological changes in the primitive and definitive erythrocytes of the incubating chick have been followed. Observations have been made on the nucleoli, vital granules, mitochondria,Golgi apparatus, reticulum ofSinigaglia and the reticulation patterns of the basophilic substance. The cells of the primitive and definitive lines are ordinarily readily distinguished from one another. Data are included on the rate of disappearance of the primitive cells from the circulation. They may persist as long as two weeks after hatching. Giant primitive erythrocytes are common during the first week of incubation. The cells have one, two three or four nuclei. The nuclearplasma relationship is maintained somewhere near a constant. These atypical cells are due to aberrations in mitosis. Data on the percentage of mitosis in both types of erythrocytes are also included. The initial activity of the spleen and bone-marrow is reflected in the blood stream. There is a distinct rise in the proportion of young definitive erythrocytes. An attempt is made to correlate the findings ofHall (1934) on the changing affinity of the hemoglobin for oxygen with the changing blood picture. The primitive line does not persist long enough to account for the phenomenon. It is suggested, however, that the hemoglobin of the erythrocytes produced by the yolk sac may differ from that of the cells produced by the spleen and bone-marrow. With Plates I–III.  相似文献   

8.
人卵黄囊造血的探讨   总被引:1,自引:0,他引:1  
采用卵黄囊组织切片、涂片的形态学、细胞化学染色、造血干/祖细胞体外培养及CD_(34)单克隆抗体免疫荧光检测等方法研究表明:人卵黄囊中存在造血岛,造血岛内由于造血微环境的特点致使此期造血主要向红系分化。血岛中检测出CD_(34)~ 细胞,比例高于胎肝及成人骨髓,干/祖细胞于体外培养形成红系集落。结论:人胚胎期造血源于卵黄囊。  相似文献   

9.
Mature T cells are derived from prethymic stem cells, which arise at one or more extrathymic sites and enter and differentiate in the thymus. The nature of these prethymic stem cells is a critical factor for the formation of the T-cell repertoire. Although the bone marrow of adult mice can provide such stem cells, their origin during murine embryogenesis is still undetermined. Among potential sites for these progenitor cells are the fetal liver and the embryonic yolk sac. Our studies focus on the yolk sac, both because the yolk sac appears earlier than any other proposed site, and because the mammalian yolk sac is the first site of hematopoiesis. Although it has been shown that the yolk sac in midgestation contains stem cells that can enter the thymic rudiment and differentiate toward T-cell lineage, our aim was to analyze the developmental potential of cells in the yolk sac from earlier stages, prior to the formation of the liver and any other internal organ. We show here that the yolk sac from 8- and 9-day embryos (2-9 and 13-19 somites, respectively) can reconstitute alymphoid congenic fetal thymuses and acquire mature T-cell-specific characteristics. Specifically, thymocytes derived from the early embryonic yolk sac can progress to the expression of mature T lymphocyte markers including CD3/T-cell receptor (TCR), CD4 and CD8. In contrast, we have been unable to document the presence of stem cells within the embryo itself at these early stages. These results support the hypothesis that the stem cells capable of populating the thymic rudiment originate in the yolk sac, and that their presence as early as at the 2- to 9-somite stage may indicate that prethymic stem cells found elsewhere in the embryo at later times may have been derived by migration from this extra-embryonic site. Our experimental design does not exclude the possibility of multiple origins of prethymic stem cells of which the yolk sac may provide the first wave of stem cells in addition to other later waves of cells.  相似文献   

10.
The effects of in ovo peptide YY (PYY) or epidermal growth factor (EGF) administration on chick growth, yolk absorption and yolk stalk function in posthatch (0–5 days) meat-type or broiler chicks were determined. At Day 18 of incubation, treated eggs were injected into the air cell with 100 μl of either PYY (Trial 1) or EGF (Trial 2) at a dosage of 600 μg/kg egg weight. Saline-treated control eggs were injected similarly with 0.9% saline. At hatch, 200 μl of 51Cr-labeled microspheres were injected into chick yolk sacs. Epidermal growth factor increased ileal wet weight adjusted for body weight as well as ileal serosal dry matter. Body weight, feed consumption and excreta weight per bird, and relative weights of the yolk sac, intestine and liver were significantly affected by age of the chick in both trials. Relative radioactivity of the yolk sac, yolk stalk, blood, liver, and kidneys were affected by bird age in Trial 2; however, there were no significant effects due to PYY or EGF treatments on relative radioactivity of the tissues and organs examined. These data suggest that PYY and EGF had no effect on yolk absorption or yolk stalk function through 5 days in the posthatch chick.  相似文献   

11.
We have measured alprenolol binding and cyclic AMP production in erythroid cells taken from chick embryos incubated from 8 days to hatching and in cells from the adult. Beta-adrenergic receptor number and affinity measured by alprenolol binding are essentially unchanged in red cell membranes prepared from 8- through 17-day embryos. Receptor number was found to be half as much in the adult. Erythroid cells from embryos of all ages studied show stimulation of cyclic AMP production when incubated with epinephrine, and most of the cyclic AMP produced remains intracellular. Inasmuch as the cells from younger embryos can in fact produce cyclic AMP, the previously-reported lack of epinephrine sensitivity of cation transport in the red cells of younger embryos (Wacholtz et al., 1978) cannot be attributed to the lack of functional receptors or to an impairment of cyclic AMP production.  相似文献   

12.
Leukemic myeloblasts and cells derived from normal chick hematopoietic tissue produced colonies in soft agar. Colonies produced by leukemic myeloblasts differed from normal chick tissue in their morphological characteristics, in the greater initial number of cells required for colony formation and in their decreased dependence on conditioned medium for development. The colony forming cells for both types were enriched when allowed to grow for several days in liquid growth medium. In soft agar, myeloblasts differentiated into more mature granulocytic cells and macrophages. These differentiated cells accumulated between one and two weeks after seeding. When tested for release of avian myeloblastosis virus (AMV), 6 out of 18 colonies were releasing AMV at one week whereas 3 out of 39 were releasing AMV at two weeks. Five two week old colonies which were negative for AMV were producing myeloblastosis associated viruses (MAVs). Normal colony forming cells were present in leukemic buffy coat and although colonies made by these cells contained MAVs, no AMV could be detected. The data obtained with normal avian tissues were similar to those obtained by others with mammalian hematopoietic tissue. Colony formation by normal hematopoietic tissues was strictly dependent on factors present in conditioned medium. Tissues producing colonies included bone marrow, yolk sac, spleen and peripheral leukocytes. Colonies were not obtained from thymus and bursa. Furthermore, the colony origin did not appear to be erythroid in nature.  相似文献   

13.
Cod larvae, Gadus morhua L., were reared in the laboratory and released to a large marine enclosure 4 to 5 days after hatching (6–8° C). The development of the digestive system was studied until day 24 after hatching. Morphological investigations of the jaw apparatus and the digestive tract showed that the larvae are able to absorb ingested food well before exhaustion of the yolk sac. The foregut, and especially the midgut, were particularly active in lipid absorption, and the hindgut was characterized by pinocytotic activity. Duhng the first days of feeding, no distinct prey organisms were observed in the gut, and signs of food absorption in the epithelial cells of the gut were sparse.A distinct red fluorescence, restricted to the hindgut, was observed from day 11 to day 19. On the basis of changes in absorptive pattern in the gut we suggest that changes in digestive and absorptive abilities, as well as in nutritional needs, take place around days 15–17 after hatching.
In starved larvae, signs of degeneration of the gut tissue were first visible in the foregut. By day 9 after hatching, microvilli was degenerated to such an extent that the ability to absorb food must have been severely restricted. If larvae are starved longer than this, they will probably not survive.  相似文献   

14.
The humoral influence of cells of hemopoietic organs of chicken embryos of different terms on the development of the colony and cluster formation of mononuclears of the bone marrow of mice was studied in joint cultivation in two-compartment cylindrical diffuse microchambers. The process of formation of colonies and clusters is inhibited by cells of the yolk sac on the 2nd-4th day of the development, by cells of the liver on the 8th-12th day, of the spleen on the 13th-18th day and of the bone marrow--on the 15th day. The yolk sac cells were found to have most considerable inhibiting influence on proliferation and differentiation of cells on the 2nd day of the development of chicken embryo. The yolk sac cells on the 6th day stimulate the formation of colonies and clusters. The yolk sac, beginning from the 4th day of the development, and the liver release humoral factors promoting the formation of erythroid colonies. The erythroid colonies are formed but when cultivated on the vascular membrane of the chicken embryo; the erythroid colonies are not formed when cultivated in the abdominal cavity of mice. Local erythropoietinoid factors are not synthetized by the spleen and bone marrow cells. A supposition is put forward that a combination of the local inhibiting and erythropoietic effects promotes the erythroid differentiation of cells.  相似文献   

15.
Extraembryonal degradation of yolk protein is necessary to provide the avian embryo with required free amino acids during early embryogenesis. Screening of proteolytic activity in different compartments of quail eggs revealed an increasing activity in the yolk sac membrane during the first week of embryogenesis. In this tissue, the occurrence of cathepsin B, a lysosomal cysteine proteinase, and cathepsin D, a lysosomal aspartic proteinase, has been described recently (Gerhartz et al., Comp Biochem Physiol, 118B:159-166, 1997). Determination of cathepsin B-like and cathepsin D-like proteolytic activity in the yolk sac membrane indicated a significant correlation between growth of the yolk sac membrane and proteolytic activity, shown by an almost constant specific activity. Both proteinases could be localized in the endodermal cells, which are in direct contact to the yolk. The concentration of proteinases in the endodermal cells appears to be almost unaltered in the investigated early stage of quail development, whereas the amount of endodermal cells increases rapidly, seen by a complicated folding of the yolk sac membrane. In the same cells quail cystatin, a potent inhibitor of quail cathepsin B (Ki 0.6 nM), has been localized at day 8 of embryonic development. Approximately at this stage of development, the quail embryo stops metabolizing yolk. In conclusion, it is strongly indicated that the amount of available free amino acids, produced by proteolytic degradation and supporting embryonic growth, is regulated by the growth of the yolk sac membrane.  相似文献   

16.
Because of the permeability of the chorion, sea bass embryos are exposed to seawater before hatching and hence require precocious osmoregulatory processes. Several studies of other species have demonstrated the existence of ion-transporting cells located on the yolk sac membrane of embryos. In these cells, called ionocytes, ion movements are controlled by a pool of transmembrane proteins. Among them, the Na+/K+-ATPase, an abundant driving enzyme, has been used to reveal the presence or absence of ionocytes. We have immunostained the Na+/K+-ATPase in sea-bass embryos and shown the presence of the first ionocytes on the yolk sac membrane at stage 12 somites and the occurrence of ionocytes at other sites before hatching. Ionocytes located on the first gill slits have been identified at stage 14 somites. Primitive enteric ionocytes have also been detected at stage 14 somites in the mid and posterior gut. The presence of these cells might be related to the early opening of the gut to perivitelline fluids, both anteriorly by the gill slits and posteriorly by the anus. The role of embryonic ionocytes in osmoregulation before hatching is discussed.  相似文献   

17.
alpha-Spectrin is a highly expressed membrane protein critical for the flexibility and stability of the erythrocyte. Qualitative and quantitative defects of alpha-spectrin are present in the erythrocytes of many patients with abnormalities of red blood cell shape including hereditary spherocytosis and elliptocytosis. We wished to determine the regulatory elements that determine the erythroid-specific expression of the alpha-spectrin gene. We mapped the 5' end of the alpha-spectrin erythroid cDNA and cloned the 5' flanking genomic DNA containing the putative alpha-spectrin gene promoter. Using transfection of promoter/reporter plasmids in human tissue culture cell lines, in vitro DNase I footprinting analyses, and gel mobility shift assays, an alpha-spectrin gene erythroid promoter with binding sites for GATA-1- and NF-E2-related proteins was identified. Both binding sites were required for full promoter activity. In transgenic mice, a reporter gene directed by the alpha-spectrin promoter was expressed in yolk sac, fetal liver, and erythroid cells of bone marrow but not adult reticulocytes. No expression of the reporter gene was detected in nonerythroid tissues. We conclude that this alpha-spectrin gene promoter contains the sequences necessary for low level expression in erythroid progenitor cells.  相似文献   

18.
In the present study, the morphology and behaviour of giant trahira Hoplias lacerdae larvae were investigated, from hatching to complete absorption of the yolk sac, under laboratory conditions. In the first day post‐hatching (dph), the larvae presented a big ovoid‐shaped yolk sac that underwent regression during larval ontogeny. The mouth opened 3 dph, when the pectoral fins were evident. From this day, the larvae were able to perform sudden bursts of activity and appear to be able to swim a few centimetres before sinking again. The branchial apparatus was defined at 5 dph, and by 6 dph the operculum was formed. The internal organs such as intestine, liver, kidney and external sensorial structures were present at 7 dph. The yolk sac remained until 7 dph.  相似文献   

19.
This study examines the metabolic fate of total and individual yolk fatty acids (FA) during the embryonic development of the king penguin, a seabird characterized by prolonged incubation (53 days) and hatching (3 days) periods, and a high n-3/n-6 polyunsaturated FA ratio in the egg. Of the approximately 15 g of total FA initially present in the egg lipid, 87% was transferred to the embryo by the time of hatching, the remaining 13% being present in the internalized yolk sac of the chick. During the whole incubation, 83% of the transferred FA was oxidized for energy, with only 17% incorporated into embryo lipids. Prehatching (days 0-49), the fat stores (triacylglycerol) accounted for 58% of the total FA incorporated into embryo lipid. During hatching (days 49-53), 40% of the FA of the fat stores was mobilized, the mobilization of individual FA being nonselective. At hatch, 53% of the arachidonic acid (20:4n-6) of the initial yolk had been incorporated into embryo lipid compared with only 15% of the total FA and 17-24% of the various n-3 polyunsaturated FA. Similarly, only 32% of the yolk's initial content of 20:4n-6 was oxidized for energy during development compared with 72% of the total FA and 58-66% of the n-3 polyunsaturated FA. The high partitioning of yolk FA toward oxidization and the intense mobilization of fat store FA during hatching most likely reflect the high energy cost of the long incubation and hatching periods of the king penguin. The preferential partitioning of 20:4n-6 into the structural lipid of the embryo in the face of its low content in the yolk may reflect the important roles of this FA in tissue function.  相似文献   

20.
The effect of emoxypin on angiogenesis in rabbit cornea in aseptic inflammation induced by intracorneal implantation of a piece of quartz and on the development of the vessels of the chick embryo yolk sac was studied. 1% emoxypin pipetted thrice a day for 10-14 days inhibited corneal neovascularization and reduced the formation of new blood vessels. We observed an inhibitory effect on the development of vascular bed of the embryo yolk sac on incubation hour 64-72. The drug affected neither general growth of the embryos no the number of somites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号