首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of activated Ras in glioblastoma cells induces accumulation of large phase-lucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm. Moreover, they are not acidic and do not contain the autophagosomal membrane protein LC3-II. Here we show that the vacuoles are enlarged macropinosomes. They rapidly incorporate extracellular fluid-phase tracers but do not sequester transferrin or the endosomal protein EEA1. Ultimately, the cells expressing activated Ras detach from the substratum and rupture, coincident with the displacement of cytoplasm with huge macropinosome-derived vacuoles. These changes are accompanied by caspase activation, but the broad-spectrum caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethylketone does not prevent cell death. Moreover, the majority of degenerating cells do not exhibit chromatin condensation typical of apoptosis. These observations provide evidence for a necrosis-like form of cell death initiated by dysregulation of macropinocytosis, which we have dubbed "methuosis." An activated form of the Rac1 GTPase induces a similar form of cell death, suggesting that Ras acts through Rac-dependent signaling pathways to hyperstimulate macropinocytosis in glioblastoma. Further study of these signaling pathways may lead to the identification of other chemical and physiologic triggers for this unusual form of cell death.  相似文献   

2.
Pore-forming polypeptides have been purified from several amoeboid protozoans that are well-known human pathogens. Obligate enteric parasites, such as Entamoeba histolytica, and free-living but potentially highly pathogenic species, such as Naegleria fowleri, contain these cytolytic molecules inside cytoplasmic granules. Comprehensive functional and structural studies have been conducted that include isolation of the proteins from their natural sources, monitoring of their biological activity towards different targets, and molecular cloning of the genes of their precursors. In the case of the most prominent member of the protein family, with respect to protozoans, the three-dimensional structure of amoebapore A was solved recently. The amoebic pore-forming polypeptides can rapidly perforate human cells. The antibacterial activity of amoebapores and of related polypetides from free-living protozoa points to a more vital function of these molecules: inside the digestive vacuoles they combat growth of phagocytosed bacteria which are killed when their cytoplasmic membranes are permeabilized. The concommitant activity of these proteins towards host cells may be due to a coincidental selection for an efficient effector molecule. Nonetheless, several lines of evidence indicate that these factors are involved in pathogenesis of fatal diseases induced by amoeboid protozoa.  相似文献   

3.
Summary A light and electron microscopic study was made of the epiplexus (Kolmer) cells of the cat choroid plexus. These polymorphic, motile cells were typically found juxtaposed to the ventricular surface of the choroidal epithelium. They have many ultrastructural features in common with free macrophages of other systems, namely, an indented nucleus with condensed chromatin, sparse mitochondria and endoplasmic reticulum, free ribosomes, multiple Golgi elements, microtubules, coated surface invaginations and microvesicles, and numerous membrane-limited vacuoles and lysosomal dense bodies. A unique feature of epiplexus cells is the manner in which they are anchored to the choroidal epithelium by the invagination of their surfaces by epithelial cell microvilli and cilia.Electron dense tracer particles (biological India ink, Thorotrast, ferritin) injected into the cerebral ventricles were ingested rapidly by epiplexus cells. Uptake of the particles was by way of coated surface invaginations which produced coated cytoplasmic microvesicles. Particle-containing microvesicles subsequently fused with each other and presumably also with pre-existent cytoplasmic vacuoles and lysosomal dense bodies to form storage vacuoles (phagosomes phagolysosomes and residual bodies).Present evidence suggests that epiplexus cells are of hematogenous origin. Under certain conditions these cells may detach from the surface of the choroid plexus to become free-floating cells in the various cerebrospinal fluid compartments of the brain.This investigation was supported by USPHS research grants 1-K04 HD20871, 5 R01 HD 02616 and NB-04456.  相似文献   

4.
Morphological studies on neuroglia   总被引:3,自引:0,他引:3  
The postnatal development of microglial cells was investigated in the neonatal rat brain by use of light- and electron microscopy, including enzyme-histochemical techniques. Microglial cells were selectively stained by demonstration of their nucleoside diphosphatase (NDPase) activity and classified into three types: 1) In the early postnatal period "primitive microglial cells" showing scantily ramified processes were found in the cerebral cortex, the hippocampal formation, and the hypothalamus. During the course of the first postnatal week the processes of this cell type developed gradually and the cells were transformed into typical ramified microglial cells, called "resting microglial cells". 2) "Amoeboid microglial cells "showing typical features of macrophages were characteristic of the cerebral white matter. 3) "Round microglial cells" possessing a round soma and few pseudopodia but no characteristic processes occurred in large numbers in the subventricular zone of the lateral ventricle and as single elements in the vicinity of blood vessels. Histochemically, thiamine pyrophosphatase (TPPase) was demonstrated only in the fully developed, ramified microglial cells ("resting microglial cells"), which could be readily observed in the central nervous tissue from the age of 14 day. "Round and amoeboid microglial cells" did not show TPPase activity and disappeared after 14 days of postnatal life. By use of electron microscopy, in neonatal rats NDPase activity was apparent in the plasma membrane of the three types of microglial cells ("primitive, round, and amoeboid" types). They showed basically similar submicroscopic characteristics, i.e., well-developed Golgi apparatus, long strands of rough-surfaced endoplasmic reticulum, single dense bodies and vacuoles, and numerous ribosomes. "Amoeboid microglial cells" were characterized by their well-developed cytoplasmic vacuoles and phagocytic inclusion bodies. The present study strongly suggests a mesodermal origin for these microglial elements.  相似文献   

5.
We examined nucleus pulposus notochordal cells of individuals ranging in age from the eighth week of fetal life to 32 years of age. With increasing age, notochordal cell structure changed, as did the cell-to-cell relationships and the cell-to-matrix relationships. All notochordal cells contained normal organelles, including welldeveloped endoplasmic reticulum, but, in addition, fetal notochordal cells demonstrated an unusual relationship between rough endoplasmic reticulum and mitochondria: elements of the rough endoplasmic reticulum encircled almost every mitochondrion. Fetal notochordal cells contained large amounts of glycogen, while older cells had much smaller glycogen deposits. Cytoplasmic filaments were observed in cells of all ages. The cells formed tightly packed clusters in the fetus with little, if any, extracellular matrix between individual cells. Cells separated from each other with age and by the twenty-first week of fetal life, only slender strands of cytoplasm connected them. Previous light microscopic studies described notochordal cells as ‘physaliphorus’ cells since they appeared to contain large cytoplasmic vacuoles. However, electron microscopy showed that these apparent vacuoles consist of extracellular matrix surrounded by cells or cell processes. The structure of notochordal cells and their persistence in the nucleus pulposus after fetal life suggest that they may have a significant role in the formation and maintenance of the nucleus pulposus.  相似文献   

6.
The vacuolar apparatus of various plant cells consists of two distinct features: the large central vacuole and peripheral vacuoles which are derived from invaginations of the plasma membrane. Peripheral vacuoles are conspicuous structures in both living and fixed hair or filament cells of Tradescantia virginiana. They occur as spherical structures along the inner boundary of the peripheral cytoplasm and can be recognized as projections into the central vacuole. These structures are variable in size and number within a cell and can represent a significant proportion of the volume of the vacuole. Peripheral vacuoles most frequently are observed in motion with the streaming cytoplasm although their velocity is usually somewhat slower that that of the cytoplasmic organelles. Ultrastructural studies show two closely approximated membranes, one for each vacuole, in areas where a peripheral vacuole projects into the central vacuole. These are separated by an intermembrane zone continuous with the peripheral cytoplasm. The movement of organelles over the perimeter of the peripheral vacuole is presumed to occur along this intermembrane zone. The internal area of the peripheral vacuoles may appear empty although some contain a vesicular content of unknown origin and function.  相似文献   

7.
在分化条件下甜菊愈伤组织分生区细胞超微结构研究   总被引:2,自引:0,他引:2  
对甜菊(Steviarebaudiana)愈伤组织中尚未发生器官分化的分生细胞团进行了超微结构研究.结果表明,在器官分化条件下,愈伤组织中形成的分生区域的细胞体积小,细胞核大,核仁明显,且具核仁泡,部分细胞核中含有核内含物.大量小液泡分布在细胞的边周或散布于整个细胞中.液泡中通常含有陷入的细胞质成分和膜状物.部分液泡的形成与内质网膨大有密切关系.同时也观察到由内质网形成的多圈膜和双层膜包围细胞质成分的同心环结构.高尔基体及其小泡丰富,有时聚集分布在细胞某一区域.核糖体密集,有的聚集成多聚核糖体.因此,愈伤组织中分生区的细胞与分生组织中的液泡化和分裂的细胞类似.分生区细胞的另一明显特征是出现质膜内陷.推测这些超微结构特征可能反映了甜菊愈伤组织器官分化前的某些形态变化。  相似文献   

8.
Summary The ultrastructure of axonal and dendritic growth cones has been examined in the cerebellar cortex of 7 days old rats and 12 days old cats. The unique feature is a bulge of the perikaryon surface or a varicosity of the growing tip of nerve processes. These cone-like areas contain large amounts of tubular smooth surfaced endoplasmic reticulum (SR) and large vacuoles. They are further characterized by filopodia (Tennyson, 1970) with a fibrillary matrix. Early cell contacts with synaptic membrane specializations are described between filopodia of mossy fiber endings and dendritic growth cones of granular cells. Synaptic vesicles appear early in synaptogenesis. While both vesicles and SR tubules are confined to separate areas of the axonal growth cone it was found that a common affinity to the ZIO staining agent exists. In contrast, the neurofilaments and microtubular components as well as the growth cone vacuoles remain consistently ZIO negative.A preliminary report of this work was presented at the 7th International Congress of Electron Microscopy, Grenoble, France, August 31, 1970 (Kawana and Akert, 1970).This study is supported by Swiss National Foundation for Scientific Research Nr. 3.133.69 and 3.134.69.On leave of absence from the Brain Research Institute, Faculty of Medicine, University of Tokyo, Tokyo, Japan.  相似文献   

9.
Summary Tubular systems present in bean leaf glands have been studied electron microscopically. Ordered arrays of small tubules (290 Å in diameter) arise from the endoplasmic reticulum in early stages of gland development and remain connected to it. Subsequently larger tubules (560–660 Å in diameter) appear among the smaller tubules and gradually replace many of them. The large tubules are not connected to the endoplasmic reticulum. They contain an electron dense material and their walls exhibit a patterned substructure. In older gland cells the bundles of large tubules run randomly through the cytoplasm. The relationship of the two types of gland tubules to conventional microtubules has been examined morphologically and experimentally. The small tubules have larger diameters and thicker walls than microtubules. Neither type of gland tubule is affected by low temperature or colchicine, or, in thin sections, by pepsin digestion. This suggests that these tubules are not closely related chemically to either cytoplasmic or ciliary microtubules. The two systems of tubules are closely associated with prominent protein vacuoles in the gland cells, but are not directly connected to them.This work was supported in part by grant no. GB-6161 from the National Science Foundation.  相似文献   

10.
R Demir  T Erbengi 《Acta anatomica》1984,119(1):18-26
The cytological structure of the Hofbauer cells was investigated in human placentas of the first and second trimesters of gestation. These cells are found in the stromal channel system of the chorionic villi core. Their walls, which are supported by collagen fiber bundles, are produced by reticulum cells and fibroblasts. The cytoplasmic processes of the Hofbauer cells are in contact with the walls of the channels without being associated with them by desmosomal complexes. Some of these cells have features in common with macrophages, such as cytoplasmic processes, larger vacuoles, many pinocytotic vesicles and intracytoplasmic granules. This system of vacuoles and vesicles enables micropinocytotic activity and phagocytosis. This type of Hofbauer cell resembles the typical macrophages. These cells may play a role in the regulation of stromal water content, transportation of ions and the flow of interstitial fluid. The most original finding of this study are long tubes observed in some Hofbauer cells and extending between the nucleus and the extracellular ground substance through the cytoplasm. One of these tubular formations resembles a cilium in structure with three limiting membranes and is filled with a slightly electron-dense substance. This type of Hofbauer cell may transport information between the nucleus and the extracellular ground substance by means of these tubular structures.  相似文献   

11.
After the membrane impermeant dye Lucifer Yellow is introduced into the cytoplasmic matrix of J774 cells, the dye is sequestered within cytoplasmic vacuoles and secreted into the extracellular medium. In the present work we studied the intracellular transport of Lucifer Yellow in J774 macrophages and the nature of the cytoplasmic vacuoles into which this dye is sequestered. When the lysosomal system of J774 cells was prelabeled with a Texas red ovalbumin conjugate and Lucifer Yellow was then loaded into the cytoplasm of the cells by ATP-mediated permeabilization of the plasma membrane, the vacuoles that sequestered Lucifer Yellow 30 min later were distinct from the Texas red-stained lysosomes. After an additional 30 min Lucifer Yellow and Texas red colocalized in the same membrane bound compartments, indicating that the Lucifer Yellow had been delivered to lysosomes. We next prelabeled the plasma membrane of J774 cells with anti-macrophage antibody and Texas red protein A before Lucifer Yellow was loaded into the cells. The phase-lucent vacuoles that subsequently sequestered Lucifer Yellow also stained with Texas red, showing that they were part of the endocytic pathway. J774 cells were fractionated on percoll density gradients either 15 or 60 min after Lucifer Yellow was introduced into the cytoplasmic matrix of the cells. In cells fractionated after 15 min, Lucifer Yellow was contained within the fractions of light buoyant density that contain plasma membrane and endosomes; the dye later appeared in vesicles of higher density which contained lysosomes. Secretion of Lucifer Yellow from the cytoplasmic matrix of J774 cells is inhibited by the organic anion transport blocker probenecid. We found that probenecid also reversibly inhibited sequestration of dye, indicating that sequestration of dye within cytoplasmic vacuoles was also mediated by organic anion transporters. These studies show that the vacuoles that sequester Lucifer Yellow from the cytoplasmic matrix of J774 cells possess the attributes of endosomes. Thus, in addition to their role in sorting of membrane bound and soluble substances, macrophage endosomes may play a role in the accumulation and transport of molecules resident in the soluble cytoplasm.  相似文献   

12.
Cells exhibit a complex network of inhibitory and stimulatory signaling pathways, which interact with each other to maintain an homeostatic balance and modulate cellular responses to external stimuli. During most of the 1980s, a great effort was put into the characterization of stimulatory cell surface receptors for cytokines and growth factors. In the last decade, a large number of inhibitory receptors have been identified and it has become apparent that inhibitory signaling pathways are subject to intricate regulatory mechanisms. Inhibitory and stimulatory signaling pathways work in concert with each other to establish activation thresholds and provide sensitive tuning mechanisms that help control cellular responses. LIRs/ILTs/MIRs are a novel family of inhibitory and stimulatory receptors expressed both in myeloid and lymphoid cells. They contain two or four immunoglobulin-like domains in the extracellular region and their cytoplasmic domains are either very short and without any signaling motifs or are long and contain a variable number of immunoreceptor tyrosine-based inhibition motifs (ITIMs). LIRs within the first group send stimulatory signals by association with the FcR common gamma chain and LIRs within the second group deliver inhibitory signals by association with the protein tyrosine phosphatase SHP-1. This review summarizes our current knowledge on the LIRs, their ligands, and biological functions.  相似文献   

13.
Little information is available on the ultrastructure of macrophages in the corpus luteum or their importance in the regression of luteal tissue. In the present study, the fine structure of activated luteal macrophages during pregnancy and the postpartum period was examined by electron microscopy of guinea pig ovaries fixed by vascular perfusion. In these corpora lutea, macrophages can readily be distinguished from luteal cells. Activated macrophages typically display three prominent inclusions in their cytoplasm: (1) heterophagic vacuoles, (2) distinctive large dense inclusions, and (3) large and small electron-lucent vacuoles. In addition, they contain numerous smaller lysosome-like dense bodies. Activated macrophages in corpora lutea also characteristically show many surface protrusions, such as processes, folds or pseudopodia, which often occur in close contact with nearby luteal cells. Generally, nuclei of macrophages are irregular in shape and display a dense border of heterochromatin, thus differing from those of luteal cells. Macrophages seem to be most abundant in regressing corpora lutea, where they commonly display heterophagic vacuoles containing recognizable luteal cell fragments, evidence that these phagocytes ingest senescent luteal cells. The digestion of luteal cell components in heterophagic vacuoles presumably gives rise to the distinctive large dense inclusions typically seen in macrophages. The findings of this study indicate that macrophages play a central role in luteolysis by phagocytizing luteal cells or their remnants. They therefore appear to bring about the reduction in volume of the corpus luteum that occurs as this tissue regresses. These results taken together with those previously published (Paavola, '78) further indicate that breakdown of the corpus luteum during postpartum luteolysis in guinea pigs involves both autophagy and heterophagy.  相似文献   

14.
Fieran  B. A. 《Protoplasma》1971,72(1):1-18
Summary Vacuoles in plant cells often contain inclusions which at early stages of development are bounded by a single membrane. The inclusion bodies (IBs) comprise a diversity of forms and various stages of differentiation are recognizable. IBs are divided into two categories: those which have a matrix without internal membranes, and those which contain cytoplasmic organelles and other membranous material. The internal membranes may be tightly coiled or in the form of vesicles. IBs develop from invaginations of the tonoplast which become detached into the vacuole. They are initiated mainly during active cell growth but may remain within the vacuole in differentiated cells. Various components contribute to the contents of IBs: endoplasmic reticulum, nuclear envelope, Golgi vesicles, extruded portions of mitochondria and plastids, ribosomes and groundplasm. In most IBs the limiting membrane and contents eventually disappear within the vacuole. Some IBs prior to their breakdown within the vacuole also function as sites for the formation of material not found elsewhere in the cell. The disappearance of IBs from vacuoles suggests that such vacuoles behave as lysosomes.  相似文献   

15.
Using histochemical procedures to reveal the presence of nucleoside diphosphatase (NDPase), thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase), we investigated the appearance, distribution and ultrastructure of amoeboid and microglial cells in the cerebral hemispheres of chick embryos and young chicks, in order to elucidate the relationship between these two cell populations. On day 6 of incubation, a few round cells exhibiting NDPase, TPPase and AcPase activity were first detected in the thin mantle layer of the cerebral hemisphere. In the corpus striatum, these round cells increased rapidly in abundance until day 13 of incubation, after which their numbers gradually decreased, so that, on day 19 of incubation, they had entirely disappeared. Between day 10 and day 17 or 18 of incubation, round cells were located mainly in the zone of the mantle layer closest to the lumen. On day 10 of incubation, NDPase-, TPPase- and AcPase-positive cells that had a few short cytoplasmic processes (poorly ramified cells) were detected in the intermediate and basal zones of mantle layer. They increased in abundance until day 17 or 18 of incubation and thereafter rapidly decreased in number. Round and poorly ramified cells exhibited NDPase activity on their plasma membranes and in their cytoplasmic vacuoles, with TPPase and AcPase activity being localized within their vacuoles. On day 19 of incubation, NDPase- and TPPase-positive cells with long, well-ramified cytoplasmic processes (well-ramified cells) were observed in the corpus striatum, these being mainly localized in the basal zone. After hatching, these cells increased rapidly in abundance and were distributed throughout the corpus striatum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary Using histochemical procedures to reveal the presence, of nucleoside diphosphatase (NDPase), thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase), we investigated the appcarance, distribution and ultrastructure of amoeboid and microglial cells in the cerebral hemispheres of chick embryos and young chicks, in order to clucidate the relationship between these two cell populations. On day 6 of incubation, a few round cells exhibiting NDPase, TPPase and AcPase activity were first detected in the thin mantle layer of the cerebral hemisphere. In the corpus striatum, these round cells increased rapidly in abundance until day 13 of incubation, after which their numbers gradually decreased, so that, on day 19 of incubation, they had entirely disappeared. Between day 10 and day 17 or 18 of incubation, round cells were located mainly in the zone of the mantle layer closest to the lumen. On day 10 of incubation, NDPase-, TPPase-and AcPase-positive cells that had a few short cytoplasmic processes (poorly ramified cells) were detected in the intermediate, and basal zones of mantle layer. They increased in abundance until day 17 or 18 of incubation and thereafter rapidly decreased in number. Round and poorly ramified cells exhibited NDPase activity on their plasma membranes and in their cytoplasmic vacuoles, with TPPase and AcPase activity being localized within their vacuoles. On day 19 of incubation, NDPase-and TPPase-positive cells with long, well-ramified cytoplasmic processes (well-ramified cells) were observed in the corpus striatum, these being mainly localized in the basal zone. After hatching, these cells increased rapidly in abundance and were distributed throughout the corpus striatum. These cells displayed NDPase and TPPase activity on their plasma membranes. These findings suggest that the round, the poorly ramified and the well-ramified cells belong to a single cell population.  相似文献   

17.
C Kaur  E A Ling 《Acta anatomica》1991,142(2):118-125
The transformation of amoeboid microglial cells into ramified microglial cells in the brain of postnatal rats has been studied by labeling the cells with the isolectin Griffonia simplicifolia (GSA1-B4). The latter served as a specific membrane marker of the cell type. Thus, at the light-microscopic level, the amoeboid microglial cells in 1- to 5-day-old rats were intensely stained with GSA1-B4. All the stained cells appeared round. In 10-day-old rats, while most of the stained cells were round, some had assumed an oval appearance. In older rats, i.e. 15-22 days, all the stained cells became flattened or fusiform with long cytoplasmic processes. The present electron-microscopic study confirmed the above features but also added the fact that the reaction for GSA1-B4 was localized at the plasma membrane in the amoeboid microglial cells in all the age groups studied. The reaction for the isolectin was also detected in some vacuoles in the cytoplasm of the round cells. It was concluded from this study that the round amoeboid microglial cells differentiate to become the ramified microglia with age. In the course of this transformation, they retained specific membrane receptors for the isolectin which distinguished them from other glial cell types.  相似文献   

18.
Summary The apocrine sweat glands of cat and monkey have been studied by light and electron microscopy. The apocrine secretory cells of the cat are columnar cells with prominent apical cytoplasmic caps extending into the gland lumen beyond the zone of terminal bars (zonulae occludentes). Many secretory vacuoles are present in the cytoplasm, and they contain acid mucopolysaccharide demonstrable by light microscopy. These secretory vacuoles arise from prosecretory vacuoles in the region of the Golgi apparatus and are liberated from the apical cell surface as in other merocrine cells. The apocrine duct is short and the cells have scant mitochondria. The apocrine secretory cells of the monkey have secretory vacuoles similar to those of the cat but are fewer in number. The monkey apocrine cells also contain unidentified bodies similar to those seen in Langerhans cells of the epidermis. These cells liberate secretory vacuoles in a merocrine manner. Apocrine or decapitation secretion is regarded as an artifact.This investigation was supported in part by United States Public Health Service research grants GM-03784 and GM-10102 from the Institute of General Medical Sciences.  相似文献   

19.
A quantitative analysis of the lipid vacuoles in benign hypertrophic and neoplastic mesothelial cells, using a size-independent distribution index, showed that computer-assisted image analysis for distribution patterns of cytoplasmic components can aid in distinguishing benign from malignant cells. Benign mesothelial cells had fewer lipid vacuoles, which were smaller and predominantly found around the nuclei. It is argued that, due to the high surface tension in the lipid vacuoles, the largest vacuoles are found in the center of the cells, which is the least flattened part of the air-dried mesothelial cells. It seems likely that the distribution pattern of rigid substructures, such as lipid vacuoles, varies between histologic and cytologic material as well as between cells processed by different cytologic methods with various cell-flattening artifacts. The study of the distribution of cytoplasmic components that differ in size was enhanced by using the defined size-independent distribution index, which incorporates the radius of the cell, the radius of the vacuoles and their respective centers of gravity.  相似文献   

20.
The ductuli efferentes and rete testis of the guinea pig were isolated by micro dissection, fixed in cold buffered osmium tetroxide, and sectioned for examination with the light and electron microscopes. Proximal and distal segments of the ductuli efferentes were identified and their respective cytological organizations characterized. The cytological components of the rete testis are briefly described and figured. Non-ciliated and ciliated cells are found in both segments of the ductuli efferentes. The non-ciliated cells have a microvillous border, mitochondria, a Golgi complex, an ubiquitous endoplasmic reticulum, and numerous cytoplasmic vacuoles. The ciliated cells contain more mitochondria, an endoplasmic reticulum with a relatively sparse distribution, and few, if any, cytoplasmic vacuoles. A regional difference exists in proximal and distal segments based on the distribution, size, number, and electron opacity of the cytoplasmic vacuoles. Attention was paid to the disposition of the endoplasmic reticulum and its relation to the system of cytoplasmic vacuoles. These findings are interpreted as suggesting that the continuity of the vacuolar system with elements of the endoplasmic reticulum represents a pathway for transfer of large quantities of fluid, an activity which has long been ascribed to the epithelium of the ductuli efferentes. Periductular capillaries possess pore-like apertures in their endothelia similar to those in other tissues known to engage in fluid transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号