首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants synthesize p-aminobenzoate (pABA) in chloroplasts and use it for folate synthesis in mitochondria. It has generally been supposed that pABA exists as the free acid in plant cells and that it moves between organelles in this form. Here we show that fruits and leaves of tomato and leaves of a diverse range of other plants have a high capacity to convert exogenously supplied pABA to its beta-D-glucopyranosyl ester (pABA-Glc), whereas yeast and Escherichia coli do not. High performance liquid chromatography analysis indicated that much of the endogenous pABA in fruit and leaf tissues is esterified and that the total pool of pABA (free plus esterified) varies greatly between tissues (from 0.2 to 11 nmol g-1 of fresh weight). UDP-glucose:pABA glucosyltransferase activity was readily detected in fruit and leaf extracts, and the reaction was found to be freely reversible. p-Aminobenzoic acid beta-D-glucopyranosyl ester esterase activity was also detected in extracts. Subcellular fractionation indicated that the glucosyltransferase and esterase activities are predominantly if not solely cytosolic. Taken together, these results show that reversible formation of pABA-Glc in the cytosol is interposed between pABA production in chloroplasts and pABA consumption in mitochondria. As pABA is a hydrophobic weak acid, its uncharged form is membrane-permeant, and its anion is consequently prone to distribute itself spontaneously among subcellular compartments according to their pH. Esterification of pABA may eliminate such errant behavior and provide a readily reclaimable storage form of pABA as well as a substrate for membrane transporters.  相似文献   

2.
Whole blood folate level is a superior indicator of folate nutritional status than serum/plasma level. Problems with and lack of confidence in results of current whole blood folate assays have limited its popularity for assessing folate nutritional status. Here, an acid extraction GCMS detection method that measures total folate whole blood is presented. Folates are released from the matrix of whole blood and cleaved to para-aminobenzoic acid (pABA) by acid hydrolysis in the presence of [(13)C(6)]pABA as internal standard (IS). The hydrolysate is passed over a C18 resin to remove heme. The pABA isotopomers are ethyl esterified, isolated on C18 resin, and trifluoroacetylated. Following normal-phase HPLC separation, the isotopomers are silylated to their tBDMS derivatives. The abundance of these derivatives are measured at m/z 324 for [(13)C(6)]pABA as IS and m/z 318 for pABA from whole blood folate. Our method uses readily available chemicals and our results agree well with those using Lactobacillus casei, the current gold standard reference assay. The presence of folate analogs (methotrexate) or antibacterials (sulfonamines) does not affect our method. This feature makes it useful in monitoring folate status of patients undergoing chemotherapy. Before using our method, pABA supplements must be discontinued for a few days.  相似文献   

3.
Hong Z  Zhang Z  Olson JM  Verma DP 《The Plant cell》2001,13(4):769-780
Using phragmoplastin as a bait, we isolated an Arabidopsis cDNA encoding a novel UDP-glucose transferase (UGT1). This interaction was confirmed by an in vitro protein--protein interaction assay using purified UGT1 and radiolabeled phragmoplastin. Protein gel blot results revealed that UGT1 is associated with the membrane fraction and copurified with the product-entrapped callose synthase complex. These data suggest that UGT1 may act as a subunit of callose synthase that uses UDP-glucose to synthesize callose, a 1,3-beta-glucan. UGT1 also interacted with Rop1, a Rho-like protein, and this interaction occurred only in its GTP-bound configuration, suggesting that the plant callose synthase may be regulated by Rop1 through the interaction with UGT1. The green fluorescent protein--UGT1 fusion protein was located on the forming cell plate during cytokinesis. We propose that UGT1 may transfer UDP-glucose from sucrose synthase to the callose synthase and thus help form a substrate channel for the synthesis of callose at the forming cell plate.  相似文献   

4.
Isoflavones, a class of flavonoids, play very important roles in plant-microbe interactions in certain legumes such as soybeans (Glycine max L. Merr.). G. max UDP-glucose:isoflavone 7-O-glucosyltransferase (GmIF7GT) is a key enzyme in the synthesis of isoflavone conjugates, which accumulate in large amounts in vacuoles and serve as an isoflavonoid pool that allows for interaction with microorganisms. In this study, the 14,000-fold purification of GmIF7GT from the roots of G. max seedlings was accomplished. The purified enzyme is a monomeric protein of 46 kDa, catalyzing regiospecific glucosyl transfer from UDP-glucose to isoflavones to produce isoflavone 7-O-beta-D-glucosides (k(cat) = 0.74 s(-1), K(m) for genistein = 3.6 microM, and K(m) for UDP-glucose = 190 microM). The GmIF7GT cDNA was isolated based on the amino acid sequence of the purified enzyme. Phylogenetic analysis showed that GmIF7GT is a novel member of glycosyltransferase family 1 and is distantly related to Glycyrrhiza echinata UDP-glucose:isoflavonoid 7-O-glucosyltransferase. The purified enzyme was unexpectedly devoid of the N-terminal 49-residue segment and thus lacks the histidine residue corresponding to the proposed catalytic residue of glycosyltransferases from Medicago truncatula (UGT71G1) and Vitis vinifera (VvGT1). The results of kinetic studies of site-directed mutants of GmIF7GT showed that both His-15 and Asp-125, which correspond to the catalytic residues of UGT71G1 and VvGT1, are not important for GmIF7GT activity. The results also suggest that an acidic residue at position 392 is very important for primary catalysis of GmIF7GT. These results led to the proposal that GmIF7GT utilizes a strategy of catalysis that is distinct from those proposed for UGT71G1 and VvGT1.  相似文献   

5.
Dihydropterins are intermediates of folate synthesis and products of folate breakdown that are readily oxidized to their aromatic forms. In trypanosomatid parasites, reduction of such oxidized pterins is crucial for pterin and folate salvage. We therefore sought evidence for this reaction in plants. Three lines of evidence indicated its absence. First, when pterin-6-aldehyde or 6-hydroxymethylpterin was supplied to Arabidopsis (Arabidopsis thaliana), pea (Pisum sativum), or tomato (Lycopersicon esculentum) tissues, no reduction of the pterin ring was seen after 15 h, although reduction and oxidation of the side chain of pterin-6-aldehyde were readily detected. Second, no label was incorporated into folates when 6-[(3)H]hydroxymethylpterin was fed to cultured Arabidopsis plantlets for 7 d, whereas [(3)H]folate synthesis from p-[(3)H]aminobenzoate was extensive. Third, no NAD(P)H-dependent pterin ring reduction was found in tissue extracts. Genetic evidence showed a similar situation in Escherichia coli: a GTP cyclohydrolase I (folE) mutant, deficient in pterin synthesis, was rescued by dihydropterins but not by the corresponding oxidized forms. Expression of a trypanosomatid pterin reductase (PTR1) enabled rescue of the mutant by oxidized pterins, establishing that E. coli can take up oxidized pterins but cannot reduce them. Similarly, a GTP cyclohydrolase I (fol2) mutant of yeast (Saccharomyces cerevisiae) was rescued by dihydropterins but not by most oxidized pterins, 6-hydroxymethylpterin being an exception. These results show that the capacity to reduce oxidized pterins is not ubiquitous in folate-synthesizing organisms. If it is lacking, folate precursors or breakdown products that become oxidized will permanently exit the metabolically active pterin pool.  相似文献   

6.
The pab genes for para-aminobenzoic acid (pABA) biosynthesis in Lactococcus lactis were identified and characterized. In L. lactis NZ9000, only two of the three genes needed for pABA production were initially found. No gene coding for 4-amino-4-deoxychorismate lyase (pabC) was initially annotated, but detailed analysis revealed that pabC was fused with the 3' end of the gene coding for chorismate synthetase component II (pabB). Therefore, we hypothesize that all three enzyme activities needed for pABA production are present in L. lactis, allowing for the production of pABA. Indeed, the overexpression of the pABA gene cluster in L. lactis resulted in elevated pABA pools, demonstrating that the genes are involved in the biosynthesis of pABA. Moreover, a pABA knockout (KO) strain lacking pabA and pabBC was constructed and shown to be unable to produce folate when cultivated in the absence of pABA. This KO strain was unable to grow in chemically defined medium lacking glycine, serine, nucleobases/nucleosides, and pABA. The addition of the purine guanine, adenine, xanthine, or inosine restored growth but not the production of folate. This suggests that, in the presence of purines, folate is not essential for the growth of L. lactis. It also shows that folate is not strictly required for the pyrimidine biosynthesis pathway. L. lactis strain NZ7024, overexpressing both the folate and pABA gene clusters, was found to produce 2.7 mg of folate/liter per optical density unit at 600 nm when the strain was grown on chemically defined medium without pABA. This is in sharp contrast to L. lactis strains overexpressing only one of the two gene clusters. Therefore, we conclude that elevated folate levels can be obtained only by the overexpression of folate combined with the overexpression of the pABA biosynthesis gene cluster, suggesting the need for a balanced carbon flux through the folate and pABA biosynthesis pathway in the wild-type strain.  相似文献   

7.
To extend our knowledge of how the synthesis of free bile acids and bile salts is regulated within the hepatocyte, bile acid-CoA:amino acid N-acyltransferase and bile acid-CoA thioesterase activities were measured in subcellular fractions of human liver homogenates. Some bile acids, both conjugated and unconjugated, have been reported to be natural ligands for the farnesoid X receptor (FXR), an orphan nuclear receptor. The conversion of [(14)C]choloyl-CoA and [(14)C]chenodeoxycholoyl-CoA into the corresponding tauro- and glyco-bile acids or the free bile acids was measured after high-pressure liquid radiochromatography. There was an enrichment of the N-acyltransferase in the cytosolic and the peroxisomal fraction. Bile acid-CoA thioesterase activities were enriched in the cytosolic, peroxisomal, and mitochondrial fractions. The highest amidation activities of both choloyl-CoA and chenodeoxycholoyl-CoA were found in the peroxisomal fraction (15-58 nmol/mg protein/min). The K(m) was higher for glycine than taurine both in cytosol and the peroxisomal fraction.These results show that the peroxisomal de novo synthesis of bile acids is rate limiting for peroxisomal amidation, and the microsomal bile acid-CoA synthetase is rate limiting for the cytosolic amidation. The peroxisomal location may explain the predominance of glyco-bile acids in human bile. Both a cytosolic and a peroxisomal bile acid-CoA thioesterase may influence the intracellular levels of free and conjugated bile acids.  相似文献   

8.
A DTPA-folate conjugate was radiolabeled with (99m)Tc by stannous chloride reduction of [(99m)Tc]sodium pertechnetate in an aqueous solution of DTPA-folate. The radiochemical purity of the product consistently exceeded 97%, as assessed by thin-layer chromatography employing conditions analogous to those for radiochemical quality control of the radiopharmaceutical [(99m)Tc]DTPA. HPLC demonstrated that the radiolabeled product resulted from the intact DTPA-folate conjugate and not unconjugated DTPA. The ability of [(99m)Tc]DTPA-folate to target folate receptors in vivo was assessed in biodistribution studies with athymic mice bearing subcutaneous folate-receptor-positive human KB cell tumors. As an internal control, previously studied [(111)In]DTPA-folate was coinjected with the [(99m)Tc]DTPA-folate, along with varying amounts of DTPA-folate (0.38 mg/kg, 1.6 mg/kg, or 14 mg/kg). At each DTPA-folate dose, [(99m)Tc]DTPA-folate exhibited tumor uptake comparable to that of the coadministered [(111)In]DTPA-folate, with radiotracer levels declining at the higher DTPA-folate doses due to competitive receptor binding of the unlabeled conjugate. Tumor uptake of both tracers was also competitively blocked by preadministered folic acid dihydrate (2.9 mg/kg). Tumor-to-background tissue contrast obtained with [(99m)Tc]DTPA-folate was generally similar to that obtained with [(111)In]DTPA-folate. The (99m)Tc-labeled DTPA-folate conjugate may have utility as a targeted radiopharmaceutical for imaging neoplastic tissues known to overexpress the folate receptor.  相似文献   

9.
Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both flavonoids and Arabidopsis. In this study, flavonol glycosyltransferases were considered in a functional genomics approach aimed at revealing genes involved in determining the flavonol-glycoside profile. Candidate glycosyltransferase-encoding genes were selected based on homology to other known flavonoid glycosyltransferases and two T-DNA knockout lines lacking flavonol-3-O-rhamnoside-7-O-rhamnosides (ugt78D1) and quercetin-3-O-rhamnoside-7-O-glucoside (ugt73C6 and ugt78D1) were identified. To confirm the in planta results, cDNAs encoding both UGT78D1 and UGT73C6 were expressed in vitro and analyzed for their qualitative substrate specificity. UGT78D1 catalyzed the transfer of rhamnose from UDP-rhamnose to the 3-OH position of quercetin and kaempferol, whereas UGT73C6 catalyzed the transfer of glucose from UDP-glucose to the 7-OH position of kaempferol-3-O-rhamnoside and quercetin-3-O-rhamnoside, respectively. The present results suggest that UGT78D1 and UGT73C6 should be classified as UDP-rhamnose:flavonol-3-Orhamnosyltransferase and UDP-glucose:flavonol-3-O-glycoside-7-O-glucosyltransferase, respectively.  相似文献   

10.
In this study, UDP-glucose dehydrogenase has been purified to electrophoretic homogeneity from sugarcane (Saccharum spp. hybrid) culm. The enzyme had a pH optimum of 8.4 and a subunit molecular mass of 52 kDa. Specific activity of the final preparation was 2.17 micromol/min/mg protein. Apparent K(m) values of 18.7+/-0.75 and 72.2+/-2.7 microM were determined for UDP-glucose and NAD(+), respectively. The reaction catalyzed by UDP-glucose dehydrogenase was irreversible with two equivalents of NADH produced for each UDP-glucose oxidized. Stiochiometry was not altered in the presence of carbonyl-trapping reagents. With respect to UDP-glucose, UDP-glucuronic acid, and UDP-xylose were competitive inhibitors of UDP-glucose dehydrogenase with K(i) values of 292 and 17.1 microM, respectively. The kinetic data are consistent with a bi-uni-uni-bi substituted enzyme mechanism for sugarcane UDP-glucose dehydrogenase. Oxidation of the alternative nucleotide sugars CTP-glucose and TDP-glucose was observed with rates of 8 and 2%, respectively, compared to UDP-glucose. The nucleotide sugar ADP-glucose was not oxidized by UDP-glucose dehydrogenase. This is of significance as it demonstrates carbon, destined for starch synthesis in tissues that synthesize cytosolic AGP-glucose, will not be partitioned toward cell wall biosynthesis.  相似文献   

11.
Glycolysis supplements energy synthesis at high cardiac workloads, producing not only ATP but also cytosolic NADH and pyruvate for oxidative ATP synthesis. Despite adequate Po(2), speculation exists that not all cytosolic NADH is oxidized by the mitochondria, leading to lactate production. In this study, we elucidate the mechanism for limited cytosolic NADH oxidation and increased lactate production at high workload despite adequate myocardial blood flow and oxygenation. Reducing equivalents from glycolysis enter mitochondria via exchange of mitochondrial alpha-ketoglutarate (alpha-KG) for cytosolic malate. This exchange was monitored at baseline and at high workloads by comparing (13)C enrichment between the products of alpha-KG oxidation (succinate) and alpha-KG efflux from mitochondria (glutamate). Under general anesthesia, a left thoracotomy was performed on 14 dogs and [2-(13)C]acetate was infused into the left anterior descending artery for 40 min. The rate-pressure product was 9,035 +/- 1,972 and 21,659 +/- 5,266 mmHg.beats.min(-1) (n = 7) at baseline (n = 7) and with dobutamine, respectively. (13)C enrichment of succinate was 57 +/- 10% at baseline and 45 +/- 13% at elevated workload (not significant), confirming oxidation of [2-(13)C]acetate. However, cytosolic glutamate enrichment, a marker of cytosolic NADH transfer to mitochondria, was dramatically reduced at high cardiac workload (11 +/- 1%) vs. baseline (50 +/- 14%, P < 0.05). This reduced exchange of (13)C from alpha-KG to cytosolic glutamate at high work indicates reduced shuttling of cytosolic reducing equivalents into the mitochondria. Myocardial tissue lactate increased 78%, countering this reduced oxidation of cytosolic NADH. The findings elucidate a contributing mechanism to glycolysis outpacing glucose oxidation in the absence of myocardial ischemia.  相似文献   

12.
Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.  相似文献   

13.
Tetrahydrofolates are essential cofactors for DNA synthesis and methionine metabolism. Malaria parasites are capable both of synthesizing tetrahydrofolates and precursors de novo and of salvaging them from the environment. The biosynthetic route has been studied in some detail over decades, whereas the molecular mechanisms that underpin the salvage pathway lag behind. Here we identify two functional folate transporters (named PfFT1 and PfFT2) and delineate unexpected substrate preferences of the folate salvage pathway in Plasmodium falciparum. Both proteins are localized in the plasma membrane and internal membranes of the parasite intra-erythrocytic stages. Transport substrates include folic acid, folinic acid, the folate precursor p-amino benzoic acid (pABA), and the human folate catabolite pABAG(n). Intriguingly, the major circulating plasma folate, 5-methyltetrahydrofolate, was a poor substrate for transport via PfFT2 and was not transported by PfFT1. Transport of all folates studied was inhibited by probenecid and methotrexate. Growth rescue in Escherichia coli and antifolate antagonism experiments in P. falciparum indicate that functional salvage of 5-methyltetrahydrofolate is detectable but trivial. In fact pABA was the only effective salvage substrate at normal physiological levels. Because pABA is neither synthesized nor required by the human host, pABA metabolism may offer opportunities for chemotherapeutic intervention.  相似文献   

14.
Zeeman SC  Smith SM  Smith AM 《Plant physiology》2002,128(3):1069-1076
We investigated the mechanism of amylose synthesis in Arabidopsis leaves using (14)C-labeling techniques. First, we tested the hypothesis that short malto-oligosaccharides (MOS) may act as primers for granule-bound starch synthase I. We found increased amylose synthesis in isolated starch granules supplied with ADP[(14)C]glucose (ADP[(14)C]Glc) and MOS compared with granules supplied with ADP[(14)C]Glc but no MOS. Furthermore, using a MOS-accumulating mutant (dpe1), we found that more amylose was synthesized than in the wild type, correlating with the amount of MOS in vivo. When wild-type and mutant plants were tested in conditions where both lines had similar MOS contents, no difference in amylose synthesis was observed. We also tested the hypothesis that branches of amylopectin might serve as the primers for granule-bound starch synthase I. In this model, elongated branches of amylopectin are subsequently cleaved to form amylose. We conducted pulse-chase experiments, supplying a pulse of ADP[(14)C]Glc to isolated starch granules or (14)CO(2) to intact plants, followed by a chase period in unlabeled substrate. We detected no transfer of label from the amylopectin fraction to the amylose fraction of starch either in isolated starch granules or in intact leaves, despite varying the time course of the experiments and using a mutant line (sex4) in which high-amylose starch is synthesized. We therefore find no evidence for amylopectin-primed amylose synthesis in Arabidopsis. We propose that MOS are the primers for amylose synthesis in Arabidopsis leaves.  相似文献   

15.
UDP-glucose:glycoprotein glucosyltransferase (UGT) is a soluble protein of the endoplasmic reticulum (ER) that operates as a gatekeeper for quality control by preventing transport of improperly folded glycoproteins out of the ER. We report the isolation of two cDNAs encoding human UDP-glucose:glycoprotein glucosyltransferase homologues. HUGT1 encodes a 1555 amino acid polypeptide that, upon cleavage of an N-terminal signal peptide, is predicted to produce a soluble 173 kDa protein with the ER retrieval signal REEL. HUGT2 encodes a 1516 amino acid polypeptide that also contains a signal peptide and the ER retrieval signal HDEL. HUGT1 shares 55% identity with HUGT2 and 31-45% identity with Drosophila, Caenorhabditis elegans, and Schizosaccharomyces pombe homologues, with most extensive conservation of residues in the carboxy-terminal fifth of the protein, the proposed catalytic domain. HUGT1 is expressed as multiple mRNA species that are induced to similar extents upon disruption of protein folding in the ER. In contrast, HUGT2 is transcribed as a single mRNA species that is not induced under similar conditions. HUGT1 and HUGT2 mRNAs are broadly expressed in multiple tissues and differ slightly in their tissue distribution. The HUGT1 and HUGT2 cDNAs were expressed by transient transfection in COS-1 monkey cells to obtain similar levels of protein localized to the ER. Extracts from HUGT1-transfected cells displayed a 27-fold increase in the transfer of [(14)C]glucose from UDP-[(14)C]glucose to denatured substrates. Despite its high degree of sequence identity with HUGT1, the expressed recombinant HUGT2 protein was not functional under the conditions optimized for HUGT1. Site-directed alanine mutagenesis within a highly conserved region of HUGT1 identified four residues that are essential for catalytic function.  相似文献   

16.
Glycosyltransferases in the Golgi membranes of onion stem   总被引:6,自引:0,他引:6       下载免费PDF全文
Cell fractions consisting largely of Golgi membranes were prepared from the meristematic region of the onion. Several enzyme activities were found to be localized in these fractions: inosine diphosphatase, galactosyltransferases and glucosyltransferases. The fractions catalysed the transfer of [(14)C]galactose from UDP-galactose to endogenous and cell-sap acceptors, to N-acetylglucosamine and to ovalbumin. In the presence of bovine alpha-lactalbumin, transfer to glucose (lactose synthesis) was catalysed. [(14)C]Glucose was transferred from UDP-glucose to endogenous and cell-sap acceptors, to cellobiose and to fructose (sucrose synthesis). All these activities were latent, being potentiated by detergents (Triton X-100 or sodium deoxycholate). The characteristics of some of these enzyme activities are described and their biological significance is discussed.  相似文献   

17.
Cell cultures allow rapid kinetic labeling experiments that can provide information on precursor-product relationships and intermediate pools. T-87 suspension cells are increasingly used in Arabidopsis (Arabidopsis thaliana) research, but there are no reports describing their lipid composition or biosynthesis. To facilitate application of T-87 cells for analysis of glycerolipid metabolism, including tests of gene functions, we determined composition and accumulation of lipids of light- and dark-grown cultures. Fatty acid synthesis in T-87 cells was 7- to 8-fold higher than in leaves. Similar to other plant tissues, phosphatidylcholine (PC) and phosphatidylethanolamine were major phospholipids, but galactolipid levels were 3- to 4-fold lower than Arabidopsis leaves. Triacylglycerol represented 10% of total acyl chains, a greater percentage than in most nonseed tissues. The initial steps in T-87 cell lipid assembly were evaluated by pulse labeling cultures with [(14)C]acetate and [(14)C]glycerol. [(14)C]acetate was very rapidly incorporated into PC, preferentially at sn-2 and without an apparent precursor-product relationship to diacylglycerol (DAG). By contrast, [(14)C]glycerol most rapidly labeled DAG. These results indicate that acyl editing of PC is the major pathway for initial incorporation of fatty acids into glycerolipids of cells derived from a 16:3 plant. A very short lag time (5.4 s) for [(14)C]acetate labeling of PC implied channeled incorporation of acyl chains without mixing with the bulk acyl-CoA pool. Subcellular fractionation of pea (Pisum sativum) leaf protoplasts indicated that 30% of lysophosphatidylcholine acyltransferase activity colocalized with chloroplasts. Together, these data support a model in which PC participates in trafficking of newly synthesized acyl chains from plastids to the endoplasmic reticulum.  相似文献   

18.
The first committed step in methanopterin biosynthesis is catalyzed by 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (RFA-P) synthase. Unlike all known phosphoribosyltransferases, beta-RFA-P synthase catalyzes the unique formation of a C-riboside instead of an N-riboside in the condensation of p-aminobenzoic acid (pABA) and 5-phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) to produce 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (beta-RFA-P), CO(2), and inorganic pyrophosphate (PP(i)). Here we report the successful cloning, active overexpression in Escherichia coli, and purification of this homodimeric enzyme containing two 36.2-kDa subunits from the methanogen Methanococcus jannaschii. Steady-state initial velocity and product inhibition kinetic studies indicate an ordered Bi-Ter mechanism involving binding of PRPP, then pABA, followed by release of the products CO(2), then beta-RFA-P, and finally PP. The Michaelis parameters are as follows: K(m)pABA, 0.15 mm; K(m)PRPP, 1.50 mm; V(max), 375 nmol/min/mg; k(cat), 0.23 s(-1). CO(2) showed uncompetitive inhibition, K(i) = 0.990 mm, under varied PRPP and saturated pABA, and a mixed type of inhibition, K(1) = 1.40 mm and K = 3.800 mm, under varied pABA and saturated PRPP. RFA-P showed uncompetitive inhibition, K(i) = 0.210 mm, under varied PRPP and saturated pABA, and again uncompetitive, K(i) = 0.300 mm, under saturated PRPP and varied pABA. PP(i) exhibits competitive inhibition, K(i) = 0.320 mm, under varied PRPP and saturated pABA, and a mixed type of inhibition, K(1) = 0.60 mm and K(2) = 1.900 mm, under saturated PRPP and varied pABA. Synthase lacks any chromogenic cofactor, and the presence of pyridoxal phosphate and the mechanistically related pyruvoyl cofactors has been strictly excluded.  相似文献   

19.
Folate metabolism in Plasmodium falciparum is the target of important antimalarial agents. The biosynthetic pathway converts GTP to polyglutamated derivatives of tetrahydrofolate (THF), essential cofactors for DNA synthesis. Tetrahydrofolate can also be acquired by salvage mechanisms. Using a transfection system adapted to studying this pathway, we investigated modulation of dihydropteroate synthase (DHPS) activity on parasite phenotypes. Dihydropteroate synthase incorporates p-aminobenzoate (pABA) into dihydropteroate, the precursor of dihydrofolate. We were unable to obtain viable parasites where the dhps gene had been truncated. However, parasites where the protein was full-length but mutated at two key residues and having < 10% of normal activity were viable in folate-supplemented medium. Metabolic labelling showed that these parasites could still convert pABA to polyglutamated folates, albeit at a very low level, but they could not survive on pABA supplementation alone. This degree of disablement in DHPS also abolished the synergy of the antifolate combination pyrimethamine/sulfadoxine. These data indicate that DHPS activity above a low but critical level is essential regardless of the availability of salvageable folate and formally prove the role of this enzyme in antifolate drug synergy and folate biosynthesis in vivo. However, we found no evidence of a significant role for DHPS in folate salvage. Moreover, when biosynthesis was compromised by the absence of a fully functional DHPS, the parasite was able to compensate by increasing flux through the salvage pathway.  相似文献   

20.
With enzyme preparations from Phaseolus aureus seedlings, the initial rate of (14)C-labelled polysaccharide formation from GDP-alpha-d-[(14)C]glucose is not increased by additions of GDP-alpha-d-mannose. However, final incorporation is increased by addition of GDP-alpha-d-mannose, since the total reaction-time is extended. In contrast, the initial rate of (14)C-labelled polysaccharide formation from GDP-alpha-d-[(14)C]mannose is increased by all concentrations of GDP-alpha-d-glucose that are less than that of the GDP-alpha-d-[(14)C]mannose. Maximum stimulation of the initial rate occurs at a GDP-alpha-d-[(14)C]mannose/GDP-alpha-d-glucose concentration ratio of about 4:1. However, eventual incorporation from GDP-alpha-d-[(14)C]mannose is decreased by the addition of GDP-alpha-d-glucose, since the reaction rate falls off sharply after about 2min. Reciprocal plots of (14)C-labelled polysaccharide formation from GDP-alpha-d-[(14)C]mannose result in biphasic graphs. The two straight-line portions of the plot are joined by a curved line in the concentration range between 2-3 and 50mum. Extrapolated K(m) values for the two linear components are 0.4-1.0 and 700-1500mum. The effect of GDP-alpha-d-glucose on the kinetics of (14)C-labelled polysaccharide formation from GDP-alpha-d-[(14)C]mannose is complex, and depends on relative concentrations of the two sugar nucleotides. (14)C-labelled polysaccharide formation from GDP-alpha-d-[(14)C]glucose also results in biphasic reciprocal plots. One component appears to have K(m) about 2-3mum, the other about 200-400mum. In this reaction, GDP-alpha-d-mannose appears to be a competitive inhibitor with K(i) 20-30mum. With particulate preparations of P. aureus, GDP-alpha-d-[(14)C]glucose appears to be a precursor for the synthesis of one polysaccharide, a glucomannan, the mannose moieties of which are derived from an intermediate existing in the particulate preparation. From the rate results, GDP-alpha-d-[(14)C]mannose appears to be a precursor for at least two polysaccharides, one of which is a glucomannan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号