首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe our experience with two patients with xeroderma pigmentosum who underwent multiple trichloroacetic acid chemical peels. Trichloroacetic acid and phenol were used in one case. Until now numerous treatment modalities have been reported. Deep chemical peeling has not been reported before in patients with xeroderma pigmentosum. Chemical peeling is a simple procedure with less associated morbidity.  相似文献   

2.
Treatment of normal and xeroderma pigmentosum complementation group E skin fibroblasts with 8-methoxypsoralen plus repeated doses of near-ultraviolet radiation elicited a marked increase in DNA strand breakage during a subsequent incubation. No such induction of breaks was noted with cells from xeroderma pigmentosum groups A and D. The results suggest that the gene product which is deficient in xeroderma pigmentosum group E cells is involved in a critical step of DNA repair of far-ultraviolet photoproducts but not so in the repair of psoralen cross-links.  相似文献   

3.
Methylmethanesulphonate has been shown to stimulate an intensive unscheduled DNA synthesis in lymphocytes derived from normal donors as well as in those from patients with xeroderma pigmentosum of the classical form. Somewhat less intensive unscheduled DNA synthesis was observed in cells of a patient suffering from xeroderma pigmentosum. In the case of XPII unscheduled DNA synthesis was greatly reduced which supports the peculiarity of this form of xeroderma pigmentosum.  相似文献   

4.
Cycloheximide strongly antagonizes the induction of sister-chromatid exchanges by ethyl methanesulfonate or mitomycin C in human skin fibroblast and xeroderma pigmentosum cells (group A). Analogous behavior has been observed in several other species including Chinese hamster and plant cells. This report documents an exception to that pattern: cycloheximide fails to antagonize UV-induced sister chromatid exchange in xeroderma pigmentosum cells, whereas it does in normal human skin fibroblast cells. A genetic defect in these cells is postulated to alter the UV-mediated DNA recombination process.  相似文献   

5.
Summary Ataxia-telangiectasia and xeroderma pigmentosum are human hereditary diseases in which patients are cancer prone and demonstrate increased sensitivity to DNA damage by ionizing and ultraviolet radiation, respectively. In culture, both ataxia-telangiectasia and xeroderma pigmentosum skin fibroblasts show increased synthesis and secretion of the extracellular matrix proteins fibronectin and collagen. To determine whether these differences in protein production result from fundamental abnormalities in regulation of genes associated with cellular interactions, we compared the effects of trifluoperazine and 12-O-tetradecanoylphorbol-13-acetate on expression of the extracellular matrix-degrading metalloproteinases, procollagenase and prostromelysin, by normal, ataxia-telangiectasia, and xeroderma pigmentosum fibroblasts. After trifluoperazine treatment the overall levels of these metalloproteinases were much greater in three ataxia-telangiectasia cell strains and in cells from xeroderma pigmentosum complementation groups A and D than in normal cells. In contrast, cells from xeroderma pigmentosum complementation group C produced only slightly more procollagenase than normal cells. 12-O-tetradecanoylphorbol-13-acetate also induced higher than normal levels of procollagenase in some ataxia-telangiectasia and xeroderma pigmentosum strains, but less than that induced by trifluoperazine. Because increased extracellular accumulation of matrix-degrading enzymes has long been implicated in metastatic progression, this altered expression of procollagenase and prostromelysin in ataxia-telangiectasia and xeroderma pigmentosum cells could play an important role in the pathogenesis of various tumors in individuals with these genetic diseases. This work was supported by the Office of Health and Environmental Research, U. S. Department of Energy (contract DE-AC03-76-SF01012) (J. A., J. P. M.) and by a Fellowship in Medical Research from the A. P. Giannini/Bank of America Foundation (J. A.). A summary of these results has appeared previously in abstract form (1).  相似文献   

6.
Prospects of ex vivo cutaneous gene therapy rely on stable corrective gene transfer in epidermal stem cells followed by engraftment of corrected cells in patients. In the case of cancer prone genodermatoses, such as xeroderma pigmentosum, cells that received the corrective gene must be selected. However, this step is potentially harmful and can increase risks of immune rejection of grafts. These obstacles have recently been overcome thanks to the labeling of genetically modified stem cells using a small epidermal protein naturally absent in stem cells. This approach was shown to be respectful of the fate of epidermal stem cells that retained full growth and differentiation capacities, as well as their potential to regenerate normal human skin when grafted in a mouse model in the long term. These progresses now open realistic avenues towards ex vivo cutaneous gene therapy of cancer prone genodermatoses such as xeroderma pigmentosum. However, major technical improvements are still necessary to preserve skin appendages which would contribute to aesthetic features and comfort of patients.  相似文献   

7.
Xeroderma pigmentosum patients, in addition to ultraviolet-induced skin cancers, have an increased prevalence of neoplasms occurring in sites shielded from ultraviolet radiation. We postulated that these internal neoplasms might be related to ingestion of dietary carcinogens. As model dietary carcinogens, we studied the tryptophan pyrolysis products, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). These dietary compounds bind to DNA and are highly mutagenic and carcinogenic. Cytotoxicity of these compounds was examined in cultured lymphoblastoid cell lines from xeroderma pigmentosum patients in complementation groups A, B, C, D and E and the variant form and from normal donors. All xeroderma pigmentosum lymphoblastoid cell lines showed a greater reduction in viable cell concentration than the 2 normal lymphoblastoid cell lines following addition of Trp-P-1 or Trp-P-2 (5 micrograms/ml) to the culture medium. Possible differences in cellular activation of these compounds were overcome by treating the cells with rat-liver microsome-activated Trp-P-2. There was a greater reduction in viable cell concentration in the xeroderma pigmentosum group A and D cells than in the normal lymphoblastoid cell lines after treatment with activated Trp-P-2. These data suggest that the xeroderma pigmentosum DNA-repair system is defective in repairing Trp-P-1 and Trp-P-2 induced DNA damage in addition to being defective in repairing ultraviolet-induced DNA damage. Thus xeroderma pigmentosum patients may be at increased risk of toxicity from some dietary carcinogens.  相似文献   

8.
The distribution of ultraviolet-induced DNA repair patches in the genome of xeroderma pigmentosum cells of complementation group C was investigated by determining the molecular weight distribution of repair labeled DNA and prelabeled DNA in alkaline sucrose gradients after treatment with the dimerspecific endonuclease V of bacteriophage T4. The results were consistent with the data reported by Mansbridge and Hanawalt (1983) and suggest that DNA-repair synthesis in xeroderma pigmentosum cells of complementation group C occurs in localized regions of the genome. Analysis of the spatial distribution of ultraviolet-induced repair patches in DNA loops attached to the nuclear matrix revealed that in xeroderma pigmentosum cells of complementation group C repair patches are preferentially situated near the attachment sites of DNA loops at the nuclear matrix. In normal human fibroblasts we observed no enrichment of repair-labeled DNA at the nuclear matrix and repair patches appeared to be distributed randomly along the DNA loops. The enrichment of repair-labeled DNA at the nuclear matrix in xeroderma pigmentosum cells of complementation group C may indicate that the residual DNA-repair synthesis in these cells occurs preferentially in transcribing regions of the genome.  相似文献   

9.
Ex vivo cutaneous gene therapy is an alternative treatment for recessively inherited diseases with cutaneous traits. It relies on the transfer in cultured epidermal keratinocytes of the wild-type allele of the gene whose mutation is responsible for the disease. As for severely burnt patients, epithelial sheets developed from genetically corrected cells may then be grafted back to the patients. Long term correction and graft take depend on the genetic correction of stem cells. Success of such an approach has recently been reported in the case of one patient suffering from a severe case of junctional epidermolysis bullosae. Here we report a method for safely selecting keratinocytes populations after genetic manipulation. The method is non invasive and non immunogenic and allows high enrichment of genetically manipulated stem keratinocytes. This could perhaps contribute to ex vivo gene therapy approaches of cancer prone genodermatoses such as xeroderma pigmentosum.  相似文献   

10.
Human cells (normal and xeroderma pigmentosum variant) irradiated with ultraviolet light and pulse-labelled with [3H]thymidine underwent transient decline and recovery of molecular weights of newly synthesized DNA and rates of [3H]thymidine incorporation. The ability to synthesize normal-sized DNA recovered more rapidly in both cell types than thymidine incorporation. During recovery cells steadily increased in their ability to replicate normal-sized DNA on damaged templates. The molecular weight versus time curves fitted exponential functions with similar rate constants in normal and heterozygous xeroderma pigmentosum cells, but with a slower rate in two xeroderma pigmentosum variant cell lines. Caffeine added during the post-irradiation period eliminated the recovery of molecular weights in xeroderma pigmentosum variant but not in normal cells. The recovery of the ability to synthesize normal-sized DNA represents a combination of a number of cellular regulatory processes, some of which are constitutive, and one of which is altered in the xeroderma pigmentosum variant such that recovery becomes slow and caffeine sensitive.  相似文献   

11.
XERODERMA pigmentosum is an autosomal recessive disease characterized by hypersensitivity of the skin to ultraviolet radiation resulting in severe skin lesions. DNA repair replication after ultraviolet irradiation is absent or markedly reduced in cultivated fibroblasts from patients with xeroderma pigmentosum (XP cells) compared with normal cells1,2. Using the dark repair mechanism in microorganisms as a model, evidence has been presented that XP cells are defective in the incision step of DNA repair3–5.  相似文献   

12.
A uniform response to UV of four normal cell strains was demonstrated. One excision-proficient xeroderma pigmentosum variant strain (XP7TA) had a wild-type UV response but a second (XP30RO) was more sensitive. An excision-deficient xeroderma pigmentosum strain XP4L0 was substantially more sensitive than wild-type cell strains. A continuous post-irradiation treatment with non-toxic levels of caffeine enhanced the lethal effect of UV light in both xeroderma pigmentosum variant cell strains but not in cells from normal individuals. There was no detectable effect on cells from a xeroderma pigmentosum individual from complementation group A. These results correlate well with observations on the influence of caffeine on post-replication repair in the three classes of cells.  相似文献   

13.
Friedberg EC 《DNA Repair》2004,3(2):183, 195
Most forms of the human hereditary disease xeroderma pigmentosum (XP) are due to a defect in nucleotide excision repair of DNA damage in skin cells associated with exposure to sunlight. This discovery by James Cleaver had an important impact on our understanding of nucleotide excision repair in mammals.  相似文献   

14.
Human fibroblasts irradiated with ultraviolet light were either tested for survival (colony formation) or infected with simian virus 40 and examined for transformation (foci formation). For normal cell cultures, the fractions of surviving colonies which were also transformed increased with increasing irradiation dose. In contrast, little increase in the transformation of ultraviolet-irradiated repair-deficient (xeroderma pigmentosum and xeroderma pigmentosum variant) cells was observed. Similar experiments with xeroderma pigmentosum variant cells treated with caffeine following irradiation indicated that, under these conditions, the deficient cells produced more transformants among the survivors of ultraviolet irradiation than did unirradiated cells. These results suggest (1) that DNA repair functions, not DNA damage per se, are required for enhanced viral transformation in normal cells; (2) that functions involved in excision repair and functions needed for replication of ultraviolet-damaged DNA appear necessary for this stimulation; and (3) that blocking DNA replication in ultraviolet-irradiated xeroderma pigmentosum variant cells by caffeine enhances viral transformation.  相似文献   

15.
Postburn scarring and contracture affecting function remain the most frustrating late complications of burn injury. Various techniques are used to release contractures; the choice depends on their location and/or the availability of unaffected skin adjacent to the contracture or elsewhere. A retrospective review was carried out of the case notes of patients who had skin grafting for the release of postburn contracture at the Burns Unit, City Hospital, Nottingham between May of 1984 and August of 1994 to evaluate the experience over this period. Information was obtained about the burn injury, contracture site, interval between burn and release of contracture, indication, age at first release, intervals between releases, operative details (donor and graft sites), complications and nonoperative treatment, and follow-up to the end of the study period. A total of 129 patients underwent skin grafting for release of contractures as opposed to any other method of correction. Full-thickness skin grafts were used in 81 patients (63 percent) and split-thickness skin grafts in 26 (20 percent). Twenty-two patients (17 percent) had both types used on different occasions. Flame burns (41 percent) were the most common causes, followed by scalds (38 percent). Two hundred thirty-nine sites of contracture were released, with the axilla (59) and the hand/wrist (59) being the most common sites involved, followed by the head/neck region (42). It was found that for the same site, release with split-thickness skin grafts was associated with more rereleases of the contracture than with full-thickness skin grafts. Also, the interval between the initial release and first rerelease was shorter than with full-thickness skin grafts (p < 0.048). It was also noted that children required more procedures during growth spurts, reflecting the differential effect of the growth of normal skin and contracture tissue. Patients reported more satisfaction with texture and color match with the full-thickness skin grafts. There was comparable donor-site and graft morbidity with both graft types. The use of skin grafts is simple, reliable, and safe. Whenever possible, the authors recommend the use of full-thickness skin grafts in preference to split-thickness skin grafts in postburn contracture release.  相似文献   

16.
Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered alpha-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an alpha-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin.  相似文献   

17.
Irradiation with UV light results in damage to the DNA of human cells. The most numerous lesions are pyrimidine dimers; however, other lesions are known to occur and may contribute to the overall deleterious effect of UV irradiation. We have observed evidence of a UV-induced lesion other than pyrimidine dimers in the DNA of human cells by measuring DNA strand breaks induced by irradiating with 313-nm light following UV (254-nm) irradiation. These breaks, measured by alkaline sucrose sedimentation, increased linearly with the dose of UV light over the range tested (10-40 J/m2). The breaks cannot be photolytically induced 5 h after a UV dose of 20 J/m2 in normal cells; however, in xeroderma pigmentosum variant cells, the breaks are inducible for up to 24 h after UV irradiation. Xeroderma pigmentosum group A cells in the same 5-h period show an increase in the number of strand breaks seen with 313-nm light photolysis from about 2 to 4 breaks/10(9) dalton DNA. These breaks can then be induced for up to 24 h. These data suggest that, in normal cells, the lesion responsible for this effect is rapidly repaired or altered; whereas, in xeroderma pigmentosum variant cells it seems to remain unchanged. Some change apparently occurs in the DNA of xeroderma pigmentosum group A cells which results in an increase in photolability. These data indicate a deficiency in DNA repair of xeroderma pigmentosum variant cells as well as in xeroderma pigmentosum group A cells.  相似文献   

18.
The proximity of repair patches to persistent pyrimidine dimers in normal human cells and xeroderma pigmentosum group C and D cells was analyzed by sequential digestion of repaired DNA with Micrococcus luteus UV-endonuclease and Escherichia coli DNA polymerase I. Although this enzymatic digestion removed one-third of the pyrimidine dimers, less than 3% of the label associated with repair patches and a similar amount of uniformly labeled DNA were removed. The repair patches therefore appear to be similarly distant from persistent dimers in all cell types, and, in particular, are not adjacent to unexcised dimers in xeroderma pigmentosum group D cells. A previous model that suggested that patches are inserted adjacent to dimers in xeroderma pigmentosum group D cells receives no support from these results.  相似文献   

19.
Yarosh DB 《Mutation research》2002,509(1-2):221-226
The goal of DNA repair enzyme therapy is the same as that for gene therapy: to rescue a defective proteome/genome by introducing a substitute protein/DNA. The danger of inadequate DNA repair is highlighted in the genetic disease xeroderma pigmentosum. These patients are hypersensitive to sunlight and develop multiple cutaneous neoplasms very early in life. The bacterial DNA repair enzyme T4 endonuclease V was shown over 25 years ago to be capable of reversing the defective repair in xeroderma pigmentosum cells. This enzyme, packaged in an engineered delivery vehicle, has been shown to traverse the stratum corneum, reach the nuclei of living cells of the skin, and enhance the repair of UV-induced cyclobutane pyrimidine dimers (CPD). In such a system, changes in DNA repair, mutagenesis, and cell signaling can be studied without manipulation of the genome.  相似文献   

20.
A newly developed cell-free system was used to study DNA repair synthesis carried out by extracts from human cell lines in vitro. Extracts from a normal human lymphoid cell line and from cell lines established from individuals with hereditary dysplastic nevus syndrome perform damage-dependent repair synthesis in plasmid DNA treated with cis- or trans-diamminedichloro-platinum(II) or irradiated with ultraviolet light. Cell extracts of xeroderma pigmentosum origin (complementation groups A, C, D, and G) are deficient in DNA repair synthesis. When damaged plasmid DNA was pretreated with purified Escherichia coli UvrABC proteins, xeroderma pigmentosum cell extracts were able to carry out DNA repair synthesis. The ability of E. coli UvrABC proteins to complement xeroderma pigmentosum cell extracts indicates that the extracts are deficient in incision, but can carry out later steps of repair. Thus the in vitro system provides results that are in agreement with the incision defect found from studies of xeroderma pigmentosum cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号