首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes of oxygen tension level (pO2) in the visual cortex, dorsal hippocampus, lateral hypothalamus and central grey substance were studied during wake-sleep cycle in rats. The dependence was established of pO2 level changes on the character of behavioural reactions and on the accompanying hippocampal EEG activity: during orienting-investigatory and active defensive behaviour and also during paradoxical sleep, accompanied by hippocampal theta rhythm, pO2 level increased; during passive-defensive behaviour "freezing" reaction accompanied by desynchronization of the hippocampal rhythmic, the level of pO2 decreased. The obtained data confirm Routtenberg hypothesis about two relatively independent systems of ascending activation with different types of hippocampal EEG activity and supplement it with a thesis that the activity of these systems is accompanied by different shifts of brain oxidative metabolism.  相似文献   

2.
The dynamics of neuronal activity in the posterior hypothalamus in different phases of the sleep-wake cycle were investigated during experiments on free-ranging cats. The highest frequency discharges were found to occur in 89.3% of neurons belonging to this region during the stages of active wakefulness and emotionally influenced paradoxical sleep. These neurons become less active during restful wakefulness and the unemotional stage of paradoxical sleep; this reduced activity can be most clearly observed in the context of slow-wave sleep. It was found that 7.1% of test neurons discharged at the highest rate during the stage of active wakefulness. They did not achieve an activity level characteristic of active wakefulness during the period of paradoxical sleep, although activity level was higher than during other states. Only 3.6% of neurons followed the opposite pattern, with discharges succeeding more frequently in slow-wave sleep and activity reduced to an equal degree during wakefulness and paradoxical sleep. The neurophysiological mechanisms governing the sleep-wake cycle and how the posterior hypothalamus contributes to these mechanisms are discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 160–167, March–April, 1988.  相似文献   

3.
Posterior hypothalamus was found to take part in the inhibitory control of the paradoxical sleep executive mechanisms responsible for the ECoG desynchronisation and phasic events. Functional activity of the posterior hypothalamus seems to be at its lowest during the paradoxical sleep stage as characterised by phasic events and the ECoG desynchronisation, and increases during the stage with alpha-like activity in the ECoG and absence of phasic events, the latter having, probably, a "sentinel" function.  相似文献   

4.
In order to study putative hypothalamic mechanisms of sleep waking cycle regulation we destroyed, by electrolytic coagulation, a large part of the medial hypothalamus overlapping the paraventricular nucleus in 6 adult cats. We never observed any modification of light slow wave sleep. Three of the six cats presented no paradoxical sleep (PS) impairment, despite an almost total destruction of neurophysin-immunoreactive cells of PVN in two cats and marked signs of diabetes insipidus in the third. Further, in the other three animals a statistically significant decrease of daily quantities of PS and deep slow wave sleep (SWS2) were related to an extensive destruction of the anterior hypothalamic area. These results suggest lack of influence of the PVN in sleep regulation and an involvement of the anterior hypothalamus in the onset of SWS2 and PS.  相似文献   

5.
The nucleus pontis oralis' neurons were responsive to electrical stimulation of posterior hypothalamus. PS-on neurons showed an inhibitory response, and PS-off cells demonstrated an excitatory response. Neurons that discharged in association with phasic paradoxical sleep phenomena were found to have both the excitatory and the inhibitory responses. Evoked responses changed across sleep-waking cycle. The findings suggest that posterior hypothalamus is involved in the control of paradoxical sleep generation mechanisms located in the nucleus pontis oralis.  相似文献   

6.
The intratissular injection of ibotenic acid into the ventrolateral part of the posterior hypothalamus induced a dramatic biphasic and transient hypersomnia immediately after disappearance of the anaesthesia (14 to 24 hrs. after injection). The duration of hypersomnia was related to the dose of neurotoxin injected. Its first period was characterized by an increase in paradoxical sleep (PS) (300%). Then, during the second phase, PS disappeared and there was a subsequent increase of slow wave sleep (SWS) (60%). Finally, on the third day, all cats recovered control level of PS and SWS.  相似文献   

7.
The aim of this study was to examine effects of i.p. injected Fentanyl (0.005 mg/kg) and Morphine (1 mg/kg) on local cerebral blood flow (ICBF) and tissue pO2 level in frontal-parietal area of the cortex and nucleus accumbens of the rat's brain. Either fentanyl or morphine injection resulted in significant increase of local blood flow in the n.accumbens and its decrease in frontal-parietal area of cortex. Measurement of oxygen partial pressure revealed the opposite (to ICBF) changes: a decrease in n.accumbens and its increase in cortical area of the brain. Analysis of this data and electrical activity recorded from both said structures allow to conclude that they are conditioned by respective changes in functional-metabolic activity induced by intraperitoneal injection either fentanyl or morphine: its suppression in frontal-parietal area of the cortex and development of seizure-like activity in the n.accumbens.  相似文献   

8.
New data are presented on the role of the hypothalamus in re-arrangement of tonus of the vegetative nervous system during three forms of rest of the primary sleep in the frog. Temporal organization of the cycle " awakefulness -primary sleep" depends on interaction of the anterior and posterior hypothalamus. The anterior hypothalamus is responsible for manifestation of two forms of rest of the primary sleep, i.e. diurnal resting form (P-1) which is associated with the increase in plastic tone of skeletal muscles, and the other resting form (P-3) which is associated with the decrease in muscle tonus. These forms of rest are accompanied by the predominance of parasympathetic tonus of the vegetative nervous system. The posterior hypothalamus is associated with manifestation of the resting form which includes the increase in the rigidity of muscle tonus (P-2) and transient phasic increase in the heart rate, the latter being observed at all forms of the primary sleep. Statistical treatment of the ECG revealed specific pattern of two-dimensional density of distribution of probabilities of R-R intervals for the resting forms of the primary sleep which is important for identification of different phases in the " awakefulness -primary sleep" cycle in vertebrates.  相似文献   

9.
To examine the relationship between the sleep rhythm and the gonadal feedback system in the guinea pig, the effects of estrous cycle, gonadal steroids and brain deafferentiations on the sleep rhythm were studied and the following results were obtained; 1) the guinea pigs did not show an apparent circadian rhythmicity in the sleep-wakefulness cycle but showed an ultradian rhythm, whereas, the activity rhythm was circadian, 2) the rhythm in paradoxical sleep(PS) showed changes associated with the estrous cycle which were characterized by a decrease and rebound-like increase in PS amounts on the day of proestrus, 3) the horizontal deafferentation above the medial preoptic area at the level of the anterior commissure (MPO roof cut) did not disrupt the estrous cycle dependent changes in the PS rhythm, but the prechiasmatic deafferentiation of the medial basal hypothalamus (PCD) and the large complete deafferentation of the medial basal hypothalamus (CDL) disrupted them, 4) ovariectomy (OVX) did not result in any changes in sleep and activity rhythms, 5) an administration of estradiol benzoate (E2) to OVX guinea pig caused a decrease in the amount of PS and an administration of progesterone (P) 48h after E2 caused a more pronounced decrease and rebound-like increase in the amount of PS, 6) the MPO roof cut did not affect the steroidal modification of the PS rhythm and the PCD disrupted it, while the CDL-animal also showed a E2-induced PS decrease. From these results, it appears that the guinea pig may be a circadian animal, but this may not be seen in the sleep-wakefulness cycle, and the estrous cycle dependent changes in the PS rhythm may be the reflection of steroidal modification of the sleep rhythm and the site of action may be the inside of the medial preoptic anterior hypothalamic structures, but this area may also be affected by the output from the medial basal hypothalamus.  相似文献   

10.
Electrical activity of the olfactory bulb, olfactory tubercle, amygdala, hippocampus, hypothalamus, and neocortex in the various phases of natural sleep was studied in chronic experiments on dogs under conditions close to those of free behavior. During paradoxical sleep it was found that a high-frequency synchronized rhythm of sinusoidal waves with a frequency of 36–42 Hz arises in the olfactory structures and amygdala. Generation of this activity during paradoxical sleep, by contrast with wakefulness, was unconnected with stimulation of the olfactory receptors and was probably purely central in origin. A study of the dynamics of the olfacto-amygdaloid rhythm during the paradoxical phase, and its comparison with somatic, autonomic, and EEG correlates of sleep, led to the conclusion that this rhythm is a specific EEG correlate of the paradoxical phase of sleep in dogs.  相似文献   

11.
Immunohistochemical localization of adenosine deaminase (ADA), marker for the putative neurotransmitter/neuromodulator adenosine, has revealed a population of ADA-positive neurons in the ventrolateral hypothalamus in the rat brain. These posterior neurons possess adenosine uptake sites. We have studied the effects of local injections of adenosinergic drugs on the sleep-wake cycle in the rat. Microinjection of erythro-9-(hydroxy-2, nonyl-3) adenine (EHNA), a specific inhibitor of adenosine deaminase, resulted in a significant decrease in wakefulness (W) and an increase in deep slow wave sleep (SWS, or S2) and paradoxical sleep (SP). On the other hand, microinjections of soluflazine, a nucleoside transport inhibitor, increased W and decreased total sleep. These opposite modifications may reflect opposite variations in the extracellular concentrations of Ado and consequently different responses of A1/A2 adenosine receptors.  相似文献   

12.
All animals carefully studied sleep, suggesting that sleep as a behavioral state exists in all animal life. Such evolutionary maintenance of an otherwise vulnerable period of environmental detachment suggests that sleep must be integral in fundamental biological needs. Despite over a century of research, the knowledge of what sleep does at the tissue, cellular or molecular levels remain cursory. Currently, sleep is defined based on behavioral criteria and physiological measures rather than at the cellular or molecular level. Physiologically, sleep has been described as two main states, non-rapid eye moment (NREM) and REM/paradoxical sleep (PS), which are defined in the neocortex by synchronous oscillations and paradoxical wake-like activity, respectively. For decades, these two sleep states were believed to be defining characteristics of only mammalian and avian sleep. Recent work has revealed slow oscillation, silencing, and paradoxical/REM-like activities in reptiles, fish, flies, worms, and cephalopods suggesting that these sleep dynamics and associated physiological states may have emerged early in animal evolution. Here, we discuss these recent developments supporting the conservation of neural dynamics (silencing, oscillation, paradoxical activity) of sleep states across phylogeny.  相似文献   

13.
We have studied the effects of local injections of histaminergic and antihistaminic drugs on the sleep-waking cycle in the cat. Microinjections of alpha-fluoromethylhistidine (alpha-FMH), a specific inhibitor of histidine decarboxylase, in the ventrolateral posterior hypothalamus, where histamine-immunoreactive neurons have been recently identified, resulted in a significant decrease in wakefulness (W) and increase in deep slow wave sleep (SWS). On the other hand, microinjections of SKF-91488 (Homodimaprit), a specific inhibitor of histamine-N-methyltransferase, increased W and decreased SWS and paradoxical sleep (PS). Microinjections of histamine also produced an increase of W, while this effect was abolished by pretreatment with mepyramine, an H1-histamine receptor antagonist.  相似文献   

14.
Temporal patterns of unit activity in the mesencephalic reticular nuclei (n. cuneiformis, n. parabrachialis) were studied in unrestrained rats during the sleep-waking cycle; activity was derived by means of movable metallic microelectrodes. Analysis of the data showed that most neurons of these mesencephalic reticular nuclei (76 and 66% respectively) generate activity with the highest frequency during active waking and the emotional stage of paradoxical sleep; they discharge with lower frequency during passive wakefulness and the nonemotional stage of paradoxical sleep, and they exhibit least activity during slow-wave sleep. Comparatively few neurons (24 and 15%) demonstrate the opposite kind of temporal pattern of activity: They discharge more intensively during slow-wave sleep and more slowly during active wakefulness and the emotional stage of paradoxical sleep. Activity of these neurons during quiet wakefulness and the nonemotional stage of paradoxical sleep reaches the level of activity observed during slow-wave sleep. Neurons discharging intensively during active wakefulness were found in n. parabrachialis; their discharge frequency during passive wakefulness and slow-wave sleep and its frequency was least during paradoxical sleep. The similarity and differences of the neurophysiological mechanisms of regulation of the phases and stages of the sleepwaking cycle are discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 678–690, September–October, 1984.  相似文献   

15.
In order to study putative hypothalamic mechanisms of sleep-waking cycle regulation we injected a neural cell body toxin--ibotenic acid (IBO), 40 to 200 micrograms--into the ventrolateral part of the posterior hypothalamus (HVL). This injection induced a dramatic biphasic and transient hypersomnia immediately after the disappearance of the anesthesia (14 to 24 hours after the injection). The duration of hypersomnia was dose dependent. Its first period was characterized by an increase in paradoxical sleep (PS) (300%). Then, during the second phase, PS disappeared and there was a subsequent increase of slow sleep (SWS) (60%). Finally, on the third day, all cats recovered control level of PS and SWS while, 3 weeks later, the histological analysis revealed the great loss of cell bodies in the HVL in all cats.  相似文献   

16.
88 adult male rats were divided into 9 groups. Group I and II served as controls. The rats of group III were repeatedly aroused during 4 days at the very onset of each paradoxical sleep period by direct MRF stimulation. This deprivation reduced the daily amount of paradoxical sleep by 70%, while the slow wave sleep was reduced by 10% only. In group IV, the animals were given food and water for one hour a day only. Groups V and VI were subjected to immobilization and cold stress, respectively. Groups VII, VIII and IX were deprived of paradoxical sleep on platforms of 15, 11 and 6.5 cm in diameter, respectively. Stress was estimated by the classical Selye's triad: weight of adrenals and thymus and gastric ulceration. Emotionality was measured in the open field and also by self-stimulation of the lateral hypothalamus. Neither emotional behaviour disturbances nor stress features were found after paradoxical sleep deprivation in the group III. Moreover, this deprivation induced a slight, though significant, reduction in adrenals weight. Also, no changes in emotional behaviour were noted in the stress-exposed group V and VI. Only the interplay between REM-sleep deprivation and stress on the platforms in groups VII, VIII and especially IX led to a considerable shift in emotionality.  相似文献   

17.
This study was designed to characterize, in anterior, mediobasal, and posterior hypothalamic and median eminence, the 24h changes of gamma aminobutyric acid (GABA) and taurine (TAU) contents in adult male rats and to analyze whether chronic hyperprolactinemia may affect these patterns. Rats were turned hyperprolactinemic by a pituitary graft. Plasma prolactin (PRL) levels increased after pituitary grafting at all time points examined. A disruption of the circadian rhythm was observed in pituitary-grafted rats, whereas GABA and TAU content followed daily rhythms in all areas studied in controls. In the mediobasal hypothalamus, two peaks for each amino acid were found at midnight and midday. In the anterior hypothalamus, GABA and TAU showed only one peak of concentration at midnight. In the posterior hypothalamus, the values of both GABA and TAU were higher during the light as compared to the dark phase of the photoperiod. In the median eminence GABA content peaked at 20:00h, the time when TAU exhibited the lowest values. Hyperprolactinemia abolished the 24h changes of GABA in the mediobasal hypothalamus and reduced its content as compared to controls. Hyperprolactinemia advanced the diurnal peak of TAU to 12:00h in the mediobasal hypothalamus and did not modify the 24:00h peak. In the anterior hypothalamus, hyperprolactinemia increased GABA and TAU contents during the light phase while it decreased them during the dark phase of the photoperiod. In the posterior hypothalamus hyperprolactinemia did not modify GABA or TAU patterns as compared to controls. In the median eminence hyperprolactinemia increased the 20:00h peak of GABA and shift advanced the decrease in TAU content at 20:00h and its maximum at 24:00h as compared to controls. These data show that GABA and TAU content exhibit specific daily patterns in each hypothalamic region studied. PRL differentially affects the daily pattern of these amino acids in each hypothalamic region analyzed.  相似文献   

18.
采用多导睡眠描记术研究了例脑室注射促甲状腺激素释放激素(TRH)对正常大鼠和去甲状腺大鼠睡眠-觉醒的影响。在正常大鼠,TRH引起觉醒增加,浅慢波睡眠(SWS_1)、深慢波睡眠(SWS_2)和总睡眠时间(TST)均减少,异相睡眠(PS)消失,SWS_1、SWS_2和PS的潜伏期均显著延长,给药后立即产生效应并在1h内达高峰。去甲状腺对大鼠的睡眠-觉醒无明显影响,注射TRH后引起的效应与正常大鼠相似。结果提示TRH有促进大鼠觉醒的作用,对各睡眠时相均有抑制作用,其作用部位可能在下丘脑以外的中枢结构。  相似文献   

19.
Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz) and high (60-120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.  相似文献   

20.
A change of excitability, pO2 and local cortical blood flow under a long-term maximum physical load and in conditions of experimental neurosis, was investigated in rabbits with electrodes implanted in the frontal cortex and ventromedial hypothalamus. It was found that functional activity of these structures under physical orverstrain rises as the blood flow and pO2 increase, and the excitability also increases. In experimental neurosis, a discoordination in functioning of the cortex and hypothalamus is observed. Relative stabilization of the functional state of tested structures, observed during physical overstrain, is absent in conditions of experimental neurosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号