首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli starvation proteins include several heat shock proteins whose induction by heat is controlled by the minor sigma factor, sigma 32. The level of sigma 32 increased in wild-type E. coli upon starvation, and three sigma 32-controlled heat shock proteins (DnaK, GroEL, and HtpG) were not induced during starvation in an isogenic delta rpoH strain, which is unable to synthesize sigma 32. Thus, sigma 32 plays a role in the induction of these proteins during both heat shock and starvation. The delta rpoH strain was more sensitive to starvation but could develop starvation-mediated cross protection against heat and oxidation.  相似文献   

2.
sigma 32, the product of the Escherichia coli rpoH locus, is an alternative RNA polymerase sigma factor utilized to express heat shock genes upon a sudden rise in temperature. E. coli K165 [rpoH165(Am) supC(Ts)] is temperature sensitive for growth and does not induce heat shock protein synthesis. We have isolated a locus from Rhizobium meliloti called suhR that allows E. coli K165 to grow at high temperature and induce heat shock protein synthesis. R. meliloti suhR mutants were viable and symbiotically effective. suhR was found to have no DNA or derived amino acid sequence similarity to the genes of previously sequenced sigma factors or other data base entries, although a helix-turn-helix DNA-binding protein motif is present. suhR did not restore the phenotypic defects of delta rpoH E. coli; suppression of the E. coli K165 phenotype is thus likely to involve E. coli sigma 32. Western immunoblots showed that suhR caused an approximately twofold elevation of sigma 32 levels in K165; RNA blots indicated that rpoH mRNA level and stability were not altered. Stabilization of sigma 32 protein and increased rpoH mRNA translation are thus the most probable mechanisms of suppression.  相似文献   

3.
In Escherichia coli, the ability to elicit a heat shock response depends on the htpR gene product. Previous work has shown that the HtpR protein serves as a sigma factor (sigma 32) for RNA polymerase that specifically recognizes heat shock promoters (A.D. Grossman, J.W. Erickson, and C.A. Gross Cell 38:383-390, 1984). In the present study we showed that sigma 32 synthesized in vitro could stimulate the expression of heat shock genes. The in vitro-synthesized sigma 32 was found to be associated with RNA polymerase. In vivo-synthesized sigma 32 was also associated with RNA polymerase, and this polymerase (E sigma 32) could be isolated free of the standard polymerase (E sigma 70). E sigma 32 was more active than E sigma 70 with heat shock genes; however, non-heat-shock genes were not transcribed by E sigma 32. The in vitro expression of the htpR gene required E sigma 70 but did not require E sigma 32.  相似文献   

4.
5.
The rpoH genes encoding homologs of Escherichia coli sigma 32 (heat shock sigma factor) were isolated and sequenced from five gram negative proteobacteria (gamma or alpha subgroup): Enterobacter cloacae (gamma), Serratia marcescens (gamma), Proteus mirabilis (gamma), Agrobacterium tumefaciens (alpha) and Zymomonas mobilis (alpha). Comparison of these and three known genes from E.coli (gamma), Citrobacter freundii (gamma) and Pseudomonas aeruginosa (gamma) revealed marked similarities that should reflect conserved function and regulation of sigma 32 in the heat shock response. Both the sequence complementary to part of 16S rRNA (the 'downstream box') and a predicted mRNA secondary structure similar to those involved in translational control of sigma 32 in E.coli were found for the rpoH genes from the gamma, but not the alpha, subgroup, despite considerable divergence in nucleotide sequence. Moreover, a stretch of nine amino acid residues Q(R/K)(K/R)LFFNLR, designated the 'RpoH box', was absolutely conserved among all sigma 32 homologs, but absent in other sigma factors; this sequence overlapped with the segment of polypeptide thought to be involved in DnaK/DnaJ chaperone-mediated negative control of synthesis and stability of sigma 32. In addition, a putative sigma E (sigma 24)-specific promoter was found in front of all rpoH genes from the gamma, but not alpha, subgroup. These results suggest that the regulatory mechanisms, as well as the function, of the heat shock response known in E.coli are very well conserved among the gamma subgroup and partially conserved among the alpha proteobacteria.  相似文献   

6.
Heat shock response of Pseudomonas aeruginosa.   总被引:6,自引:4,他引:2       下载免费PDF全文
The general properties of the heat shock response in Pseudomonas aeruginosa were characterized. The transfer of cells from 30 to 45 degrees C repressed the synthesis of many cellular proteins and led to the enhanced production of 17 proteins. With antibodies raised against the Escherichia coli proteins, two polypeptides of P. aeruginosa with apparent molecular weights of 76,000 and 61,000 (76K and 61K proteins) were shown to be analogous to the DnaK and GroEL heat shock proteins of E. coli due to their immunologic cross-reactivity. The major sigma factor (sigma 87) of P. aeruginosa was shown to be a heat shock protein that was immunologically related to the sigma 70 of E. coli by using polyclonal antisera. A hybridoma was produced, and the monoclonal antibody MP-S-1 was specific for the sigma 87 and did not cross-react with sigma 70 of E. coli. A smaller 40K protein was immunoprecipitated with RNA polymerase antisera from cells that had been heat shocked. The 40K protein was also associated with RNA polymerase which had been purified from heat-shocked cells and may be the heat shock sigma factor of P. aeruginosa. Exposure to ethanol resulted in the production of seven new proteins, three of which appeared to be heat shock proteins.  相似文献   

7.
When Escherichia coli cells enter stationary phase due to carbon starvation the synthesis of ribosomal proteins is rapidly repressed. In a DeltarelA DeltaspoT mutant, defective in the production of the alarmone guanosine tetraphosphate (ppGpp), this regulation of the levels of the protein synthesizing system is abolished. Using a proteomic approach we demonstrate that the production of the vast majority of detected E. coli proteins are decontrolled during carbon starvation in the DeltarelA DeltaspoT strain and that the starved cells behave as if they were growing exponentially. In addition we show that the inhibition of ribosome synthesis by the stringent response can be qualitatively mimicked by artificially lowering the levels of the housekeeping sigma factor, sigma(70). In other words, genes encoding the protein-synthesizing system are especially sensitive to reduced availability of sigma(70) programmed RNA polymerase. This effect is not dependent on ppGpp since lowering the levels of sigma(70) gives a similar but less pronounced effect in a ppGpp(0) strain. The data is discussed in view of the models advocating for a passive control of gene expression during stringency based on alterations in RNA polymerase availability.  相似文献   

8.
At the onset of starvation Escherichia coli undergoes a temporally ordered program of starvation gene expression involving 40-80 genes which some four hours later yields cells possessing an enhanced general resistance. Two classes of genes are induced upon carbon starvation: the cst genes, requiring cyclic AMP, and the pex genes, not requiring this nucleotide for induction. The cst genes are not involved in the development of the resistant state and are concerned with escape from starvation, while the pex gene induction appears to be associated with resistance. Many of the latter are induced in response to a variety of starvation conditions. They include heat shock and oxidation resistance genes, and some utilize minor, stationary-phase-specific sigma factors for induction during starvation. The protective role of stress proteins may be due to their ability to rescue misfolded macromolecules. The starvation promoters can be potentially useful for selective expression of desired genes in metabolically sluggish populations, e.g. in high-density industrial fermentations and in situ bioremediation.  相似文献   

9.
10.
11.
Members of the genus Buchnera are intracellular symbionts harbored by the aphid bacteriocyte which selectively synthesize symbionin, a homolog of the Escherichia coli GroEL protein, in vivo. Symbionin and SymS, a GroES homolog, are encoded in the symSL operon. Northern blotting and primer extension analyses revealed that the symSL operon invariably gives rise to a bicistronic mRNA under the control of a heat shock promoter, though the amount of the symSL mRNA in the isolated symbiont did not increase in response to heat shock. The sigma32 protein that recognizes the heat shock promoter in E. coli was scarcely detected in Buchnera cells even after heat shock. Although the functionally essential regions of the Buchnera sigma32 protein were well conserved, the Buchnera rpoH gene did not complement an E. coli delta rpoH mutant. On the one hand, the A-T evolutionary pressure imposed on the Buchnera genome may have not only decreased the activity of its sigma32 but also ruined the nucleotide sequences necessary for the expression of rpoH; on the other hand, it may have facilitated expression of the symSL operon without activation by sigma32.  相似文献   

12.
13.
The cspD gene of Escherichia coli encodes a protein of high sequence similarity with the cold shock protein CspA, but cspD expression is not induced by cold shock. In this study, we analyzed the regulation of cspD gene expression. By using a cspD-lacZ fusion and primer extension analysis, the expression of cspD was found to be dramatically induced by stationary-phase growth. However, this induction does not depend on the stationary-phase sigma factor sigmaS. Moreover, the expression of cspD is inversely dependent on growth rates and induced upon glucose starvation. Using a (p)ppGpp-depleted strain, we found that (p)ppGpp is one of the positive factors for the regulation of cspD expression.  相似文献   

14.
15.
16.
17.
18.
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i). the expression of rpoH, encoding the heat shock-specific sigma factor sigma(32), was also induced by high pressure; (ii). heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii). basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号