首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyclonal antibodies against rabbit skeletal muscle phosphatases C-I and C-II were raised in goats and in mice. The goat polyclonal antibodies to phosphatases C-I and C-II were examined for their ability to immunoblot the purified enzymes and crude rabbit muscle extracts. In preparations of phosphatases C-I and C-II that were apparently homogeneous, the expected ca. 35- to 38-kDa polypeptides were immunoblotted, but, in addition, immunoblotting of a 67-kDa polypeptide was observed. Both the antisera blotted only the 67-kDa polypeptide in crude rabbit muscle extracts and not the expected 35- to 38-kDa polypeptides. These findings are qualitatively similar to those reported previously (D.L. Brautigan et al. (1985) J. Biol. Chem. 260, 4295-4305) where immunoblotting experiments with a sheep antisera to phosphatase C-I indicated that the ca. 35-kDa polypeptide originates from a 70-kDa precursor. On further investigation, it was found that our antisera were strongly immunoreactive to rabbit serum albumin. The antisera blotted purified rabbit albumin, but not bovine serum albumin. After passage through a rabbit albumin-Sepharose column, the antisera lost immunoreactivity to rabbit albumin, and no longer blotted the ca. 70-kDa band in muscle extracts or in purified enzyme preparations. These findings show that the phosphatase preparations contained traces of albumin which produced a strong antigenic reaction. Production of antisera in BALB/c mice produced similar results; i.e., an antibody to the low-molecular-weight phosphatases was produced that was also a strong antibody to rabbit albumin. This antibody could be removed by affinity adsoption on rabbit albumin-Sepharose columns. In addition, the antibodies to phosphatase C-I displayed no cross-reactivity to phosphatase C-II, while antibodies to C-II showed no cross-reactivity to phosphatase C-I by immunoblotting methods.  相似文献   

2.
Previous studies have shown that phosphorylase phosphatase can be isolated from rabbit liver and bovine heart as a form of Mr approximately 35,000 after an ethanol treatment of tissue extracts. This enzyme form was designated as protein phosphatase C. In the present study, reproducible methods for the isolation of two forms of protein phosphatase C from rabbit skeletal muscle to apparent homogeneity are described. Protein phosphatase C-I was obtained in yields of up to 20%, with specific activities toward phosphorylase a of 8,000-16,000 units/mg of protein. This enzyme represents the major phosphorylase phosphatase activity present in the ethanol-treated muscle extracts. The second enzyme, protein phosphatase C-II, had a much lower specific activity toward phosphorylase a (250-900 units/mg). Phosphatase C-I and phosphatase C-II had Mr = 32,000 and 33,500, respectively, as determined by sodium dodecyl sulfate disc gel electrophoresis. The two enzymes displayed distinct enzymatic properties. Phosphatase C-II was associated with a more active alkaline phosphatase activity toward p-nitrophenyl phosphate than was phosphatase C-I. Phosphatase C-II activities were activated by Mn2+, whereas phosphatase C-I was inhibited. Phosphatase C-I was inhibited by rabbit skeletal muscle inhibitor 2 while phosphatase C-II was not inhibited. Both enzymes dephosphorylated glycogen synthase and phosphorylase kinase, but displayed different specificities toward the alpha- and beta-subunit phosphates of phosphorylase kinase (Ganapathi, M. K., Silberman, S. R., Paris, H., and Lee, E. Y. C. (1980) J. Biol. Chem. 246, 3213-3217). The amino acid compositions of the two proteins were similar. Peptide mapping of the two proteins showed that they are distinct proteins and do not have a precursor-proteolytic product relationship.  相似文献   

3.
In rabbit skeletal muscle the polycation-stimulated (PCS) protein phosphatases [Merlevede (1985) Adv. Protein Phosphatases 1, 1-18] are the only phosphatases displaying significant activity toward the deinhibitor protein. Among them, the PCSH protein phosphatase represents more than 80% of the measurable deinhibitor phosphatase activity associated with the PCS phosphatases. The deinhibitor phosphatase activity co-purifies with the PCSH phosphatase to apparent homogeneity. In the last purification step two forms of PCSH phosphatase were separated (PCSH1, containing 62, 55 and 34 kDa subunits, and PCSH2, containing 62 and 35 kDa subunits), both showing the same deinhibitor/phosphorylase phosphatase activity ratio. The activity of the PCSH phosphatase toward the deinhibitor is not stimulated by polycations such as protamine, histone H1 or polylysine, unlike the stimulation observed with phosphorylase as the substrate. The phosphorylase phosphatase activity of PCSH phosphatase is inhibited by ATP, PPi and Pi, whereas the deinhibitor phosphatase activity of the enzyme is much less sensitive to these agents.  相似文献   

4.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

5.
The development of a monoclonal antibody directed against rabbit skeletal muscle monomeric actin is described. The production of the monoclonal antibody followed a standard hybridoma technique, the antibody being purified by affinity chromatography. It was found to be of the IgM class. Antibody specificity for rabbit skeletal actin was demonstrated by radioimmunoassay. The antibody failed to bind to actin in Western Blot experiments, presumably due to modification of the antigenic determinant on actin during the Western Blot procedure. The antibody was also shown to bind to two other isotypes of actin, i.e. actin from squid mantle muscle and bovine myocardium.  相似文献   

6.
Inhibitor-2, purified by an improved procedure, was used to identify protein phosphatases capable of catalysing its dephosphorylation. The results showed that, under our experimental conditions, protein phosphatases-1, 2A and 2B were the only significant protein phosphatases in rabbit skeletal muscle extracts acting on this substrate. Protein phosphatases-1 and 2A accounted for all the inhibitor-2 phosphatase activity in the absence of Ca2+ (resting muscle), and the potential importance of these enzymes in vivo is discussed. Protein phosphatase-2B, a Ca2+-calmodulin-dependent enzyme, could account for up to 30% of the inhibitor-2 phosphatase activity in contracting muscle. The Km of protein phosphatase-1 for inhibitor-2 (40 nM) was 100-fold lower than the Km for phosphorylase a (4.8 microM). This finding, coupled with the failure of inhibitor-2 to inhibit its own dephosphorylation, suggests that inhibitor-2 is dephosphorylated at one of the two sites on protein phosphatase-1 involved in preventing the dephosphorylation of other substrates. The dephosphorylation of inhibitor-2 by protein phosphatase-1 was also unaffected by inhibitor-1, suggesting that the phosphorylation state of inhibitor-2 is unlikely to be controlled by cyclic AMP in vivo.  相似文献   

7.
The dephosphorylation of phosphorylase kinase by four rabbit skeletal muscle protein phosphatases was studied. The four enzymes used were preparations of protein phosphatases C-I, C-II, H-I, and H-II. Phosphatases C-I, C-II, and H-II were obtained as homogeneous preparations using procedures previously developed. Phosphatase H-I was purified 644-fold from rabbit skeletal muscle for the purposes of this study, and was the major phosphorylase phosphatase activity in the tissue extract. Phosphatases C-I and H-I were relatively specific for removal of the beta subunit phosphate of phosphorylase kinase, this occurring at rates approximately 100 times more rapidly than the removal of the alpha subunit phosphate. In contrast, phosphatases C-II and H-II readily dephosphorylated both the alpha and beta subunits, although the alpha subunit phosphate release occurred at rates about twice that of the beta subunit phosphate. These studies show that skeletal muscle contains two phosphatases capable of acting on phosphorylase kinase, and that these have different specificities as represented by phosphatases H-I and C-I on the one hand, and phosphatases C-II and H-II on the other hand. These studies also provided unequivocal evidence that dephosphorylation of the beta subunit of phosphorylase kinase is solely involved in the inactivation of the cAMP-dependent protein kinase-activated enzyme. When autophosphorylated phosphorylase kinase was used as the substrate, the four phosphatases displayed similar general specificities as they did toward the cAMP-dependent protein kinase-activated enzyme. With none of the phosphatases examined was there any evidence that alpha subunit phosphorylation affected the rate of beta subunit dephosphorylation.  相似文献   

8.
Murine monoclonal antibodies specific for titin have been elicited using a chicken heart muscle residue as antigen. The three antibodies T1, T3, and T4 recognize both bands of the titin doublet in immunoblot analysis on polypeptides from chicken breast muscle. In contrast, on chicken cardiac myofibrils two of the antibodies (T1, T4) react only with the upper band of the doublet indicating immunological differences between heart and skeletal muscle titin. This difference is even more pronounced for rat and mouse. Although all three antibodies react with skeletal muscle titin, T1 and T4 did not detect heart titin, whereas T3 reacts with this titin both in immunofluorescence microscopy and in immunoblots. Immunofluorescence microscopy of myofibrils and frozen tissues from a variety of vertebrates extends these results and shows that the three antibodies recognize different epitopes. All three titin antibodies decorate at the A-I junction of the myofibrils freshly prepared from chicken skeletal muscle and immunoelectron microscopy using native myosin filaments demonstrates that titin is present at the ends of the thick filaments. In chicken heart, however, antibodies T1 and T4 stain within the I-band rather than at the A-I junction. The three antibodies did not react with any of the nonmuscle tissues or permanent cell lines tested and do not decorate smooth muscle. In primary cultures of embryonic chicken skeletal muscle cells titin first appears as longitudinal striations in mononucleated myoblasts and later at the myofibrillar A-I junction of the myotubes.  相似文献   

9.
Four types of polycation-stimulated (PCS) phosphorylase phosphatases have been isolated from rabbit skeletal muscle. They are called PCSH (390 kDa), PCSM (250 kDa), and PCSL (200 kDa) phosphatase according to the apparent molecular weight of the native enzymes in gel filtration. Two forms of PCSH phosphatase could be separated by Mono Q fast protein liquid chromatography: PCSH1 and PCSH2. In the absence of polycations, the specific activities of the PCSH1, PCSH2, PCSM, and PCSL phosphatase were 400, 680, 600, and 3000 units/mg, respectively, using phosphorylase a as a substrate. They all contain a 62-65- and a 35-kDa subunit, the latter being the catalytic subunit. In addition PCSH1 phosphatase contains a 55-kDa subunit and the PCSM phosphatase a 72-75-kDa subunit in a substoichiometric ratio. All the PCS phosphatases are insensitive to Ca2+ calmodulin, inhibitor-1, and modulator protein. They display a high specificity for the alpha-subunit of phosphorylase kinase and a broad substrate specificity. The PCSH1 and PCSH2 phosphatases, but not the catalytic subunit (PCSC phosphatase), show a high degree of specificity for the deinhibitor protein. During the purification the phosphorylase to inhibitor-1 phosphatase activity ratio (10:1) remained constant for the PCSH and PCSL enzymes but decreased for the PCSM phosphatase. The stimulation observed with low concentrations of polycations is enzyme directed. The different enzyme forms show a characteristic concentration optimum and degree of stimulation. At higher concentrations, polycations become inhibitory and a time-dependent deactivation of the phosphatases is observed.  相似文献   

10.
To gain more insight into the nature of the substrate specificity of protein phosphatases, four forms of glycogen synthase D were used as substrates for previously characterized protein phosphatases, IA, IB, and II, from rat liver cytosol. The phosphatase activity was measured as the conversion of glycogen synthase D to synthase I. While glycogen synthase isolated from rat liver as the D-form was activated mainly by phosphatase IA, rabbit skeletal muscle glycogen synthase previously phosphorylated in vitro by cyclic AMP-dependent protein kinase or phosphorylase kinase was activated efficiently by phosphatases IA, IB, and II. Glycogen synthase isolated from rabbit skeletal muscle as the D-form, however, was a poor substrate for all three phosphatases. These results suggest that the phosphorylation state as well as the primary structure of synthase D markedly affects the rate of its activation by individual protein phosphatases. A protein phosphatase released from rat liver particulate glycogen, on the other hand, activated all forms of synthase D used here readily and at about the same rate.  相似文献   

11.
Cyclic-AMP-dependent protein kinase catalyses the activation of phosphorylase kinase and the phosphorylation of two serine residues on the alpha subunit and beta subunit of phosphorylase kinase [Cohen, P., Watson, D.C. and Dixon, G.H. (1975)]. The dephosphorylation of phosphorylase kinase has been shown to be catalysed by two distinct enzymes, termed alpha-phosphorylase kinase phosphatase and beta-phosphorylase kinase phosphatase. These two enzymes show essentially absolute specificity towards the alpha and beta subunits respectively. The two phosphatases copurified through ethanol fractionation, DEAE-cellulose chromatography and ammonium sulphate precipitation, but were separated from each other by a gel filtration on Sephadex G-200. alpha-Phosphorylase kinase phosphatase was purified 500-fold from the ethanol precipitation step, and beta-phosphorylase kinase phosphatase 320-fold. The molecular weights estimated by gel filtration were 170--180 000 for alpha-phosphorylase kinase phosphatase and 75--80 000 for beta-phosphorylase kinase phosphatase. Since the activity of phosphorylase kinase correlates with the state of phosphorylation of the beta subunit (Cohen, P. (1974)), beta-phosphorylase kinase phosphatase is the enzyme which reverses the activation of phosphorylase kinase. alpha-Phosphorylase kinase phosphatase is an enzyme activity that has not been recognised previously. Since the role of the alpha-subunit phosphorylation is to stimulate the rate of dephosphorylation of the beta subunit (Cohen, P. (1974)), alpha-phosphorylase kinase phosphatase can be regarded as the enzyme which inhibits the reversal of the activation of phosphorylase kinase. The implications of these findings for the hormonal control of phosphorylase kinase activity by multisite phosphorylation are discussed.  相似文献   

12.
13.
The complete primary structure of inhibitor-2, a specific inhibitor of protein phosphatase-1, has been determined. The protein consists of a single polypeptide chain of 203 residues, and has a relative molecular mass of 22835 Da. This molecular mass is significantly lower than earlier estimates based on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The threonyl residue phosphorylated by glycogen synthase kinase-3 is located at position 72. The molecule is very hydrophilic, lacks cysteine residues and the single tryptophanyl and phenylalanyl residues are at positions 46 and 139, respectively. The N-terminal alanyl residue is N-acetylated. Digestion with Staphylococcus aureus V8 proteinase, trypsin, or cleavage with cyanogen bromide, destroyed the biological activity of inhibitor-2, demonstrating that many large fragments (e.g. 1-49, 49-92, 67-101, 108-134, 142-182 and 163-197) are inactive. Digestion with clostripain generated a peptide comprising residues 25-114 which retained 2% of the inhibitory potency of the parent molecule. There is no sequence homology between inhibitor-2 and inhibitor-1.  相似文献   

14.
Three stable hybridoma cell lines (AF8, BC11, CE2) have been produced that secrete antibodies specific for cathepsin B. These have been characterized by ELISA, SDS-PAGE immunostaining, immunoprecipitation and immunofluorescent staining. CE2 immunoprecipitated native cathepsin B with retention of enzymic activity, but failed to cross-react with the alkali-denatured enzyme. BC11 bound only to the denatured form of cathepsin B and AF8 cross-reacted with both native and denatured cathepsin B. However, unlike CE2-immunoprecipitated enzyme, activity could be detected only after dissociation of the antigen-AF8 antibody complex. No cross reaction was found with any lysosomal protein includihg the cysteine proteinases, catbepsins H and L.Abbreviations ELISA Enzyme-linked immunoadsorbent assay - EIP Enzyme immunoprecipitation - PAGE polyacrylamide gel electrophoresis - Ep-475 L-trans-epoxysuccinyl-leucylamido (-methyl) butane - Z benzyloxycarbonyl - NMec N-methylcoumarin - PEB phosphate-EDTA-Brij 35 - IAA iodoacetic acid - PBS phosphate-buffered saline - DMEM Dulbecco's Minimal Essential Medium - FITC fluorescein isothiocyanate  相似文献   

15.
Rabbit muscle polyA+ mRNA was translated in vitro using a rabbit reticulocyte lysate system in the presence of [35S]methionine. A mouse monoclonal antibody to the catalytic subunit of rabbit muscle phosphorylase phosphatase ("phosphatase C-I") was used to immunoprecipitate the products which were then analyzed by SDS-PAGE and autoradiography. These studies showed that the major product of the phosphatase mRNA is a single ca. 36 kDa polypeptide. These findings are significant in view of suggestions that the catalytic subunit is derived from a larger precursor, and in view of the molecular cloning of two cDNAs for the phosphatase, which encode polypeptides of 35.4 kDa and 37.5 kDa, respectively.  相似文献   

16.
AR Boobis  MB Slade  C Stern  KM Lewis  DS Davies 《Life sciences》1981,29(14):1443-1448
Cytochrome P-448 (mol wt 55,000 Daltons) from rabbit liver was purified to a specific content of 16.6 nmol/mg. Mice were immunised with this preparation, their spleens removed and dissociated lymphocytes hybridised with myeloma cells. Four monoclonal antibodies against cytochrome P-448 were raised and partially characterised. All four antibodies interacted with cytochrome P-448 in intact microsomal fractions and selectively immunoadsorbed cytochrome P-448 from solubilised microsomal preparations. One of the antibodies inhibited benzo[a] pyrene hydroxylase activity in a reconstituted system, one had no effect on activity and two increased activity. The possible applications of such antibodies are discussed.  相似文献   

17.
A type-1 protein phosphatase (protein phosphatase-1G) was purified to homogeneity from the glycogen-protein particle of rabbit skeletal muscle. Approximately 3 mg of enzyme were isolated within 4 days from 5000 g of muscle. Protein phosphatase-1G had a molecular mass of 137 kDa and was composed of two subunits G (103 kDa) and C (37 kDa) in a 1:1 molar ratio. The subunits could be dissociated by incubation in the presence of 2 M NaCl, separated by gel-filtration on Sephadex G-100, and recombined at low ionic strength. The C component was the catalytic subunit, and was identical to the 37-kDa type-1 protein phosphatase catalytic subunit (protein phosphatase-1C) isolated from ethanol-treated muscle extracts, as judged by peptide mapping. The G component was the glycogen-binding subunit. It was very asymmetric, extremely sensitive to proteolytic degradation, and failed to silver stain on SDS/polyacrylamide gels. Protein phosphatase-1G was inhibited by inhibitor-1 and inhibitor-2, but unlike protein phosphatase-1C, the rate of inactivation was critically dependent on the ionic strength, temperature and time of preincubation with the inhibitor protein. At near physiological temperature and ionic strength, protein phosphatase-1G was inactivated very rapidly by inhibitor-1. Protein phosphatase-1G interacted with inhibitor-2 (I-2) to form an inactive species, with the structure GCI-2. This form could be activated by preincubation with Mg-ATP and glycogen synthase kinase-3. The G subunit could be phosphorylated on a serine residue(s) by cyclic-AMP-dependent protein kinase, but not by phosphorylase kinase or glycogen synthase kinase-3. Phosphorylation was rapid and stoichiometric, and increased the rate of inactivation of protein phosphatase-1G by inhibitor-1. The relationship of the G subunit to the 'deinhibitor protein' is discussed.  相似文献   

18.
Muscle extracts were subjected to fractionation with ethanol, chromatography on DEAE-cellulose, precipitation with (NH4)2SO4 and gel filtration on Sephadex G-200. These fractions were assayed for protein phosphatase activities by using the following seven phosphoprotein substrates: phosphorylase a, glycogen synthase b1, glycogen synthase b2, phosphorylase kinase (phosphorylated in either the alpha-subunit or the beta-subunit), histone H1 and histone H2B. Three protein phosphatases with distinctive specificities were resolved by the final gel-filtration step and were termed I, II and III. Protein phosphatase-I, apparent mol.wt. 300000, was an active histone phosphatase, but it accounted for only 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities and 2-3% of the phosphorylase kinase phosphatase and phosphorylase phosphatase activity recovered from the Sephadex G-200 column. Protein phosphatase-II, apparent mol.wt. 170000, possessed histone phosphatase activity similar to that of protein phosphatase-I. It possessed more than 95% of the activity towards the alpha-subunit of phosphorylase kinase that was recovered from Sephadex G-200. It accounted for 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activity, but less than 5% of the activity against the beta-subunit of phosphorylase kinase and 1-2% of the phosphorylase phosphatase activity recovered from Sephadex G-200. Protein phosphatase-III was the most active histone phosphatase. It possessed 95% of the phosphorylase phosphatase and beta-phosphorylase kinase phosphatase activities, and 75% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities recovered from Sephadex G-200. It accounted for less than 5% of the alpha-phosphorylase kinase phosphatase activity. Protein phosphatase-III was sometimes eluted from Sephadex-G-200 as a species of apparent mol.wt. 75000(termed IIIA), sometimes as a species of mol.wt. 46000(termed IIIB) and sometimes as a mixture of both components. The substrate specificities of protein phosphatases-IIA and -IIB were identical. These findings, taken with the observation that phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities co-purified up to the Sephadex G-200 step, suggest that a single protein phosphatase (protein phosphatase-III) catalyses each of the dephosphorylation reactions that inhibit glycogenolysis or stimulate glycogen synthesis. This contention is further supported by results presented in the following paper [Cohen, P., Nimmo, G.A. & Antoniw, J.F. (1977) Biochem. J. 1628 435-444] which describes a heat-stable protein that is a specific inhibitor of protein phosphatase-III.  相似文献   

19.
20.
Sarcoplasmic reticulum proteins have been cross-linked in situ with two reagents, the disulphide-bridged bifunctional imido ester, dimethyl-3,3'-dithiobispropionimidate dihydrochloride and the mild oxidant cupric phenanthroline. Analysis of proteins so cross-linked by electrophoresis on agarose/acrylamide gels reveals that a series of new polypeptides, up to a molecular weight of 900 000, are formed. These have molecular weights which are multiples of 100 000. Further analysis of samples by electrophoresis in a second dimensions containing a reducing agent revealed the monomeric polypeptides from which the cross-linked polypeptides were formed. With dimethyl 3,3'-dithiobispropionimidate dihydrochloride homopolymers of the Ca2+-stimulated ATPase, calsequestrin and/or calcium binding protein were formed. With cupric phenanthroline only the Ca2+-stimulated ATPase was involved in polymer formation. It has been confirmed on another gel system that these two proteins which are involved in Ca2+ binding are not cross-linked intermolecularly with this latter reagent. We conclude that the 100 000 dalton Ca2+-stimulated ATPase polypeptides are within 2 A of each other in the membrane while calsequestrin and/or calcium binding protein are within 11 A of each other. Although there appears to be no limit to the extent of cross-linking of any of these polypeptides there is not indication of heteropolymer associations between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号