首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined spatial and temporal variationsin soil chemistry in a floodplain forest landscape todetermine the effects of flooding on aluminum (Al) andiron (Fe) oxide biogeochemistry and inorganicphosphorus (Pi) sorption capacity. Whenpreviously sorbed Pi was considered, the sorptioncapacities of floodplain and adjacent upland soilswere comparable, suggesting that floodplain soilsrepresent a second line of defense protectingdownstream aquatic ecosystems from agriculturalrun-off. Pi sorption capacity was highlycorrelated with oxalate-extractable Al (Alo)(rs = 0.78); Alo and percent organic matter(OM) were also highly correlated (rs = 0.72),suggesting the importance of OM-Al complexes in thesesoils. The correlation of oxalate-extractable Fe(Feo) with OM (rs = 0.64) was improved(rs = 0.80) by removing lower elevation (swale)soils, suggesting that flooding inhibits theassociation of Feo with OM. Fe oxidecrystallinity decreased during seasonal flooding, buttotal extractable Fe did not change significantly. Fesolubilized during flooding was either replaced bysediment deposition (252 ± 3 mmol kg–1yr–1), and/or reprecipitated locally. Al oxidecrystallinity also decreased during flooding due to asignificant decline in NaOH-extractable Al (AlN). AlN concentrations subsequently returned topre-flooding levels, but sediment Al inputs (57 ±3 mmol kg–1 yr–1), were insufficient to account for this recovery. Observed Fetransformations suggest the importance offlooding-induced declines in soil redox potential toFe biogeochemistry; observed Al transformationssuggest the importance of complexation reactions withsoil OM to Al biogeochemistry in this floodplainforest.  相似文献   

2.
Summary Changes in P sorption and bioavailability were studied with 4 soils previously flooded and drained as occurs in rice-based cropping systems. Phosphorus sorption was measured at 15 and 119 days after drainage and the bioavailability of added and native soil-P was determined at 9, 16, 30, 45, 70 and 135 days in both flooded-drained and unflooded soils. The P sorptivity and bonding energy of sorption increased under flooded-drained soil conditions. At 119 days after drainage the P sorptivity and bonding energy of sorption decreased as compared to 15 days after drainage. The P sorptivity of the flooded-drained soils, however, did not reach the same levels as existed in the soils prior to flooding. The bioavailability of P during the drainage period remained low and did not measurably change up to 70 days after drainage. At 135 days after drainage the bioavailability of P increased significantly, but did not reach the level found in the corresponding unflooded soils.  相似文献   

3.
We measured Al, Fe, and P fractions by horizon in two southern Appalachian forest soil profiles, and compared solution PO4 –1 removal in chloroform-sterilized and non-sterilized soils, to determine whether biological and geochemical P subcycles were vertically stratified in these soils. Because organic matter can inhibit Al and Fe oxide crystallization, we hypothesized that concentrations of non-crystalline (oxalate-extractable) Al (Al0) and Fe (Fe0), and concomitantly P sorption, would be greatest in near-surface mineral (A) horizons of these soils.Al0 and Fe0 reached maximum concentrations in forest floor and near-surface mineral horizons, declined significantly with depth in the mineral soil, and were highly correlated with P sorption capacity. Small pools of readily acid-soluble (AF-extractable) and readily-desorbable P suggested that PO4 3– was tightly bound to Al and Fe hydroxide surfaces. P sorption in CHCl3-sterilized mineral soils did not differ significantly from P sorption in non-sterilized soils, but CHCl3 sterilization reduced P sorption 40–80% in the forest floor. CHCl3 labile (microbial) P also reached maximum concentrations in forest floor and near-surface mineral horizons, comprising 31–35% of forest floor organic P. Combined with previous estimates of plant root distributions, data suggest that biological and geochemical P subcycles are not distinctly vertically stratified in these soils. Plant roots, soil microorganisms, and P sorbing minerals all reach maximum relative concentrations in near-surface mineral horizons, where they are likely to compete strongly for PO4 3– available in solution.  相似文献   

4.
Summary The effects of flooding and lowland rice culture on soil chemical properties and subsequent maize growth were investigated in two contrasting rice soils of S.E. Australia. The effects of incorporating rice straw, either during or after flooding were also studied. The experiment was conducted in a glasshouse with the use of large intact soil cores.Previous flooding markedly reduced maize growth, leaf P concentration and P uptake, despite the application of a large quantity of P fertilizer after drainage. Soil analyses showed that previous flooding increased the Langmuir sorption terms for maximum P sorption and bonding energy. The availability of P was more closely related to the bonding energy between soil and P than to the capacity of the soils to sorb P. The increases, in the P sorption parameters, were associated with decreases in the crystallinity of the free iron oxides as determined by their oxalate solubility. It was concluded that depressed P supply to maize sown in previously flooded soils was due to stronger P sorption by the drained soils, rather than to P immobilization during flooding.Rice plants grown during flooding reduced the amount of N available to the subsequent maize crop, but did not significantly affect P availability. Rice straw added during flooding did not affect subsequent maize growth, but when added after flooding caused microbial immobilization of N.Salts, Fe or Mn from previous flooding did not affect maize growth.  相似文献   

5.
Giesler  Reiner  Satoh  Fuyuki  Ilstedt  Ulrik  Nordgren  Anders 《Ecosystems》2004,7(2):208-217
Soil microorganisms play an important role in the mobilization of phosphorus (P), and these activities may be beneficial for plant P utilization. We investigated the effects on microbial P availability of different combinations of aluminum and iron (Al + Fe) concentrations and different P pools in humus soils from boreal forest ecosystems. We measured respiration rates in laboratory incubations before and after additions of glucose plus (NH4)2SO4 (Glu+N), with or without a small dose of KH2PO4. Glu+N was added in excess so that the availability of the inherent soil P would be growth-limiting for the microorganisms. The exponential increases observed in microbial growth after substrate additions (Glu+N) was slower for humus soils with high Al+Fe concentrations than for humus soils with low Al+Fe concentrations. Adding a small dose of KH2PO4 to humus soils with high Al+Fe concentrations did, however, increase the exponential growth, measured as the slope of the log-transformed respiration rates, by more than 200%. By contrast, the average increase in exponential growth was only 6% in humus soils with low Al+Fe concentrations. Almost eight times more carbon dioxide (CO2) was evolved between the substrate additions and the point at which the respiration rate reached 1 mg CO2 h–1 for soils with high Al+Fe concentrations compared to humus soils with low Al+Fe concentrations. The amount of CO2 evolved was positively related to the Al+Fe concentration of the humus soils (r 2 = 0.86, P < 0.001), whereas the slope was negatively related to Al+Fe concentration (r 2 = 0.70, P < 0.001). Easily available P forms were negatively related to the Al+Fe concentration, whereas organic P showed a strong positive relationship to Al+Fe (r 2 = 0.85, P < 0.001), suggesting that other forms of P, as well as inorganic P, are affected by the increased sorption capacity. The results indicate that P mobilization by microorganisms is affected by the presence of sorption sites in the humus layer, and that this capacity for sorption may relate not only to phosphate but also to organic P compounds.  相似文献   

6.
Summary Effects of temperature and flooded-drained soil conditions on 0.01M CaCl2 extractable phosphorus (soluble P) were investigated in four soils over the period of 42 days after fertilizer-P application. These soils show severe induced P deficiency problem in crops following flooded rice culture. The effects of temperature on the reaction rate constants were determined and activation energy was calculated. Increasing soil temperature as well as prior flooding of soil decreased soluble P concentration but the effect of the latter was dominant. The decrease in soluble P concentration in these soils with time followed a first order kinetics and the rate constant (K1) increased as the temperature increased from 10°C to 30°C. The activation energy (Ea) for the kinetics of soluble P concentration in soil, as affected by temperature, was found to be 8.9 and 34.5 KJ mol−1 for Meyers and Willows clay, respectively, over the temperature range studied.  相似文献   

7.
Copper,Lead, Cadmium,and Zinc Sorption By Waterlogged and Air-Dry Soil   总被引:1,自引:0,他引:1  
Competitive sorption of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) was studied in three soils of contrasting chemical and physical properties under air-dry and waterlogged conditions. Competitive sorption was determined using the standard batch technique using six solutions, each with Cu, Pb, Cd, and Zn concentrations of approximately 0, 2.5, 5, 10, 20, and 50?mg L?1Waterlogged soils tended to sorb higher amounts of added Cu, Pb, Zn and Cd relative to soils in the air-dry condition; however, this increase in sorption was generally not statistically (p<0.05) significant. The magnitude of sorption under both waterlogged and air-dry conditions was affected by the type and amount of soil materials involved in metal sorption processes, and competition between other metals for the sorption sites. Metal sorption was closely correlated with soil properties such as cation exchange capacity, organic carbon, and Fe and Mn hydrous oxides. Exchangeable Al may have markedly reduced metal sorption due to its strong affinity for the sorption sites, while increases in exchangeable Mn may have enhanced Zn and Cd sorption. Heavy metal sorption was best described as a combination of both specific and nonspecific interactions. The extractability of Cu, Pb, Cd, and Zn under waterlogged and air-dry conditions was also studied. Three solutions containing these metals were mixed with each soil to achieve a final concentration of 0, 50, and 500?mg kg?1. Each soil was extracted every 7 days using 1?M MgCl2 (pH 7) to determine metal extractability. Metal extractability initially decreased then increased due to waterlogging. The increased extractability of added metals was closely related to increased solubility of Fe and Mn suggesting that dissolution of Fe and Mn, oxides under reducing conditions caused a release of previously sorbed Cu, Pb, Cd, and Zn.  相似文献   

8.
Rice (Oryza sativa L.) yields are constrained by Fe and Al toxicity and P deficiency on acid sulfate soils. In order to delineate the effects of pH and redox potential on metal availability in these soils, one or both of these parameters must be held constant. The objective of this study was to investigate metal behavior in acid sulfate soils in redox controlled suspensions. Three acid sulfate soils, Rangsit Very Acid (Rsa), Rangsit (Rs), and Mahaphot (Ma); a potential acid sulfate soil, Bang Pakong (Bg); and a non-acid marine soil, Bangkok (Bk) from Thailand were utilized. After pre-incubating the soils under anaerobic conditions, the soils were oxidized in 100 mV increments in a stepwise fashion (oxidation cycle). Afterwards, the oxidized soils were reduced in the same manner (reduction cycle). The pH's of all the soils decreased during the oxidation cycle and increased upon re-reduction. Water-soluble Fe decreased in all the soils (except Bg) as the Eh was increased in the oxidation cycle, whereas Fe increased in the reduction cycle when the Eh was decreased until -50 mV, at which time Fe sulfide precipitation was believed to occur. In the Bg soil, pyrite oxidation (which evidently started at +50 mV) brought about large increases in soluble Fe under oxidizing conditions, and soil pH decreased to 2.0. The influence of the redox status on Mn varied. Soluble Al increased with increases in Eh (due to decreases in pH) and vice versa in most of the soils. Water-soluble P decreased under oxidizing conditions and increased under reducing conditions. Ammonium acetate-extractable Fe and P were highly correlated (r=0.88), indicating that Fe plays an important role in P availability in acid sulfate soils.Contribution from the Laboratory for Wetland soils and Sediments, Louisiana State University, Baton Rouge, LA 70803.Contribution from the Laboratory for Wetland soils and Sediments, Louisiana State University, Baton Rouge, LA 70803.  相似文献   

9.
Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.  相似文献   

10.
The N mineralization capacity of 41 temperate humid-zone soils of NW Spain was measured by aerobic incubation for 15 days at 28°C and 75% of field capacity. The main soil factors affecting organic N dynamics were identified by principal components analysis. Ammonification predominated over nitrification in almost all soils. The mean net N mineralization rate was 1.63% of the organic N content, and varied according to soil parent materials as follows: soils on basic and ultrabasic rocks < soils over acid metamorphic rocks < soils developed over sediments < soils over acid igneous rocks < soils on limestone. The N mineralization capacity was lower in natural soils than in cropped soils or pastures. The accumulation of organic matter (C and N) seems to be due to poor mineralization which was caused, in decreasing order of importance, by high exchangeable H-ion levels, high Al and Fe gel contents and, to a lesser extent (though more markedly in cropped soils), by silty clay texture and exchangeable Al ions.  相似文献   

11.
Organic phosphorus (P) is an important component of boreal forest humus soils, and its concentration has been found to be closely related to the concentration of iron (Fe) and aluminium (Al). We used solution and solid state 31P NMR spectroscopy on humus soils to characterize organic P along two groundwater recharge and discharge gradients in Fennoscandian boreal forest, which are also P sorption gradients due to differences in aluminium (Al) and iron (Fe) concentration in the humus. The composition of organic P changed sharply along the gradients. Phosphate diesters and their degradation products, as well as polyphosphates, were proportionally more abundant in low Al and Fe sites, whereas phosphate monoesters such as myo-, scyllo- and unknown inositol phosphates dominated in high Al and Fe soils. The concentration of inositol phosphates, but not that of diesters, was positively related to Al and Fe concentration in the humus soil. Overall, in high Al and Fe sites the composition of organic P seemed to be closely associated with stabilization processes, whereas in low Al and Fe sites it more closely reflected inputs of organic P, given the dominance of diesters which are generally assumed to constitute the bulk of organic P inputs to the soil. These gradients encompass the broad variation in soil properties detected in the wider Fennoscandian boreal forest landscape, as such our findings provide insight into the factors controlling P biogeochemistry in the region but should be of relevance to boreal forests elsewhere.  相似文献   

12.
Application of organic manure (OM) and crop residues in agricultural soils can potentially influence positively or negatively the availability of soil phosphorus (P) through soil mineralization, sorption, or desorption of soil-bound P. Traditionally, the addition of OM can reduce the capacity of the soil colloids to adsorb P, thus increasing the release of P in soil solution, but also added OM can increase the adsorption site and increase the fixation or sorption of P to soil colloids, thus reducing the availability of P in soil solution and loss to the environment. The highly weathered tropical soils (HWTS) are susceptible to P insufficiency because HWTS have high P adsorption and fixation; this is mainly due to high concentration of P adsorbent. The main P adsorbents in HWTS include Al, Fe, Ca, and clay minerals, which are principally the same binding or adsorbent for OM compounds, but in excess, are toxic (Al and Fe) to crops. Thus, the presence of OM in HWTS can compromise the adsorption and availability of P in agricultural soils following phosphatic fertilizer applications. In this study, the influence of OM on P adsorption and availability was characterized to have a clear understanding of how OM influences P availability in agricultural soils, especially in highly weathered tropical soil. It is clearly outlined that the application of OM and crop residues can positively or negatively influence the availability of P in agricultural soils for plant uptake and dictate the P that is available for loss to the environment. Thus, the addition of organic matter as a strategy to increase P bioavailability for plant uptake must be treated with care because their contribution is not strait forward to be positive in many agricultural soils.  相似文献   

13.
The effects of natural hydrological fluctuations on the nature and bioavailability of soil phosphorus (P) in relation to iron (Fe) and aluminum (Al) chemistry and root mass were studied along a flooded tropical forest gradient in Mapire river, Venezuela. Soil samples were collected following a complete natural hydroperiod: end of the dry season (May 2004), end of the rainy season (November 2004) and end of the subsequent dry season (May 2005), and from three zones subjected to different flooding intensities: MAX, MED and MIN zones inundated for 8, 5 and 2 months per year respectively. The results showed that flood induced the increase of resin-Pi in the MAX zone, but not in the MED and MIN zones. Flood in the soil of the MAX zone also induced the increase of the NaOH-Pi fraction, which removes inorganic P sorbed onto secondary Fe and Al minerals. Changes in this redox-sensitive P form can be considered indirect evidence that P in the MAX zone can be released from the dissolution of iron oxyhydroxide. This field study also showed that along the flooded forest gradient, fine root mass declined during the flood event. However, such decline was more pronounced in the MIN zone than in the MAX zone. In this zone fine root mass was higher than in the other zones.  相似文献   

14.
In strongly weathered soils, leaf litter not only returns phosphorus (P) to the soil environment, it may also modify soil properties and soil solution chemistry, with the potential to decrease phosphate sorption and increase plant available P. Using a radioactive phosphate tracer (32P) and 1 h laboratory incubations we investigated the effect of litter inputs on phosphate sorption over two time scales: (1) long-term field litter manipulations (litter addition, control and litter removal) and (2) pulses of litter leachate (i.e. water extracts of leaf litter) from five species. Leachate pulse effects were compared to a simulated throughfall, which served as a control solution. Soil receiving long-term doubling of leaf litter maintained five-fold more phosphate in solution than the litter removal soil. In addition to the quantity of phosphate sorbed, the field litter addition treatment decreased the strength of phosphate sorption, as evaluated through extraction of sorbed 32P using a weakly acidic ammonium fluoride solution (Bray 1). In litter removal soil, leachate pulses significantly reduced phosphate sorption in comparison to the throughfall control for all five species evaluated. However, the ability of leachate pulses to reduce phosphate sorption decreased when soil had received field litter inputs. Across soils the effect of leachate pulses on phosphate sorption increased with net sorption of dissolved organic C, with the exception of leachate from one species that had a higher index of aromatic C concentration. These results demonstrate that litter inputs, as both long-term inputs and short-term leachate pulses, can decrease the quantity and strength of phosphate sorption, which may increase the biological availability of this key nutrient.  相似文献   

15.
Wetlands provide various ecosystem services. One of these services includes nutrient storage in soils. Soils retain and release nutrients such as phosphorus (P). This dynamic can be controlled by soil characteristics, overlying water quality, environmental conditions and historical nutrient loading. Historical nutrient loading contributes to a legacy of P stored in soils and this may influence present day P dynamics between soil and water. We quantified P characteristics of wetland soils and determined the availability and capacity of soils to retain additional P loadings. We sampled surface (0-10) and subsurface (10-30) wetland soils within dairy, improved and unimproved pastures. Surface soils had much greater concentrations of organic and inorganic P. Wetland soils in dairy had greatest concentrations of Ca and Mg, probably due to inputs of inorganic fertilizer. They also had much greater total P, inorganic P, and P sorption capacity; however, these soils were P saturated and had little capacity to retain additional P loading. Improved and unimproved pasture wetland soils had greatest amounts of organic P (>84%) and a capacity to store additional P loadings. Using multivariate statistics, we determined that rather than being different based on land use, wetland soils in improved and unimproved pasture were dissimilar based upon organic matter, organic P fractions, residual P, and soil metal (Fe and Al) content. The legacy of stored P in soils, particularly wetland soils from dairies, combined with best management practices (BMPs) to reduce nutrient loading to these systems, could contribute to a short-term release of soil-stored P to overlying wetland water.  相似文献   

16.
Despite the high phosphorus (P) mobilizing capacity of many legumes, recent studies have found that, at least in calcareous soils, wheat is also able to access insoluble P fractions through yet unknown mechanism(s). We hypothesized that insoluble P fractions may be more available to non-legume plants in alkaline soils due to increased dissolution of the dominant calcium(Ca)-P pool into depleted labile P pools, whereas non-legumes may have limited access to insoluble P fractions in iron(Fe)- and aluminium(Al)-P dominated acid soils. Four crop species (faba bean, chickpea, wheat and canola) were grown on two acid and one alkaline soil under glasshouse conditions to examine rhizosphere processes and soil P fractions accessed. While all species generally depleted the H2O-soluble inorganic P (water Pi) pool in all soils, there was no net depletion of the labile NaHCO3-extractable inorganic P fraction (NaHCO3 Pi) by any species in any soil. The NaOH-extractable P fraction (NaOH Pi) in the alkaline soil was the only non-labile Pi fraction depleted by all crops (particularly canola), possibly due to increases in rhizosphere pH. Chickpea mobilized the insoluble HCl Pi and residual P fractions; however, rhizosphere pH and carboxylate exudation could not fully explain all of the observed Pi depletion in each soil. All organic P fractions appeared highly recalcitrant, with the exception of some depletion of the NaHCO3 Po fraction by faba bean in the acid soils. Chickpea and faba bean did not show a higher capacity than wheat or canola to mobilize insoluble P pools across all soil types, and the availability of various P fractions to legume and non-legume crops differed in soils with contrasting P dynamics.  相似文献   

17.
Temporary soil flooding before cultivation alleviates iron chlorosis in crops grown on some calcareous Mexican Vertisols. In order to investigate the effectiveness of such practice we carried out experiments with ten calcareous Vertisols from Mexico and eight calcareous Inceptisols from Spain. In an incubation experiment, we studied the release of Fe2+ into the solution of soil suspensions in sealed vials with 5 m M CaCl2. In a pot experiment, we measured the leaf SPAD value (i.e. an estimate of leaf chlorophyll concentration) of lupin and strawberry sequentially grown on a soil-sand mixture previously flooded for 30 days (SPADf value) and on a non-flooded (control) mixture (SPADc value). The amount of Fe2+ released by the soil at day 58 and the increase in oxalate-extractable Fe (Feo) upon incubation in vials were larger on average for the Inceptisols than for the Vertisols. The SPADc values for lupin and strawberry were (i) larger for the Vertisols than for the Inceptisols (probably because the Vertisols contain little carbonate and induce less Fe chlorosis than the Inceptisols) and (ii) correlated with Feo, and with citrate/ascorbate- and DTPA-extractable Fe (Feca, FeDTPA). The SPADf-SPADc differencewas (i) much larger for the Inceptisols than for the Vertisols and (ii) correlated with the increases in Feo and Feca caused by flooding and with the amount of Fe2+ released in the incubation experiment. We hypothesize that the weak response of the Vertisols to flooding was partly a result of their history including flooding episodes in the field, so a steady state had been reached in which the pool of Fe compounds undergoing reductive dissolution and reprecipitating upon oxidation as poorly crystalline Fe oxides (the main source of phytoavailable Fe) remained relatively constant and thus changed little after pot flooding. The Inceptisols, which had never been flooded in the field, were capable of releasing Fe from sources other than poorly crystalline Fe oxides upon flooding, thus making this treatment effective against Fe chlorosis. Our results point to the need to further study those soil chemical and mineralogical properties that are related to increases in Fe phytoavailability upon temporary soil flooding.  相似文献   

18.
The toxic conditions of Oxisol soils attributed to oranging symptoms of rice grown in the Sitiung Transmigration area, Sumatra, Indonesia were evaluated in the laboratory. Changes of pH and Eh of flooded soils, and concentrations of nutrients in the soils and in the rice plants were measured. The soils were clayey, kaolinitic, isohyperthermic, Typic Haplorthox. It was found that Eh of the soils sharply decreased from an average value of +460 ± 150 mV to –217 ± 15 mV following 60 days of flooding (DF). During the same period of flooding, soil pH increased from an average value of 5.2 ± 0.6 to 6.6 ± 0.2. Concentrations of NaOAc extractable Fe, Mn, Zn, Cu, Mo, Ca, Mg, P, and K, but not Al, increased markedly whereas their water-soluble form, except Fe, decreased slightly following 60 DF. Leaf tissue analyses indicated that 13, 51 and 58% of the rice plant samples contained potentially toxic level of Mn, Fe and Al, respectively, as their contents were higher than the assumed threshold toxicity levels of 2500, 300, and 300 mg kg–1. Thirteen, 16, 2, and 3% of the leaf tissue also contained potentially deficient levels of P, K, Ca, and Mg, respectively. The oranging symptom in the rice leaf tissue appeared to be due to indirect toxicity of Fe, Mn, and Al, i.e., Fe-induced, Mn-induced, and Al-induced deficiency of P, K, Ca and Mg. As a result of the relatively high concentrations of NaOAc extractable Fe, Mn, and Al in the soil solution, root growth was limited and coated with iron and manganese oxides thereby reducing the root's capacity to absorb nutrients from the soils.The work was supported by USAID Grant No. DPE-5542-G-SS-4055-00 (3.F-10). Contribution from the Wetland Biogeochemistry Institute, Louisiana State University, Baton Rouge, LA 70803-7511, USA.  相似文献   

19.
Liming has been used to mitigate effects of acidic deposition in forest ecosystems. This study was designed to examine the effects of calcium (Ca) supply on the spatial patterns and the relations between soil and soil solution chemistry in a base-poor forest watershed. Watershed 1 at the Hubbard Brook Experimental Forest in New Hampshire, USA was experimentally treated with wollastonite (CaSiO3) in October, 1999. Exchangeable Ca (Ex-Ca), soil pHs (in 0.01 M CaCl2), effective cation exchange capacity (CECe), and effective base saturation (BSe) increased, while exchangeable acidity (Ex-Acid) decreased in organic soil horizons in 2000 and 2002. Mineral soils experienced either small increases in Ex-Ca, pHs, CECe, BSe, small decreases in Ex-Acid or no changes. Thus, most of the added Ca remained in the forest floor during the study period. Prior to the treatment the BSe decreased with increasing elevation in organic and mineral soil horizons. This spatial pattern changed significantly in the forest floor after the treatment, suggesting that soils at higher elevations were more responsive to the chemical addition than at lower elevations. Soil solutions draining the forest floor responded to the treatment by increases in concentrations of Ca, dissolved silica, pH, and acid neutralizing capacity (ANC), and a decrease in inorganic monomeric Al (Ali). Treatment effects diminished with increasing soil depth and decreasing elevation. Positive correlations between Ca/total monomeric Al (Alm) in soil solution and Ex-Ca/Ex-Al ratios in soil indicated that changes in the chemistry of soils significantly influenced the chemistry of soil water, and that Ca derived from the dissolution of wollastonite mitigated the mobilization of Al within the experimental watershed.  相似文献   

20.
Coupled climate–ecosystem models predict significant alteration of temperate forest biome distribution in response to climate warming. Temperate forest biomes contain approximately 10% of global soil carbon (C) stocks and therefore any change in their distribution may have significant impacts on terrestrial C budgets. Using the Sierra Nevada as a model system for temperate forest soils, we examined the effects of temperature and soil mineralogy on soil C mineralization. We incubated soils from three conifer biomes dominated by ponderosa pine (PP), white fir (WF), and red fir (RF) tree species, on granite (GR), basalt (BS), and andesite (AN) parent materials, at three temperatures (12.5°C, 7.5°C, 5.0°C). AN soils were dominated by noncrystalline materials (allophane, Al‐humus complexes), GR soils by crystalline minerals (kaolinite, vermiculite), and BS soils by a mix of crystalline and noncrystalline materials. Soil C mineralization (ranging from 1.9 to 34.6 [mg C (g soil C)?1] or 0.1 to 2.3 [mg C (g soil)?1]) differed significantly between parent materials in all biomes with a general pattern of ANδ13C values of respired CO2 suggest greater decomposition of recalcitrant soil C compounds with increasing temperature, indicating a shift in primary C source utilization with temperature. Our results demonstrate that soil mineralogy moderates soil C mineralization and that soil C response to temperature includes shifts in decomposition rates, mineralizable pool size, and primary C source utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号