首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earlier studies from our laboratories have shown that RLIP76, a previously described Ral-binding GTPase activating protein (Jullien-Flores et al., 1995, J. Biol. Chem. 270: 22473), is identical with the xenobiotic transporter DNP-SG ATPase, and can catalyze ATP-dependent transport of glutathione-conjugates as well as doxorubin (Awasthi et al., 2000, Biochemistry, 39: 9327). We have now reconstituted purified bacterially expressed RLIP76 in proteoliposomes, and have studied ATP-dependent uptake of the glutathione conjugate of 4-hydroxynonenal (GS-HNE) by these vesicles. Results of these studies show that RLIP76 reconstituted in proteoliposomes catalyzes ATP-dependent transport of GS-HNE against a concentration gradient. The transport of GS-HNE is saturable with respect to ATP as well as GS-HNE with K(m) values of 1.4mM and 2.5 microM, respectively. These studies demonstrate that RLIP76 mediates active transport of GS-HNE, and are consistent with our previous work showing that RLIP76-mediated efflux of GS-HNE regulates the intracellular concentration of 4-HNE and thereby affects 4-HNE mediated signaling.  相似文献   

2.
Active transport of conjugated and unconjugated electrophiles out of cells is essential for cellular homeostasis. We have previously identified in human tissues a transporter, DNP-SG [S-(2, 4-dinitrophenyl)glutathione] ATPase, capable of carrying out this function [Awasthi et al. (1998) Biochemistry 37, 5231-5238, 5239-5248]. We now report the cloning of DNP-SG ATPase. The sequence of the cDNA clone was identical to that of human RLIP76, a known Ral-binding protein. RLIP76 expressed in E. coli was purified by DNP-SG affinity chromatography. Purified recombinant RLIP76: (1) had ATPase activity stimulated by DNP-SG or doxorubicin (DOX), and the K(m) values of RLIP76 for ATP, DOX, and DNP-SG were similar to those reported for DNP-SG ATPase; (2) upon reconstitution with asolectin as well as with defined lipids, catalyzed ATP-dependent transport of DNP-SG and DOX with kinetic parameters similar to those of DNP-SG ATPase; (3) when transfected into K562 cells, resulted in increased resistance to DOX, and increased ATP-dependent transport of DNP-SG and DOX by inside-out membrane vesicles from transfected cells; (4) direct uptake of purified RLIP76 protein into mammalian cells from donor proteoliposomes confers DOX resistance. These results indicate that RLIP76, in addition to its role in signal transduction, can catalyze transport of glutathione conjugates and xenobiotics, and may contribute to the multidrug resistance phenomenon.  相似文献   

3.
Role of lipid peroxidation products, particularly 4-hydroxynonenal (4-HNE) in cell cycle signaling is becoming increasingly clear. In this article, recent studies suggesting an important role of 4-HNE in stress mediated signaling for apoptosis are critically evaluated. Evidence demonstrating the modulation of UV, oxidative stress, and chemical stress mediated apoptosis by blocking lipid peroxidation by the alpha-class glutathione S-transferases (GSTs) is presented which suggest an important role of these enzymes in protection against oxidative stress and a role of lipid peroxidation products in stress mediated signaling. Overexpression of 4-HNE metabolizing GSTs (mGSTA4-4, hGSTA4-4, or hGST5.8) protects cells against 4-HNE, oxidative stress (H(2)O(2) or xanthine/xanthine oxidase), and UV-A mediated apoptosis by blocking JNK and caspase activation suggesting a role of 4-HNE in the mechanisms of apoptosis caused by these stress factors. The intracellular concentration of 4-HNE appears to be crucial for the nature of cell cycle signaling and may be a determinant for the signaling for differentiation, proliferation, transformation, or apoptosis. The intracellular concentrations of 4-HNE are regulated through a coordinated action of GSTs (GSTA4-4 and hGST5.8) which conjugate 4-HNE to GSH to form the conjugate (GS-HNE) and the transporter 76 kDa Ral-binding GTPase activating protein (RLIP76), which catalyze ATP-dependent transport of GS-HNE. A mild stress caused by heat, UV-A, or H(2)O(2)with no apparent effect on the cells in culture causes a rapid, transient induction of hGST5.8 and RLIP76. These stress preconditioned cells acquire ability to metabolize and exclude 4-HNE at an accelerated pace and acquire relative resistance to apoptosis by UV and oxidative stress as compared to unconditioned control cells. This resistance of stress preconditioned cells can be abrogated by coating the cells with anti-RLIP76 antibodies which block the transport of GS-HNE. These studies and previous reports discussed in this article strongly suggest a key role of 4-HNE in stress mediated signaling.  相似文献   

4.
We have recently demonstrated that RLIP76, a Ral-binding GTPase activating protein mediates ATP-dependent transport of glutathione (GSH) conjugates of electrophiles (GS-E) as well as doxorubicin (DOX), and that it is identical with DNP-SG ATPase, a GS-E transporter previously characterized by us in erythrocyte membranes (Awasthi et al. Biochemistry 39, 9327-9334). Multidrug resistance-associated protein (MRP1) belonging to the family of the ABC-transporters has also been suggested to be a GS-E transporter in human erythrocytes. Using immunological approaches, the present studies were designed to elucidate the relative contributions of RLIP76, MRP1, and P-glycoprotein (Pgp), in the ATP-dependent transport of GS-E and DOX in human erythrocytes. In Western blot analyses using antibodies against RLIP76, a strong expression of RLIP76 was observed in erythrocytes. Immunohistochemical studies using a fluorescent probe showed association of RLIP76 with erythrocyte membrane, which was consistent with its transport function. Neither MRP1 nor Pgp were detected in erythrocytes when the antibodies against MRP1 or Pgp were used. In erythrocyte inside-out vesicles (IOVs) coated with antibodies against RLIP76, a dose-dependent inhibition of the ATP-dependent transport of DOX and GS-E, including S-(dinitrophenyl)glutathione (DNP-SG), leukotriene C(4), and the GSH conjugate of 4-hydroxynonenal, was observed with a maximal inhibition of about 70%. On the contrary, in the IOVs coated with the antibodies against MRP1 or Pgp no significant inhibition of the ATP-dependent transport of these compounds was observed. These findings suggest that RLIP76 is the major ATP-dependent transporter of GS-E and DOX in human erythrocytes.  相似文献   

5.
To explore the role of lipid peroxidation (LPO) products in the initial phase of stress mediated signaling, we studied the effect of mild, transient oxidative or heat stress on parameters that regulate the cellular concentration of 4-hydroxynonenal (4-HNE). When K562 cells were exposed to mild heat shock (42 degrees C, 30 min) or oxidative stress (50 microM H2O2, 20 min) and allowed to recover for 2 h, there was a severalfold induction of hGST5.8, which catalyzes the formation of glutathione-4-HNE conjugate (GS-HNE), and RLIP76, which mediates the transport of GS-HNE from cells (Awasthi, S., Cheng, J., Singhal, S. S., Saini, M. K., Pandya, U., Pikula, S., Bandorowicz-Pikula, J., Singh, S. V., Zimniak, P., and Awasthi, Y. C. (2000) Biochemistry 39, 9327-9334). Enhanced LPO was observed in stressed cells, but the major antioxidant enzymes and HSP70 remained unaffected. The stressed cells showed higher GS-HNE-conjugating activity and increased efflux of GS-HNE. Stress-pre-conditioned cells with induced hGST5.8 and RLIP76 acquired resistance to 4-HNE and H2O2-mediated apoptosis by suppressing a sustained activation of c-Jun N-terminal kinase and caspase 3. The protective effect of stress pre-conditioning against apoptosis was abrogated by coating the cells with anti-RLIP76 IgG, which inhibited the efflux of GS-HNE from cells, indicating that the cells acquired resistance to apoptosis by metabolizing and excluding 4-HNE at a higher rate. Induction of hGST5.8 and RLIP76 by mild, transient stress and the resulting resistance of stress-pre-conditioned cells to apoptosis appears to be a general phenomenon since it was not limited to K562 cells but was also evident in lung cancer cells, H-69, H-226, human leukemia cells, HL-60, and human retinal pigmented epithelial cells. These results strongly suggest a role of LPO products, particularly 4-HNE, in the initial phase of stress mediated signaling.  相似文献   

6.
We have recently shown that RLIP76, a Ral-binding, GTPase-activating protein, is an ATP-dependent transporter of doxorubicin (DOX) as well as glutathione conjugates [Awasthi, S., et al. (2000) Biochemistry 39, 9327-9334]. RLIP76 overexpressed in human cells or transformed E. coli undergoes proteolysis to yield several fragments, including two prominent peptides, N-RLIP76(1-367) and C-RLIP76(410-655), from the N- and C-terminal domains, respectively. To investigate whether the fragmentation of RLIP76 has any relevance to its transport function, we have studied the characteristics of these two peptide fragments. Recombinant N-RLIP76(1-367) and C-RLIP76(410-655) were purified from overexpressing transformed E. coli. While N-RLIP76(1-367) readily underwent proteolysis, showing SDS-gel patterns similar to those of RLIP76, C-RLIP76(410-655) was resistant to such degradation. Both N-RLIP76(1-367) and C-RLIP76(410-655) had ATPase activity (K(m) for ATP, 2.5 and 2.0 mM, respectively) which was stimulated by DNP-SG, DOX, and colchicine (COL). ATP binding to both peptides was confirmed by photoaffinity labeling with 8-azido-ATP that was increased in the presence of compounds that stimulated their ATPase activity. Photoaffinity labeling was also increased in the presence of vanadate, indicating trapping of a reaction intermediate in the ATP binding site. The ATP binding sites in N-RLIP76(1-367) and C-RLIP76(410-655) were identified to be (69)GKKKGK(74) and (418)GGIKDLSK(425), respectively. Mutation of K(74) and K(425) to M residues, in N-RLIP76(1-367) and C-RLIP76(410-655), respectively, abrogated their ATPase activity as well as azido-ATP labeling. Proteoliposomes reconstituted with either N-RLIP76(1-367) or C-RLIP76(410-655) alone did not catalyze ATP-dependent transport of DOX or COL. However, proteoliposomes reconstituted with a mixture of N-RLIP76(1-367) and C-RLIP76(410-655) mediated such transport. Proteoliposomes reconstituted with the mixture of mutant peptides lacking ATPase activity did not exhibit transport activity. Present studies have identified the ATP binding sites in RLIP76, and show that DOX and COL transport can be reconstituted by two fragments of RLIP76.  相似文献   

7.
Singhal SS  Yadav S  Singhal J  Sahu M  Sehrawat A  Awasthi S 《FEBS letters》2008,582(23-24):3408-3414
This study was undertaken to characterize the consequences of Ral-interacting protein (RLIP76)-loss with respect to drug resistance, transport, radiation resistance, and alternative transport mechanisms in mouse embryonic fibroblasts (MEFs). MEFs were derived from RLIP76+/+, RLIP76+/- and RLIP76-/- mice. The transport of doxorubicin (DOX), colchicine (COL), leukotriene C4 and dinitrophenyl S-glutathione (DNP-SG) was analyzed in inside-out vesicles (IOVs) prepared from MEFs. We used immuno-titration of transport activity to determine the contribution of RLIP76, MRP1, and p-glycoprotein (Pgp) towards total transport activity. Loss of RLIP76 alleles resulted in significant sensitization to radiation, DOX, cisplatin, and vinorelbine (VRL). In IOVs prepared from MEFs, we observed a stepwise loss of transport activity. Loss of RLIP76 confers sensitivity to xenobiotics and radiation due to the loss of a common transport mechanism for glutathione-electrophile conjugates and xenobiotics.  相似文献   

8.
We have recently shown that RLIP76, a ral-binding GTPase activating protein, mediates ATP-dependent transport of glutathione-conjugates (GS-E) and doxorubicin (DOX) (S. Awasthi et al., Biochemistry 39,9327,2000). Transport function of RLIP76 was found to be intact despite considerable proteolytic fragmentation in preparations used for those studies, suggesting either that the residual intact RLIP76 was responsible for transport activity, or that the transport activity could be reconstituted by fragments of RLIP76. If the former were true, intact RLIP76 would have a much higher specific activity for ATP-hydrolysis than the fragmented protein. We have addressed this question by comparing transport properties of recombinant RLIP76 and human erythrocyte membrane RLIP76 purified in buffers treated with either 100 or 500 microM serine protease inhibitor, PMSF. The purity and identity of recombinant and human erythrocyte RLIP76 was established by SDS/PAGE and Western-blot analysis. These studies confirmed the origin of the 38 kDa protein, previously referred to as DNP-SG ATPase, from RLIP76. Higher PMSF concentration resulted in lower yield of the 38 kDa band and higher yield of intact RLIP76 from both human and recombinant source. In contrast, the substrate-stimulated ATPase activity in presence of DNP-SG, doxorubicin, daunorubicin, or colchicine were unaffected by increased PMSF; similarly, ATP-dependent transport of doxorubicin in proteoliposomes reconstituted with RLIP76 was unaffected by higher PMSF. These results indicated that limited proteolysis by serine proteases does not abrogate the transport function of RLIP76. Comparison of transport kinetics for daunorubicin between recombinant vs human erythrocyte RLIP76 revealed higher specific activity of transport for tissue purified RLIP76, indicating that additional factors present in tissue purified RLIP76 can modulate its transport activity.  相似文献   

9.
Role of 4-hydroxynonenal in stress-mediated apoptosis signaling   总被引:7,自引:0,他引:7  
In this mini review we summarize recent studies from our laboratory, which show the involvement of 4-hydroxynonenal (4-HNE) in cell cycle signaling. We demonstrate 4-HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase and caspase-3 activation. Cells exposed to mild, transient, heat or oxidative stress acquire capacity to exclude intracellular 4-HNE at a faster rate by inducing hGST5.8 which conjugate 4-HNE to GSH, and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4-HNE. The cells preconditioned with mild transient stress acquire resistance to H(2)O(2) and 4-HNE induced apoptosis by excluding intracellular 4-HNE at an accelerated pace. Furthermore, a decrease in intracellular concentration of 4-HNE achieved by transfecting cells with mGSTA4-4 or hGSTA4-4 results in a faster growth rate. These studies strongly suggest a role of 4-HNE in stress mediated signaling.  相似文献   

10.
RLIP76 (RALBP1) is a Ral-binding nucleotidase which functions as an energy-dependent transporter for glutathione (GSH)-conjugates as well as structurally unrelated xenobiotics. Partner of RALBP1 (POB1), also referred to as REPS2, was identified as the human RLIP76-binding protein, which contains a coiled-coil C-terminal region that binds with the RLIP76. Recent studies show that over-expression of POB1 in prostate cancer cells induces apoptosis. In present studies, we have purified POB1 and one of its deletion mutants POB1(1-512) (lacking the RLIP76-binding domain), and examined their effect on the transport activity of RLIP76. Both doxorubicin and a model GSH-conjugate, dinitrophenyl-S-glutathione (DNP-SG), transport were inhibited by POB1 in a concentration-dependent manner but not by POB1(1-512), lacking RLIP76-binding site. Liposomal delivery of recombinant POB1 to H358 (NSCLC) cancer cells caused apoptosis in a concentration-dependent manner, whereas the POB1 mutant deficient in RLIP76-binding site did not exert this effect. Augmentation of cellular POB1 resulted in increased intracellular DOX-accumulation as well as decreased rate of efflux from cells. These results show for the first time that POB1 can regulate the transport function of RLIP76 and are consistent with our previous studies showing that inhibition of RLIP76 induces apoptosis in cancer cells through the accumulation of endogenously formed GSH-conjugates.  相似文献   

11.
Doxorubicin (DOX) transport activity of Ral-interacting protein (RLIP76) in non-small cell lung cancer (NSCLC) is approximately twice that of in small cell lung cancer (SCLC). Since protein-kinase-C (PKC)alpha mediated phosphorylation of RLIP76 causes doubling of the specific activity of RLIP76, and NSCLC cells are known to have greater PKCalpha activity, we examined the contribution of PKC mediated phosphorylation of RLIP76 towards intrinsic DOX-resistance in human NSCLC. Expression of a deletion mutant RLIP76(delPKCalpha-sites) followed by depletion of the wild-type RLIP76 using a siRNA targeted at one of the deleted regions resulted in generation of cells expressing only the mutant protein, which could not be phosphorylated by PKCalpha. DOX-transport activity of the mutant RLIP76 purified from NSCLC and SCLC was similar and comparable to that of RLIP76 purified from the wild-type SCLC. However, this activity was significantly lower than that of RLIP76 purified from the wild-type NSCLC. After siRNA mediated depletion of PKCalpha, DOX-transport activities of RLIP76 purified from SCLC and NSCLC were indistinguishable. Depletion of PKCalpha inhibited the growth of NSCLC more than SCLC cells (70+/-3% vs. 43+/-5%, respectively). PKCalpha-depletion lowered the IC(50) of NSCLC cell lines for DOX to the same level as that observed for SCLC. RLIP76(-/-) mouse embryonic fibroblasts (MEFs) were significantly more sensitive to DOX as compared with RLIP76(+/+) MEFs (IC(50) 25 vs. 125nM, respectively). However, PKCalpha-depletion did not affect DOX-cytotoxicity towards RLIP76(-/-) MEFs, as opposed to RLIP76(+/+) MEFs which were sensitized by 2.2-fold. These results demonstrate that RLIP76 is a primary determinant of DOX-resistance, and that PKCalpha mediated accumulation defect and DOX-resistance in NSCLC is primarily due to differential phosphorylation of RLIP76 in SCLC and NSCLC.  相似文献   

12.
Products of lipid peroxidation such as 4-hydroxy-trans-2-nonenal (HNE) trigger multiple signaling cascades that variably affect cell growth, differentiation, and apoptosis. Because glutathiolation is a significant metabolic fate of these aldehydes, we tested the possibility that the bioactivity of HNE depends upon its conjugation with glutathione. Addition of HNE or the cell-permeable esters of glutathionyl-4-hydroxynonenal (GS-HNE) or glutathionyl-1,4-dihydroxynonene (GS-DHN) to cultures of rat aortic smooth muscle cells stimulated protein kinase C, NF-kappaB, and AP-1, and increased cell growth. The mitogenic effects of HNE, but not GS-HNE or GS-DHN, were abolished by glutathione depletion. Pharmacological inhibition or antisense ablation of aldose reductase (which catalyzes the reduction of GS-HNE to GS-DHN) prevented protein kinase C, NF-kappaB, and AP-1 stimulation and the increase in cell growth caused by HNE and GS-HNE, but not GS-DHN. The growth stimulating effect of GS-DHN was enhanced in cells treated with antibodies directed against the glutathione conjugate transporters RLIP76 (Ral-binding protein) or the multidrug resistance protein-2. Overexpression of RLIP76 abolished the mitogenic effects of HNE and its glutathione conjugates, whereas ablation of RLIP76 using RNA interference promoted the mitogenic effects. Collectively, our findings suggest that the mitogenic effects of HNE are mediated by its glutathione conjugate, which has to be reduced by aldose reductase to stimulate cell growth. These results raise the possibility that the glutathione conjugates of lipid peroxidation products are novel mediators of cell signaling and growth.  相似文献   

13.
Because 4-hydroxynonenal (4-HNE) has been suggested to be involved in oxidative stress-mediated apoptosis (Cheng, J. Z., Sharma, R., Yang, Y., Singhal, S. S., Sharma, A., Saini, M. K., Singh, S. V., Zimniak, P., Awasthi, S., and Awasthi, Y. C. (2001) J. Biol. Chem. 276, 41213-41223) and UVA irradiation also causes lipid peroxidation, we have examined the role of 4-HNE in UVA-mediated apoptosis. K562 cells irradiated with UVA (3.0 milliwatts/cm2) for 5, 15, and 30 min showed a time dependent increase in 4-HNE levels. As judged by the activation of caspases, apoptosis was observed only in cells irradiated for 30 min. Within 2 h of recovery in normal medium, 4-HNE levels in 5 and 15 min UVA, irradiated cells returned to the basal or even lower levels but in cells irradiated for 30 min, 4-HNE levels remained consistently higher. The cells irradiated with UVA for 5 min and allowed to recover for 2 h in normal medium (UVA-preconditioned cells) showed a remarkable induction of hGST5.8, which catalyzes conjugation of 4-HNE to glutathione (GSH), and RLIP76 (Ral BP-1), which mediates the transport of the conjugate, GS-HNE. In cells irradiated with UVA for 30 min the induction of RLIP76 or hGST5.8 was not observed. The preconditioned cells transported GS-HNE into the medium at a rate about 2-fold higher than the controls and the transport was inhibited (65%) by coating the cells with anti-RLIP76 IgG. Upon treatment with xanthine/xanthine oxidase (XA/XO), 4-HNE, or prolonged UVA exposure, the control cells showed a sustained activation of c-Jun N-terminal kinase (JNK) and apoptosis. However, in the UVA-preconditioned cells, apoptosis was not observed, and JNK activation was inhibited. This resistance of preconditioned cells to XA/XO-, 4-HNE-, or UVA-induced apoptosis could be abrogated when these cells were coated with anti-RLIP76 IgG to block the efflux of GS-HNE. These studies strongly suggest a role of 4-HNE in UVA-mediated apoptosis.  相似文献   

14.
RLIP76 (RALBP1) is a multifunctional transporter involved in signaling and transmembrane movement of solute allocrites, which include glutathione conjugates and several natural product antineoplastic agents [Awasthi, S., et al. (2000) Biochemistry 39, 9327-9334; (2001) Biochemistry 40, 4159-4168]. Our previous studies suggested that the membrane-anchoring domain resides in the N-terminus of RLIP76, despite the lack of identifiable membrane-spanning domains. Amino acid sequence analysis indicated that this region of RLIP76 contains sequences that are similar to those of vector peptides. We, therefore, have studied the effect of a series of deletion mutant proteins on hydrophobicity and transport activity. RLIP76 or one of its derived deletion mutants was expressed in Escherichia coli, and bacteria were lysed and extracted in buffer without or with the nonionic detergent polidocanol. The ratio of RLIP76 in the detergent/aqueous extracts was found to be 2.5 for the wild-type protein, but decreased to 0.7 in the mutant in which amino acids 154-219 were deleted. Deletion of only one segment of this region (amino acids 171-185) alone resulted in a significant decrease in this ratio to 1.0. For the mutants with deletions within the region from amino acid 154 to 219, loss of hydrophobicity correlated with less incorporation of mutants into artificial liposomes, and decreased transport activity toward doxorubicin and dinitrophenyl-S-glutathione. In contrast, deletion of one of the two ATP-binding sites (at amino acids 65-80 or 415-448) or both sites did not affect hydrophobicity but reduced or abrogated transport activity. NSCLC (H358) stably transfected with del171-185 and del154-219 showed that loss of these regions results in a decrease in the extent of membrane association of RLIP76. Confocal laser immunohistochemistry colocalized amino acids 171-185 with her2/neu on the cell surface. Depletion of wild-type RLIP76 using si-RNA directed to this region in cells transfected with del171-185 resulted in the loss of cell surface expression. These finding demonstrate that amino acids 171-185 constitute a cell surface epitope which is necessary for optimal transport of anthracycline and glutathione conjugates by RLIP76, and that this peptide could be a novel target for antineoplastic therapy.  相似文献   

15.

Purpose

Characteristic hypoglycemia, hypotriglyceridemia, hypocholesterolemia, lower body mass, and fat as well as pronounced insulin-sensitivity of RLIP76−/− mice suggested to us the possibility that elevation of RLIP76 in response to stress could itself elicit metabolic syndrome (MSy). Indeed, if it were required for MSy, drugs used to treat MSy should have no effect on RLIP76−/− mice.

Research Design and Methods

Blood glucose (BG) and lipid measurements were performed in RLIP76+/+ and RLIP76−/− mice, using Ascensia Elite Glucometer® for glucose and ID Labs kits for cholesterol and triglycerides assays. The ultimate effectors of gluconeogenesis are the three enzymes: PEPCK, F-1,6-BPase, and G6Pase, and their expression is regulated by PPARγ and AMPK. The activity of these enzymes was tested by protocols standardized by us. Expressions of RLIP76, PPARα, PPARγ, HMGCR, pJNK, pAkt, and AMPK were performed by Western-blot and tissue staining.

Results

The concomitant activation of AMPK and PPARγ by inhibiting transport activity of RLIP76, despite inhibited activity of key glucocorticoid-regulated hepatic gluconeogenic enzymes like PEPCK, G6Pase and F-1,6-BP in RLIP76−/− mice, is a salient finding of our studies. The decrease in RLIP76 protein expression by rosiglitazone and metformin is associated with an up-regulation of PPARγ and AMPK.

Conclusions/Significance

All four drugs, rosiglitazone, metformin, gemfibrozil and atorvastatin failed to affect glucose and lipid metabolism in RLIP76−/− mice. Studies confirmed a model in which RLIP76 plays a central role in the pathogenesis of MSy and RLIP76 loss causes profound and global alterations of MSy signaling functions. RLIP76 is a novel target for single-molecule therapeutics for metabolic syndrome.  相似文献   

16.
Our previous study showed that RalA-binding protein 1 (RLIP76) is overexpressed in gliomas and is associated with higher tumour grade and decreased patient survival. Furthermore, RLIP76 downregulation increases chemosensitivity of glioma cells to temozolomide by inducing apoptosis. However, other mechanisms underlying RLIP76-associated chemoresistance are unknown. In this study, we investigated the effect of RLIP76 depletion on autophagy. RLIP76 was knocked down in U251 glioma cells using shRNA and autophagy-related proteins, and PI3K/Akt signalling components were evaluated. RLIP76 depletion significantly increased cell autophagy as demonstrated by a significant increase in LC3 II, autophagy protein 5 (ATG-5), and Beclin1, and a decrease in p62 expression levels. Furthermore, RLIP76 knockdown increased autophagic flux in U251 cells as autolysosome numbers increased relative to autophagosome numbers. Autophagy induced by RLIP76 knockdown resulted in increased apoptosis that was independent of temozolomide treatment. Moreover, RLIP76 knockdown decreased PI3K and Akt activation. RLIP76 depletion also resulted in decreased levels of the anti-apoptotic protein Bcl2. LY294002, a PI3K/Akt pathway inhibitor, led to increased autophagy and apoptosis in U251 RLIP76-depleted cells. Therefore, RLIP76 knockdown increased autophagic flux and apoptosis in U251 glioma cells, possibly through inhibition of the PI3K/Akt pathway. Thus, this study provides a novel mechanism for the role of RLIP76 in glioma pathogenesis and chemoresistance.  相似文献   

17.
18.
Feeding a Western high-fat diet (HFD) to C57BL/6 mice induces obesity, associated with a chronic inflammatory state, lipid transport, and metabolic derangements, and organ system effects that particularly prominent in the kidneys. Here, we report that RLIP76 homozygous knock-out (RLIP76−/−) mice are highly resistant to obesity as well as these other features of metabolic syndrome caused by HFD. The normal increase in pro-inflammatory and fibrotic markers associated with HFD induced obesity in wild-type C57B mice was broadly and nearly completely abrogated in RLIP76−/− mice. This is a particularly striking finding because chemical markers of oxidative stress including lipid hydroperoxides and alkenals were significantly higher in RLIP76−/− mice. Whereas HFD caused marked suppression of AMPK in wild-type C57B mice, RLIP76−/− mice had baseline activation of AMP-activated protein kinase, which was not further affected by HFD. The baseline renal function was reduced in RLIP76−/− mice as compared with wild-type, but was unaffected by HFD, in marked contrast to severe renal impairment and glomerulopathy in the wild-type mice given HFD. Our findings confirm a fundamental role of RLIP76 in regulating the function of obesity-promoting pro-inflammatory cytokines, and provide a novel mechanism for targeted therapy of obesity and metabolic syndrome.  相似文献   

19.
In deletion mutant analyses of potential phosphorylation sites in RLIP76, we identified T297 and S509 as targets for phosphorylation by PKCalpha. Phosphorylation at T297 increased doxorubicin (DOX)-transport activity approximately 2-fold for RLIP76 purified from recombinant source, or from three small (H69, H1417, H1618) and three non-small cell, one each derived from H226 (squamous), H358 (bronchio alveolar), and H1395 (adenocarcinoma) lung cancer cell lines. T297 phosphorylation conferred sensitivity to tryptic digestion at R293. The specific activity for DOX-transport by RLIP76 purified from non-small cell, which was primarily in the phosphorylated form, was approximately twice that in small cell lung cancer cell lines. These finding offer a novel explanation for the observed intrinsic differences in sensitivity to DOX between non-small cell and small cell lung cancer cell lines.  相似文献   

20.
RLIP (Ral-interacting protein) is a multifunctional protein that couples ATP hydrolysis with the movement of substances. Its primary function appears to be in the plasma membrane, where it catalyzes the ATP-dependent efflux of glutathione-conjugates (GS-Es), as well as un-metabolized drugs and toxins. In the plasma membrane, its interaction with the clathrin adaptor protein AP2 localizes it to endocytic vesicle, where its GS-E-stimulated ATPase and transport activity are required for clathrin-dependent endocytosis (CDE). CDE is an essential mechanism for internalizing ligand-receptor complexes that signal proliferation (EGF, insulin, IGF1), apoptosis (TNFα, TRAIL, Fas-L), and differentiation and morphogenesis (TGFβ, WNT, Notch, SHH). Aberrant functioning of these pathways appears crucial for most cancer cells to evade apoptosis, invade surrounding tissues, and metastasize. Internalization of receptor-ligand complexes by CDE begins a sequence of events that can terminate, initiate, or modulate downstream signaling; the consequences of signaling through these downstream pathways may be inherently different in cancer and normal cells, a view supported by numerous basic and clinical observations. In this review, we will discuss the GS-E transport activity of RLIP, which determines the rate of ligand endocytosis, and how the inhibition and/or depletion of RLIP globally disrupts in ligand-receptor signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号