首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1996,133(6):1153-1162
We have isolated a major protein constituent from a highly enriched fraction of yeast nuclear pore complexes (NPCs). The gene encoding this protein, Nup188p, was cloned, sequenced, and found to be nonessential upon deletion. Nup188p cofractionates with yeast NPCs and gives an immunofluorescent staining pattern typical of nucleoporins. Using immunoelectron microscopy, Nup188p was shown to localize to both the cytoplasmic and nucleoplasmic faces of the NPC core. There, Nup188p interacts with an integral protein of the pore membrane domain, Pom152p, and another abundant nucleoporin, Nic96p. The effects of various mutations in the NUP188 gene on the structure of the nuclear envelope and the function of the NPC were examined. While null mutants of NUP188 appear normal, other mutants allelic to NUP188 exhibit a dominant effect leading to the formation of NPC-associated nuclear envelope herniations and growth inhibition at 37 degrees C. In addition, depletion of the interacting protein Pom152p in cells lacking Nup188p resulted in severe deformations of the nuclear envelope. We suggest that Nup188p is one of a group of proteins that form the octagonal core structure of the NPC and thus functions in the structural organization of the NPC and nuclear envelope.  相似文献   

2.
We have characterized Schizosaccharomyces pombe open reading frames encoding potential orthologues of constituents of the evolutionarily conserved Saccharomyces cerevisiae Nup84 vertebrate Nup107-160 nuclear pore subcomplex, namely Nup133a, Nup133b, Nup120, Nup107, Nup85, and Seh1. In spite of rather weak sequence conservation, in vivo analyses demonstrated that these S. pombe proteins are localized at the nuclear envelope. Biochemical data confirmed the organization of these nucleoporins within conserved complexes. Although examination of the S. cerevisiae and S. pombe deletion mutants revealed different viability phenotypes, functional studies indicated that the involvement of this complex in nuclear pore distribution and mRNA export has been conserved between these highly divergent yeasts. Unexpectedly, microscopic analyses of some of the S. pombe mutants revealed cell division defects at the restrictive temperature (abnormal septa and mitotic spindles and chromosome missegregation) that were reminiscent of defects occurring in several S. pombe GTPase Ran (Ran(Sp))/Spi1 cycle mutants. Furthermore, deletion of nup120 moderately altered the nuclear location of Ran(Sp)/Spi1, whereas overexpression of a nonfunctional Ran(Sp)/Spi1-GFP allele was specifically toxic in the Deltanup120 and Deltanup133b mutant strains, indicating a functional and genetic link between constituents of the S. pombe Nup107-120 complex and of the Ran(Sp)/Spi1 pathway.  相似文献   

3.
The nuclear pore complex (NPC) is the only gateway for molecular trafficking across the nuclear envelope. The NPC is not merely a static nuclear-cytoplasmic transport gate; the functional analysis of nucleoporins has revealed dynamic features of the NPC in various cellular functions, such as mitotic spindle formation and protein modification. However, it is not known whether the NPC undergoes dynamic changes during biological processes such as cell differentiation. In the present study, we evaluate changes in the expression levels of several nucleoporins and show that the amount of Nup358/RanBP2 within individual NPCs increases during muscle differentiation in C2C12 cells. Using atomic force microscopy, we demonstrate structural differences between the cytoplasmic surfaces of myoblast and myotube NPCs and a correlation between the copy number of Nup358 and the NPC structure. Furthermore, small interfering RNA-mediated depletion of Nup358 in myoblasts suppresses myotube formation without affecting cell viability, suggesting that NUP358 plays a role in myogenesis. These findings indicate that the NPC undergoes dynamic remodeling during muscle cell differentiation and that Nup358 is prominently involved in the remodeling process.  相似文献   

4.
The selective trafficking of proteins and RNAs through the nuclear envelope regulates nuclear-cytoplasmic segregation of macromolecules and is mediated by nucleopore complexes (NPCs), which consist of about 400 nucleoporins (Nups) of about 30 types. Extensive studies of nucleoporin function in yeast and vertebrates showed that Nups function in nucleocytoplasmic trafficking and other processes. However, limited studies of plant Nups have identified only a few mutations, which cause pleiotropic phenotypes including reduced growth and early flowering. Here, we describe loss-of-function alleles of Arabidopsis TRANSCURVATA1 (TCU1); these mutations cause increased hypocotyl and petiole length, reticulate and asymmetrically epinastic leaf laminae of reduced size, and early flowering. TCU1 is transcribed in all of the organs and tissues examined, and encodes the putative ortholog of yeast and vertebrate Nup58, a nucleoporin of the Nup62 subcomplex. Nup58 forms the central channel of the NPC and acts directly in translocation of proteins through the nuclear envelope in yeast and vertebrates. Yeast two-hybrid (Y2H) assays identified physical interactions between TCU1/NUP58 and 34 proteins, including nucleoporins, SCF (Skp1/Cul1/F-box) ubiquitin ligase complex components and other nucleoplasm proteins. Genetic interactions were also found between TCU1 and genes encoding nucleoporins, soluble nuclear transport receptors and components of the ubiquitin-proteasome and auxin signaling pathways. These genetic and physical interactions indicate that TCU1/NUP58 is a member of the Nup62 subcomplex of the Arabidopsis NPC. Our findings also suggest regulatory roles for TCU1/NUP58 beyond its function in nucleocytoplasmic trafficking, a hypothesis that is supported by the Y2H and genetic interactions that we observed.  相似文献   

5.
Mitosis in animals starts with the disassembly of the nuclear pore complexes and the breakdown of the nuclear envelope. In contrast to many fungi, the corn smut fungus Ustilago maydis also removes the nuclear envelope. Here, we report on the dynamic behavior of the nucleoporins Nup214, Pom152, Nup133, and Nup107 in this "open" fungal mitosis. In prophase, the nuclear pore complexes disassembled and Nup214 and Pom152 dispersed in the cytoplasm and in the endoplasmic reticulum, respectively. Nup107 and Nup133 initially spread throughout the cytoplasm, but in metaphase and early anaphase occurred on the chromosomes. In anaphase, the Nup107-subcomplex redistributed to the edge of the chromosome masses, where the new envelope was reconstituted. Subsequently, Nup214 and Pom152 are recruited to the nuclear pores and protein import starts. Recruitment of nucleoporins and protein import reached a steady state in G2 phase. Formation of the nuclear envelope and assembly of nuclear pores occurred in the absence of microtubules or F-actin, but not if both were disrupted. Thus, the basic principles of nuclear pore complex dynamics seem to be conserved in organisms displaying open mitosis.  相似文献   

6.
V. Doye  R. Wepf    E. C. Hurt 《The EMBO journal》1994,13(24):6062-6075
Temperature-sensitive nucleoporin nup49-316 mutant cells accumulate poly(A)+ RNA inside the nucleus when shifted to restrictive temperature. We performed a synthetic lethal screen with this mutant allele to identify further components of the mRNA export machinery. A synthetic lethal mutant slv21 was isolated, which exhibited a ts phenotype and showed nuclear accumulation of poly(A)+ RNA at 37 degrees C. The wild-type gene complementing slv21 was cloned and sequenced. It encodes a novel protein Nup133p which is located at the nuclear pore complex. NUP133 is not an essential gene, but cells in which NUP133 is disrupted grow slowly at permissive temperatures and stop growing at 37 degrees C. Concomitant with the growth inhibition, nup133- cells accumulate poly(A)+ RNA inside the nucleus whereas nuclear import of a karyophilic reporter protein is not altered. Strikingly, nup133- cells display extensive clustering of nuclear pore complexes at a few sites on the nuclear envelope. However, the nuclear pore clustering phenotype and intranuclear accumulation of poly(A)+ RNA are not obligatorily linked, since an amino-terminally truncated Nup133p allows normal poly(A)+ RNA export, but does not complement the clustering phenotype of nup133- cells.  相似文献   

7.
《The Journal of cell biology》1995,131(6):1659-1675
To extend our understanding of the mechanism by which the nuclear pore complex (NPC) mediates macromolecular transport across the nuclear envelope we have focused on defining the composition and molecular organization of the yeast NPC. Peptide sequence analysis of a polypeptide with a M(r) of approximately 100,000 present in a highly enriched yeast NPC fraction identified a novel yeast nucleoporin we term Nup120p. Nup120p corresponds to the open reading frame (ORF) YKL057c identified by the yeast genome sequencing project. The ORF predicts a protein with a calculated molecular mass of 120.5 kD containing two leucine zipper motifs, a short coiled-coil region and limited primary sequence similarity to Nup133p. Nup120p was localized to the NPC using a protein A-tagged chimera in situ by indirect immunofluorescence microscopy. Deletion of the NUP120 gene caused clustering of NPCs at one side of the nuclear envelope, moderate nucleolar fragmentation and slower cell growth. Transfer of nup120 delta cells to 37 degrees C resulted in the nuclear accumulation of poly(A)+ mRNA, extensive fragmentation of the nucleolus, spindle defects, and cell death.  相似文献   

8.
9.
In a screen for mutants defective in nucleocytoplasmic export of mRNA, we have identified a new component of the Saccharomyces cerevisiae nuclear pore complex (NPC). The RAT9/NUP85 (ribonucleic acid trafficking) gene encodes an 84.9-kDa protein that we have localized to NPCs by tagging the RAT9/NUP85 gene with the in vivo molecular marker Green Fluorescent Protein. In cells containing either the rat9-1 allele or a complete deletion of the RAT9/NUP85 gene, poly(A)+ RNA accumulates rapidly in nuclei after a shift from 23 degrees C to 37 degrees C. Under these same conditions, rapid fragmentation of the nucleolus was also observed. At the permissive growth temperature in rat9-1 or RAT9 deletion strains, the nuclear envelope (NE) becomes detached from the main body of the nucleus, forming long thin double sheets of NE. NPCs within these sheets are clustered and some appear to be locked together between opposing sheets of NE such that their nucleoplasmic faces are in contact. The Rat9/Nup85 protein could not be detected in cells carrying a mutation of RAT2/NUP120, suggesting that Rat9p/Nup85p cannot be assembled into NPCs in the absence of Rat2p/Nup120p. In contrast,Rat9/ Nup85 protein was readily incorporated into NPCs in strains carrying mutant alleles of other nucleoporin genes. The possible role of Rat9p/Nup85p in NE integrity and the loss of nucleoporins when another nucleoporin is mutant or absent are discussed.  相似文献   

10.
Saccharomyces cerevisiae Upf1p is a 971-amino-acid protein that is required for the nonsense-mediated mRNA decay (NMD) pathway, a pathway that degrades mRNAs with premature translational termination codons. We have identified a two-hybrid interaction between Upf1p and the nuclear pore (Nup) proteins, Nup100p and Nup116p. Both nucleoporins predominantly localize to the cytoplasmic side of the nuclear pore and participate in mRNA transport. The two-hybrid interaction between Upf1p and the nuclear pore proteins, Nup100p and Nup116p, is dependent on the presence of the C-terminal 158 amino acids of Upf1p. Nup100p and Nup116p can be co-immunoprecipitated from whole-cell extracts with Upf1p, confirming in vitro the interaction identified by the two-hybrid analysis. Finally, we see a genetic interaction between UPF1 and NUP100. The growth of upf1Delta, can1-100 cells is inhibited by canavanine. The deletion of NUP100 allows upf1Delta, can1-100 cells to grow in the presence of canavanine. Physiologically, the interaction between Upf1p and the nuclear pore proteins, Nup100p and Nup116p, is significant because it suggests a mechanism to ensure that Upf1p associates with newly synthesized mRNA as it is transported from the nucleus to the cytoplasm prior to the pioneer round of translation.  相似文献   

11.
12.
Nuclear pore complexes (NPCs) are 40-60 MDa protein assemblies embedded in the nuclear envelope of eukaryotic cells. NPCs exclusively mediate all transport between cytoplasm and nucleus. The nucleoporins that build the NPC are arranged in a stable core of module-like subcomplexes with eight-fold rotational symmetry. To gain insight into the intricate assembly of the NPC, we have solved the crystal structure of a protein complex between two nucleoporins, human Nup107 and Nup133. Both proteins form elongated structures that interact tightly via a compact interface in tail-to-tail fashion. Additional experiments using structure-guided mutants show that Nup107 is the critical anchor for Nup133 to the NPC, positioning Nup133 at the periphery of the NPC. The significant topological differences between Nup107 and Nup133 suggest that *-helical nucleoporin domains of the NPC scaffold fall in different classes and fulfill largely nonredundant functions.  相似文献   

13.
Nuclear pore complexes (NPCs) are gateways for transport between the nucleus and cytoplasm of eukaryotic cells and play crucial roles in regulation of gene expression. NPCs are composed of multiple copies of ∼ 30 different nucleoporins (nups) that display both ubiquitous and cell type specific functions during development. Vertebrate Nup35 (also known as Nup53) was previously described to interact with Nup93, Nup155 and Nup205 and to be required for nuclear envelope (NE) assembly in vitro. Here, we report the first in vivo characterization of a Nup35 mutation, npp-19(tm2886), and its temperature-dependent effects on Caenorhabditis elegans embryogenesis. At restrictive temperature, npp-19(tm2886) embryos exhibit chromosome missegregation, nuclear morphology defects and die around mid-gastrulation. Depletion of Nup35/NPP-19 inhibits NE localization of Nup155/NPP-8, NPC assembly and nuclear lamina formation. Consequently, nuclear envelope function, including nucleo-cytoplasmic transport, is impaired. In contrast, recruitment of Nup107/NPP-5, LEM-2 and nuclear membranes to the chromatin surface is Nup35/NPP-19-independent, suggesting an uncoupling of nuclear membrane targeting and NPC assembly in the absence of Nup35/NPP-19. We propose that Nup35/NPP-19 has an evolutionary conserved role in NE formation and function, and that this role is particularly critical during the rapid cell divisions of early embryogenesis.  相似文献   

14.
RNA undergoing nuclear export first encounters the basket of the nuclear pore. Two basket proteins, Nup98 and Nup153, are essential for mRNA export, but their molecular partners within the pore are largely unknown. Because the mechanism of RNA export will be in question as long as significant vertebrate pore proteins remain undiscovered, we set out to find their partners. Fragments of Nup98 and Nup153 were used for pulldown experiments from Xenopus egg extracts, which contain abundant disassembled nuclear pores. Strikingly, Nup98 and Nup153 each bound the same four large proteins. Purification and sequence analysis revealed that two are the known vertebrate nucleoporins, Nup96 and Nup107, whereas two mapped to ORFs of unknown function. The genes encoding the novel proteins were cloned, and antibodies were produced. Immunofluorescence reveals them to be new nucleoporins, designated Nup160 and Nup133, which are accessible on the basket side of the pore. Nucleoporins Nup160, Nup133, Nup107, and Nup96 exist as a complex in Xenopus egg extracts and in assembled pores, now termed the Nup160 complex. Sec13 is prominent in Nup98 and Nup153 pulldowns, and we find it to be a member of the Nup160 complex. We have mapped the sites that are required for binding the Nup160 subcomplex, and have found that in Nup98, the binding site is used to tether Nup98 to the nucleus; in Nup153, the binding site targets Nup153 to the nuclear pore. With transfection and in vivo transport assays, we find that specific Nup160 and Nup133 fragments block poly[A]+ RNA export, but not protein import or export. These results demonstrate that two novel vertebrate nucleoporins, Nup160 and Nup133, not only interact with Nup98 and Nup153, but themselves play a role in mRNA export.  相似文献   

15.
《The Journal of cell biology》1995,131(6):1699-1713
Nup116p is a member of a family of five yeast nuclear pore complex (NPC) proteins that share an amino terminal region of repetitive tetrapeptide "GLFG" motifs. Previous experiments characterized the unique morphological perturbations that occur in a nup116 null mutant: temperature-sensitive formation of nuclear envelope seals over the cytoplasmic face of the NPC (Wente, S. R., and G. Blobel. 1993. J. Cell Biol. 123:275-284). Three approaches have been taken to dissect the structural basis for Nup116p's role in NPC function. First, deletion mutagenesis analysis of NUP116 revealed that the GLFG region was required for NPC function. This was not true for the other four yeast GLFG family members (Nup49p, Nup57p, Nup100p, and Nup145p). Moreover, deletion of either half of Nup116p's GLFG repeats or replacement of Nup116p's GLFG region with either Nup100p's GLFG region or Nsp1p's FXFG repetitive region abolishes the function of Nup116p. At a semipermissive growth temperature, the cells lacking Nup116p's GLFG region displayed a diminished capacity for nuclear import. Second, overexpression of Nup116p's GLFG region severely inhibited cell growth, rapidly blocked polyadenylated-RNA export, and fragmented the nucleolus. Although it inhibited nuclear export, the overexpressed GLFG region appeared predominantly localized in the cytoplasm and NPC/nuclear envelope structure was not perturbed in thin section electron micrographs. Finally, using biochemical and two-hybrid analysis, an interaction was characterized between Nup116p's GLFG region and Kap95p, an essential yeast homologue of the vertebrate nuclear import factor p97/Imp90/karopherin beta. These data show that Nup116p's GLFG region has an essential role in mediating nuclear transport.  相似文献   

16.
目的: 构建重组慢病毒介导的NUP88-shRNA载体,通过RNAi技术分别观察沉默NUP88后对MCF-7增殖,粘附,侵袭和转移情况的影响,为乳腺癌的临床基因治疗寻找新的靶点。方法: 构建NUP88重组慢病毒表达载体,包装后检测滴度,以最佳复感染指数转染乳腺癌MCF-7细胞,利用RT-PCR和Western blot检测各组MCF-7细胞中mRNA和蛋白的表达效率;MTT法和流式细胞仪检测法,检测NUP88基因被干扰后对MCF-7细胞增殖和凋亡的影响;细胞侵袭实验检测NUP88基因被干扰后对MCF-7侵袭力的影响。结果 四组病毒及一组阴性对照均构建成功,滴度均为4E+8TU/ml;RT-PCR和Western blot检测,结果表明:经NUP88-shRNA转染的MCF-7细胞组NUP88 mRNA和蛋白质的表达与经阴性转染组和空白MCF-7细胞组相比,差异明显具有统计学意义(P<0.01);测定NUP88-shRNA1组沉默效率最高,沉默率可达到86%;MTT法结果表明:实验组经NUP88-shRNA1慢病毒转染后细胞增殖程度显著减少,与空白组和对照组相比有显著性差异(P<0.05)。流式细胞仪检测三组MCF-7细胞凋亡结果表明:实验组经慢病毒转染后细胞凋亡率显著增加,与对照组和空白组相比有显著性差异(P<0.05);细胞侵袭实验表明:在肿瘤细胞常规培养24h后,实验组与空白组和阴性对照组比较,穿膜细胞数量明显减少,具有显著性差异(P<0.05) 结论: NUP88重组慢病毒可以通过RNAi成功抑制MCF-7中NUP88基因的表达,并能显著抑制其增殖及远处的侵袭能力。  相似文献   

17.
Fas/FasL interactions have been proposed as a potentially important mechanism mediating beta-cell death in type 1 diabetes. Recent investigations suggest RNA interference, afforded by small interfering RNAs (siRNA), can provide specific and robust gene silencing in mammalian cells. The current study attempted to investigate the effects of silencing Fas expression with siRNA on Fas-mediated apoptosis in mouse insulinoma cells following cytokine incubation. Our results indicate that siRNA is capable of rapid inhibition of cytokine-induced Fas mRNA production and cell surface Fas protein. A complete suppression of the total Fas protein was only observed after prolonged incubation with siRNA, suggesting a slow turn-over of Fas protein. Moreover, siRNA significantly inhibited Fas-mediated beta-cell apoptosis assessed by Caspase-3 and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assays, the extent of which positively correlated with the level of cell surface Fas. These observations provide additional evidence supporting a role for the Fas-mediated pathway in beta-cell destruction, and suggest that siRNA targeting Fas may be of therapeutic value in preventing type 1 diabetes and improving islet cell viability in transplantation.  相似文献   

18.
Nuclear pore complexes (NPCs) span the nuclear envelope and mediate communication between the nucleus and the cytoplasm. To obtain insight into the structure and function of NPCs of multicellular organisms, we have initiated an extensive analysis of Caenorhabditis elegans nucleoporins. Of 20 assigned C. elegans nucleoporin genes, 17 were found to be essential for embryonic development either alone or in combination. In several cases, depletion of nucleoporins by RNAi caused severe defects in nuclear appearance. More specifically, the C. elegans homologs of vertebrate Nup93 and Nup205 were each found to be required for normal NPC distribution in the nuclear envelope in vivo. Depletion of Nup93 or Nup205 caused a failure in nuclear exclusion of nonnuclear macromolecules of approximately 70 kDa without preventing active nuclear protein import or the assembly of the nuclear envelope. The defects in NPC exclusion were accompanied by abnormal chromatin condensation and early embryonic arrest. Thus, the contribution to NPC structure of Nup93 and Nup205 is essential for establishment of normal NPC function and for cell viability.  相似文献   

19.
In eukaryotes, bidirectional transport of macromolecules between the cytoplasm and the nucleus occurs through elaborate supramolecular structures embedded in the nuclear envelope, the nuclear pore complexes (NPCs). NPCs are composed of multiple copies of approximately 30 different proteins termed nucleoporins, of which several can be biochemically isolated as subcomplexes. One such building block of the NPC, termed the Nup107-160 complex in vertebrates, was so far demonstrated to be composed of six different nucleoporins. Here, we identify three WD (Trp-Asp)-repeat nucleoporins as new members of this complex, two of which, Nup37 and Nup43, are specific to higher eukaryotes. The third new member Seh1 is more loosely associated with the Nup107-160 complex biochemically, but its depletion by RNA interference leads to phenotypes similar to knock down of other constituents of this complex. By combining green fluorescent protein-tagged nucleoporins and specific antibodies, we show that all the constituents of this complex, including Nup37, Nup43, Seh1, and Sec13, are targeted to kinetochores from prophase to anaphase of mitosis. Together, our results indicate that the entire Nup107-160 complex, which comprises nearly one-third of the so-far identified nucleoporins, specifically localizes to kinetochores in mitosis.  相似文献   

20.
In eukaryotic cells, both soluble transport factors and components of the nuclear pore complex mediate protein and RNA trafficking between the nucleus and the cytoplasm. Here, we investigated whether caspases, the major execution system in apoptosis, target the nuclear pore or components of the nuclear transport machinery. Four nucleoporins, Nup153, RanBP2, Nup214 and Tpr are cleaved by caspases during apoptosis. In contrast, the nuclear transport factors, Ran, importin alpha and importin beta are not proteolytically processed, but redistribute across the nuclear envelope independently and prior to caspase activation. Also, mRNA accumulates into the nucleus before caspases become active. Microinjection experiments further revealed that early in apoptosis, the nucleus becomes permeable to dextran molecules of 70 kD molecular weight. Redistribution of import factors and mRNA, as well as nuclear permeabilisation, occur prior to caspase-mediated nucleoporin cleavage. Our findings suggest that the apoptotic programme includes modifications in the machinery responsible for nucleocytoplasmic transport, which are independent from caspase-mediated degradation of nuclear proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号