共查询到20条相似文献,搜索用时 15 毫秒
1.
SOCS3基因重组腺病毒的构建及其在猪脂肪细胞中的表达 总被引:2,自引:0,他引:2
本研究旨在构建细胞因子信号转导抑制因子3(Suppressor of cytokine signaling 3,SOCS3)的重组腺病毒表达载体,获得有感染性的病毒颗粒。以pcDNA3-SOCS3质粒为模板扩增SOCS3基因,将其亚克隆至腺病毒穿梭载体pAdTrack-CMV,经测序验证后,重组的穿梭质粒用PmeI酶切线性化后转化到BJ5183感受态细菌中与其内的骨架载体pAdEasy-1进行同源重组,获得的重组质粒pAd-SOCS3,经PacI线性化后转染至HEK293细胞中进行包装和扩增,纯化后用TCID50法测定病毒滴度。以重组的病毒感染原代培养的猪脂肪细胞后,荧光显微镜下观察报告基因GFP的表达,RT-PCR和Western blotting检测细胞内SOCS3 mRNA和蛋白的表达。重组腺病毒载体pAd-SOCS3经酶切及PCR鉴定正确,病毒滴度为1.2×109PFU/mL;感染原代培养的猪脂肪细胞后,荧光显微镜观察可见报告基因GFP的表达;RT-PCR和Western blotting检测到细胞中SOCS3 mRNA和蛋白的表达显著提高。本研究成功构建了SOCS3基因的重组腺病毒,感染原代培养的猪脂肪细胞可稳定表达SOCS3蛋白,为深入研究SOCS3的功能奠定了基础。 相似文献
2.
T Uno J He I Usui Y Kanatani A Bukhari S Fujisaka Y Yamazaki H Suzuki M Iwata M Ishiki M Urakaze T Haruta H Ogawa M Kobayashi 《Hormones et métabolisme》2008,40(1):8-12
Proinflammatory cytokines are well-known to inhibit insulin signaling to result in insulin resistance. IL-1alpha is also one of the proinflammatory cytokines, but the mechanism of how IL-1alpha induces insulin resistance remains unclear. We have now examined the effects of IL-1alpha on insulin signaling in 3T3-L1 adipocytes. Prolonged IL-1alpha treatment for 12 to 24 hours partially decreased the protein levels as well as the insulin-stimulated tyrosine phosphorylation of IRS-1 and Akt phosphorylation. mRNA for SOCS3, an endogenous inhibitor of insulin signaling, was dramatically augmented 4 hours after IL-1alpha treatment. Concomitantly, the level of IL-6 in the medium and STAT3 phosphorylation were increased by the prolonged IL-1alpha treatment. Addition of anti-IL-6 neutralizing antibody to the medium or overexpression of dominant-negative STAT3 decreased the IL-1alpha-stimulated STAT3 activation and SOCS3 induction, and ameliorated insulin signaling. These results suggest that the IL-1alpha-mediated deterioration of insulin signaling is largely due to the IL-6 production and SOCS3 induction in 3T3-L1 adipocytes. 相似文献
3.
Göransson O Rydén M Nilsson R Arner P Degerman E 《The Journal of nutritional biochemistry》2004,15(5):303-312
Dimethylaminopurine (DMAP) has previously been used as an inhibitor of phosphorylation in studies of meiotic events, and more recently to investigate TNFalpha signaling, because of its potential to inhibit activation of c-jun N-terminal kinase (JNK). Here we have addressed the effects of DMAP on metabolic insulin responses in adipocytes and on intracellular insulin signaling molecules. At 100 micromol/L, DMAP completely inhibited the ability of insulin to counteract lipolysis in isolated adipocytes. Insulin-induced lipogenesis and glucose uptake was inhibited to a lesser degree in a concentration-dependent manner starting at 10 micromol/L DMAP. Insulin-induced tyrosine phosphorylation of the insulin receptor was not affected by DMAP. Insulin-induced activation of protein kinase B, a known mediator of insulin action, was not inhibited by 100 micromol/L, but to a low extent by 1 mmol/L DMAP in intact cells. This inhibition was not sufficient to affect activation of the downstream protein kinase B substrate phosphodiesterase 3B. The inhibition of activation of JNK as a possible mechanism whereby DMAP affects insulin-induced antilipolysis, lipogenesis, and glucose uptake, was investigated using the JNK inhibitor SP600125. At 100 micromol/L, SP600125 completely reversed the antilipolytic effect of insulin, as well as partially inhibited insulin-induced lipogenesis and glucose-uptake, indicating that JNK may be involved in mediating these actions of insulin. Inhibition of JNK by DMAP may therefore partly explain the negative impact of DMAP on insulin action in adipocytes. 相似文献
4.
Adipocytes are insulin-sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type 2 diabetes, cardiovascular disease, and metabolic syndrome. The use of botanicals in the treatment of metabolic diseases is an emerging area of research. In previous studies, we screened over 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We identified St. John's Wort (SJW) extracts as inhibitors of adipogenesis of 3T3-L1 cells and demonstrated that these extracts also inhibited insulin-sensitive glucose uptake in mature fat cells. In these follow-up studies we have further characterized the effects of SJW on insulin action in both murine and human fat cells. We have shown that SJW also attenuates insulin-sensitive glucose uptake in human adipocytes. Moreover, SJW inhibits IRS-1 tyrosine phosphorylation in both murine and human fat cells. Botanical extracts are complex mixtures. Many bioactive compounds have been identified in SJW, including hypericin (HI) and hyperforin (HF). We have examined the ability of HI and HF, purified from SJW, to modulate adipocyte development and insulin action in mature adipocytes. Our novel studies indicate that the profound effects of SJW on adipogenesis, IRS-1 activation, and insulin-stimulated glucose uptake are not mediated by HI and/or HF. Nonetheless, we propose that extracts of SJW may contribute to adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells. 相似文献
5.
Allison J. RichardZhaleh J. Amini David M. RibnickyJacqueline M. Stephens 《生物化学与生物物理学报:疾病的分子基础》2012,1822(4):557-563
Adipocytes are insulin-sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type 2 diabetes, cardiovascular disease, and metabolic syndrome. The use of botanicals in the treatment of metabolic diseases is an emerging area of research. In previous studies, we screened over 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We identified St. John's Wort (SJW) extracts as inhibitors of adipogenesis of 3T3-L1 cells and demonstrated that these extracts also inhibited insulin-sensitive glucose uptake in mature fat cells. In these follow-up studies we have further characterized the effects of SJW on insulin action in both murine and human fat cells. We have shown that SJW also attenuates insulin-sensitive glucose uptake in human adipocytes. Moreover, SJW inhibits IRS-1 tyrosine phosphorylation in both murine and human fat cells. Botanical extracts are complex mixtures. Many bioactive compounds have been identified in SJW, including hypericin (HI) and hyperforin (HF). We have examined the ability of HI and HF, purified from SJW, to modulate adipocyte development and insulin action in mature adipocytes. Our novel studies indicate that the profound effects of SJW on adipogenesis, IRS-1 activation, and insulin-stimulated glucose uptake are not mediated by HI and/or HF. Nonetheless, we propose that extracts of SJW may contribute to adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells. 相似文献
6.
He J Usui I Ishizuka K Kanatani Y Hiratani K Iwata M Bukhari A Haruta T Sasaoka T Kobayashi M 《Molecular endocrinology (Baltimore, Md.)》2006,20(1):114-124
Proinflammatory cytokines are recently reported to inhibit insulin signaling causing insulin resistance. IL-1alpha is also one of the proinflammatory cytokines; however, it has not been clarified whether IL-1alpha may also cause insulin resistance. Here, we investigated the effects of IL-1alpha treatment on insulin signaling in 3T3-L1 adipocytes. IL-1alpha treatment up to 4 h did not alter insulin-stimulated insulin receptor tyrosine phosphorylation, whereas tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the association with phosphatidylinositol 3-kinase were partially inhibited with the maximal inhibition in around 15 min. IRS-1 was transiently phosphorylated on some serine residues around 15 min after IL-1alpha stimulation, when several serine kinases, IkappaB kinase, c-Jun-N-terminal kinase, ERK, and p70S6K were activated. Chemical inhibitors for these kinases inhibited IL-1alpha-induced serine phosphorylation of IRS-1. Tyrosine phosphorylation of IRS-1 was recovered only by the IKK inhibitor or JNK inhibitor, suggesting specific involvement of these two kinases. Insulin-stimulated Akt phosphorylation and 2-deoxyglucose uptake were not inhibited only by IL-1alpha. Interestingly, Akt phosphorylation was synergistically inhibited by IL-1alpha in the presence of IL-6. Taken together, short-term IL-1alpha treatment transiently causes insulin resistance at IRS-1 level with its serine phosphorylation. IL-1alpha may suppress insulin signaling downstream of IRS-1 in the presence of other cytokines, such as IL-6. 相似文献
7.
Klein J Fasshauer M Ito M Lowell BB Benito M Kahn CR 《The Journal of biological chemistry》1999,274(49):34795-34802
Activity of the sympathetic nervous system is an important factor involved in the pathogenesis of insulin resistance and associated metabolic and vascular abnormalities. In this study, we investigate the molecular basis of cross-talk between beta(3)-adrenergic and insulin signaling systems in mouse brown adipocytes immortalized by SV40 T infection. Insulin-induced tyrosine phosphorylation of the insulin receptor, insulin receptor substrate 1 (IRS-1), and IRS-2 was reduced by prestimulation of beta(3)-adrenergic receptors (CL316243). Similarly, insulin-induced IRS-1-associated and phosphotyrosine-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity, but not IRS-2-associated PI 3-kinase activity, was reduced by beta(3)-adrenergic prestimulation. Furthermore, insulin-stimulated activation of Akt, but not mitogen-activated protein kinase, was diminished. Insulin-induced glucose uptake was completely inhibited by beta(3)-adrenergic prestimulation. These effects appear to be protein kinase A-dependent. Furthermore inhibition of protein kinase C restored the beta(3)-receptor-mediated reductions in insulin-induced IRS-1 tyrosine phosphorylation and IRS-1-associated PI 3-kinase activity. Together, these findings indicate cross-talk between adrenergic and insulin signaling pathways. This interaction is protein kinase A-dependent and, at least in part, protein kinase C-dependent, and could play an important role in the pathogenesis of insulin resistance associated with sympathetic overactivity and regulation of brown fat metabolism. 相似文献
8.
The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes 总被引:15,自引:0,他引:15
Nakashima N Sharma PM Imamura T Bookstein R Olefsky JM 《The Journal of biological chemistry》2000,275(17):12889-12895
PTEN is a tumor suppressor with sequence homology to protein-tyrosine phosphatases and the cytoskeleton protein tensin. PTEN is capable of dephosphorylating phosphatidylinositol 3,4, 5-trisphosphate in vitro and down-regulating its levels in insulin-stimulated 293 cells. To study the role of PTEN in insulin signaling, we overexpressed PTEN in 3T3-L1 adipocytes approximately 30-fold above uninfected or control virus (green fluorescent protein)-infected cells, using an adenovirus gene transfer system. PTEN overexpression inhibited insulin-induced 2-deoxy-glucose uptake by 36%, GLUT4 translocation by 35%, and membrane ruffling by 50%, all of which are phosphatidylinositol 3-kinase-dependent processes, compared with uninfected cells or cells infected with control virus. Microinjection of an anti-PTEN antibody increased basal and insulin stimulated GLUT4 translocation, suggesting that inhibition of endogenous PTEN function led to an increase in intracellular phosphatidylinositol 3,4,5-trisphosphate levels, which stimulates GLUT4 translocation. Further, insulin-induced phosphorylation of downstream targets Akt and p70S6 kinase were also inhibited significantly by overexpression of PTEN, whereas tyrosine phosphorylation of the insulin receptor and IRS-1 or the phosphorylation of mitogen-activated protein kinase were not affected, suggesting that the Ras/mitogen-activated protein kinase pathway remains fully functional. Thus, we conclude that PTEN may regulate phosphatidylinositol 3-kinase-dependent insulin signaling pathways in 3T3-L1 adipocytes. 相似文献
9.
慢性高剂量胰岛素刺激猪脂肪细胞脂肪分解 总被引:1,自引:0,他引:1
为研究慢性高剂量胰岛素对猪脂肪细胞脂肪分解的影响及其分子机制, 分化的猪脂肪细胞在PKA(Protein kinase A)或ERK(Extracellular signal-related kinase)抑制剂预处理或不处理的情况下, 再用不同浓度的胰岛素(0、200、400、800、1600 nmol/L)处理不同时间(24、48、72、96 h), 通过测定甘油释放量检测脂肪细胞的脂解率; 采用RT-PCR和Western blotting检测perilipin A和PPARg2的mRNA和蛋白表达。结果显示, 慢性高剂量胰岛素以剂量和时间依赖性的方式刺激猪脂肪细胞的脂肪分解, 并削弱脂肪细胞对异丙肾上腺素刺激的脂解应答; 同时显著下调perilipin A和PPARg2的mRNA及蛋白表达; 另外, PKA和ERK抑制剂均显著抑制胰岛素刺激的脂肪分解, 但仅ERK抑制剂显著逆转perilipin A基因表达的下调。由此推测, 慢性高剂量胰岛素通过ERK通路抑制perilipin A的表达, 进而刺激猪脂肪细胞的脂肪分解。 相似文献
10.
Park HJ Della-Fera MA Hausman DB Rayalam S Ambati S Baile CA 《The Journal of nutritional biochemistry》2009,20(2):140-148
Genistein, a major soy isoflavone, has been reported to exhibit antiadipogenic and proapoptotic potential in vivo and in vitro. It is also a phytoestrogen which has high affinity to estrogen receptor beta. In this study, we determined the effect of genistein on adipogenesis and estrogen receptor (ER) alpha and beta expression during differentiation in primary human preadipocytes. Genistein inhibited lipid accumulation in a dose-dependent manner at concentrations of 6.25 microM and higher, with 50 microM genistein inhibiting lipid accumulation almost completely. Low concentrations of genistein (3.25 microM) increased cell viability and higher concentrations (25 and 50 microM) decreased it by 16.48+/-1.35% (P<.0001) and 50.68+/-1.34% (P<.0001). Oil Red O staining was used to confirm the effects on lipid accumulation. The inhibition of lipid accumulation was associated with inhibition of glycerol-3-phosphate dehydrogenase activity and down-regulation of expression of adipocyte-specific genes, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, glycerol-3-phosphate dehydrogenase, adipocyte fatty acid binding protein, fatty acid synthase, sterol regulatory element-binding protein 1, perilipin, leptin, lipoprotein lipase and hormone-sensitive lipase. These effects of genistein during the differentiation period were associated with down-regulation of ERalpha and ERbeta expression. This study adds to the elucidation of the molecular pathways involved in the inhibition of adipogenesis by phytoestrogens. 相似文献
11.
Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes 总被引:4,自引:0,他引:4
Takahashi M Takahashi Y Takahashi K Zolotaryov FN Hong KS Kitazawa R Iida K Okimura Y Kaji H Kitazawa S Kasuga M Chihara K 《FEBS letters》2008,582(5):573-578
To explore a novel adipokine, we screened adipocyte differentiation-related gene and found that TIG2/chemerin was strongly induced during the adipocyte differentiation. Chemerin was secreted by the mature 3T3-L1 adipocytes and expressed abundantly in adipose tissue in vivo as recently described. Intriguingly, the expression of chemerin was differently regulated in the liver and adipose tissue in db/db mice. In addition, serum chemerin concentration was decreased in db/db mice. Chemerin and its receptor/ChemR23 were expressed in mature adipocytes, suggesting its function in autocrine/paracrine fashion. Finally, chemerin potentiated insulin-stimulated glucose uptake concomitant with enhanced insulin signaling in the 3T3-L1 adipocytes. These data establish that chemerin is a novel adipokine that regulates adipocyte function. 相似文献
12.
The effects of intracellular calcium depletion on insulin signaling in 3T3-L1 adipocytes 总被引:3,自引:0,他引:3
We have examined the requirement for intracellular calcium (Ca(2+)) in insulin signal transduction in 3T3-L1 adipocytes. Using the Ca(2+) chelator 1,2- bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, sodium (BAPTA-AM), we find both augmentation and inhibition of insulin signaling phenomena. Pretreatment of cells with 50 microM BAPTA-AM did not affect tyrosine phosphorylation of insulin receptor substrate (IRS)1/2 or insulin receptor (IR)beta. The decreased mobility of IRS1 normally observed after chronic stimulation with insulin, due to serine phosphorylation, was completely eliminated by Ca(2+) chelation. Correlating with decreased insulin-induced serine phosphorylation of IRS1, phosphotyrosine-mediated protein-protein interactions involving p85, IRS1, IRbeta, and phosphotyrosine-specific antibody were greatly enhanced by pretreatment of cells with BAPTA-AM. As a result, insulin-mediated, phosphotyrosine-associated PI3K activity was also enhanced. BAPTA-AM pretreatment inhibited other insulin-induced phosphorylation events including phosphorylation of Akt, MAPK (ERK1 and 2) and p70 S6K. Phosphorylation of Akt on threonine-308 was more sensitive to Ca(2+) depletion than phosphorylation of Akt on serine-473 at the same insulin dose (10 nM). In vitro 3'-phosphatidylinositol-dependent kinase 1 activity was unaffected by BAPTA-AM. Insulin-stimulated insulin-responsive glucose transporter isoform translocation and glucose uptake were both inhibited by calcium depletion. In summary, these data demonstrate a positive role for intracellular Ca(2+) in distal insulin signaling events, including initiation/maintenance of Akt phosphorylation, insulin-responsive glucose transporter isoform translocation, and glucose transport. A negative role for Ca(2+) is also indicated in proximal insulin signaling steps, in that, depletion of intracellular Ca(2+) blocks IRS1 serine/threonine phosphorylation and enhances insulin-stimulated protein-protein interaction and PI3K activity. 相似文献
13.
Insulin receptor substrate-1 (IRS-1) plays an essential role in mediating the insulin signals that trigger mitogenesis, lipid synthesis, and uncoupling protein-1 gene expression in mouse brown adipocytes. Expression of IRS-3 is restricted mainly to white adipose tissue; expression of this IRS protein is virtually absent in brown adipocytes. We have tested the capacity of IRS-3 to mediate insulin actions in IRS-1-deficient brown adipocytes. Thus, we expressed exogenous IRS-3 in immortalized IRS-1-/- brown adipocytes at a level comparable with that of endogenous IRS-3 in white adipose tissue. Under these conditions, IRS-3 signaling in response to insulin was observed, as revealed by tyrosine phosphorylation of IRS-3, and the activation of phosphatidylinositol (PI) 3-kinase associated with this recombinant protein. However, although insulin promoted the association of Grb-2 with recombinant IRS-3 in IRS-1-/- cells, the exogenous expression of this IRS family member failed to activate p42/44 MAPK and mitogenesis in brown adipocytes lacking IRS-1. Downstream of PI 3-kinase, IRS-3 expression restored insulin-induced Akt phosphorylation, which is impaired by the lack of IRS-1 signaling. Whereas the generation of IRS-3 signals enhanced adipocyte determination and differentiation-dependent factor 1/sterol regulatory element-binding protein (ADD-1/SREBP-1c) and fatty acid synthase mRNA and protein expression, activation of this pathway was unable to reconstitute CCAAT/enhancer-binding protein alpha and uncoupling protein-1 transactivation and gene expression in response to insulin. Similar results were obtained following insulin-like growth factor-I stimulation. In brown adipocytes expressing the IRS-3F4 mutant, the association of the p85alpha regulatory subunit via Src homology 2 binding was lost, but insulin nevertheless induced PI 3-kinase activity and Akt phosphorylation in a wortmannin-dependent manner. In contrast, activation of IRS-3F4 signaling failed to restore the induction of ADD-1/SREBP-1c and fatty acid synthase gene expression in IRS-1-deficient brown adipocytes. These studies demonstrate that recombinant IRS-3 may reconstitute some, but not all, of the signals required for insulin action in brown adipocytes. Thus, our data further implicate a unique role for IRS-1 in triggering insulin action in brown adipocytes. 相似文献
14.
Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes 总被引:2,自引:0,他引:2
Fujishiro M Gotoh Y Katagiri H Sakoda H Ogihara T Anai M Onishi Y Ono H Abe M Shojima N Fukushima Y Kikuchi M Oka Y Asano T 《Molecular endocrinology (Baltimore, Md.)》2003,17(3):487-497
TNFalpha, which activates three different MAPKs [ERK, p38, and jun amino terminal kinase (JNK)], also induces insulin resistance. To better understand the respective roles of these three MAPK pathways in insulin signaling and their contribution to insulin resistance, constitutively active MAPK/ERK kinase (MEK)1, MAPK kinase (MKK6), and MKK7 mutants were overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated transfection procedure. The MEK1 mutant, which activates ERK, markedly down-regulated expression of the insulin receptor (IR) and its major substrates, IRS-1 and IRS-2, mRNA and protein, and in turn reduced tyrosine phosphorylation of IR as well as IRS-1 and IRS-2 and their associated phosphatidyl inositol 3-kinase (PI3K) activity. The MKK6 mutant, which activates p38, moderately inhibited IRS-1 and IRS-2 expressions and IRS-1-associated PI3K activity without exerting a significant effect on the IR. Finally, the MKK7 mutant, which activates JNK, reduced tyrosine phosphorylation of IRS-1 and IRS-2 and IRS-associated PI3K activity without affecting expression of the IR, IRS-1, or IRS-2. In the context of our earlier report showing down-regulation of glucose transporter 4 by MEK1-ERK and MKK6/3-p38, the present findings suggest that chronic activation of ERK, p38, or JNK can induce insulin resistance by affecting glucose transporter expression and insulin signaling, though via distinctly different mechanisms. The contribution of ERK is, however, the strongest. 相似文献
15.
Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 adipocytes 总被引:5,自引:0,他引:5
Gual P Gonzalez T Grémeaux T Barres R Le Marchand-Brustel Y Tanti JF 《The Journal of biological chemistry》2003,278(29):26550-26557
In 3T3-L1 adipocytes, hyperosmotic stress was found to inhibit insulin signaling, leading to an insulin-resistant state. We show here that, despite normal activation of insulin receptor, hyperosmotic stress inhibits both tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1-associated phosphoinositide 3 (PI 3)-kinase activity in response to physiological insulin concentrations. Insulin-induced membrane ruffling, which is dependent on PI 3-kinase activation, was also markedly reduced. These inhibitory effects were associated with an increase in IRS-1 Ser307 phosphorylation. Furthermore, the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented the osmotic shock-induced phosphorylation of IRS-1 on Ser307. The inhibition of mTOR completely reversed the inhibitory effect of hyperosmotic stress on insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase activation. In addition, prolonged osmotic stress enhanced the degradation of IRS proteins through a rapamycin-insensitive pathway and a proteasome-independent process. These data support evidence of new mechanisms involved in osmotic stress-induced cellular insulin resistance. Short-term osmotic stress induces the phosphorylation of IRS-1 on Ser307 by an mTOR-dependent pathway. This, in turn, leads to a decrease in early proximal signaling events induced by physiological insulin concentrations. On the other hand, prolonged osmotic stress alters IRS-1 function by inducing its degradation, which could contribute to the down-regulation of insulin action. 相似文献
16.
17.
Kang J Heart E Sung CK 《American journal of physiology. Endocrinology and metabolism》2001,280(3):E428-E435
Glucosamine induced insulin resistance in 3T3-L1 adipocytes, which was associated with a 15% decrease in cellular ATP content. To study the role of ATP depletion in insulin resistance, we employed sodium azide (NaN3) and dinitrophenol (DNP), which affect mitochondrial oxidative phosphorylation, to achieve a similar 15% ATP depletion. Unlike glucosamine, NaN3 and DNP markedly increased basal glucose transport, and the increased basal glucose transport was associated with increased GLUT-1 content in the plasma membrane without changes in total GLUT-1 content. These agents, like glucosamine, did not affect the early insulin signaling that is implicated in insulin stimulation of glucose transport. In cells with a severe 40% ATP depletion, basal glucose transport was similarly elevated, and insulin-stimulated glucose transport was similar in cells with 15% ATP depletion. In these cells, however, early insulin signaling was severely diminished. These data suggest that cellular ATP depletion by glucosamine, NaN3, and DNP exerts differential effects on basal and insulin-stimulated glucose transport and that ATP depletion per se does not induce insulin resistance in 3T3-L1 adipocytes. 相似文献
18.
Jost P Fasshauer M Kahn CR Benito M Meyer M Ott V Lowell BB Klein HH Klein J 《American journal of physiology. Endocrinology and metabolism》2002,283(1):E146-E153
Cross talk between adrenergic and insulin signaling systems may represent a fundamental molecular basis of insulin resistance. We have characterized a newly established beta(3)-adrenoceptor-deficient (beta(3)-KO) brown adipocyte cell line and have used it to selectively investigate the potential role of novel-state and typical beta-adrenoceptors (beta-AR) on insulin signaling and action. The novel-state beta(1)-AR agonist CGP-12177 strongly induced uncoupling protein-1 in beta(3)-KO brown adipocytes as opposed to the beta(3)-selective agonist CL-316,243. Furthermore, CGP-12177 potently reduced insulin-induced glucose uptake and glycogen synthesis. Neither the selective beta(1)- and beta(2)-antagonists metoprolol and ICI-118,551 nor the nonselective antagonist propranolol blocked these effects. The classical beta(1)-AR agonist dobutamine and the beta(2)-AR agonist clenbuterol also considerably diminished insulin-induced glucose uptake. In contrast to CGP-12177 treatment, these negative effects were completely abrogated by metoprolol and ICI-118,551. Stimulation with CGP-12177 did not impair insulin receptor kinase activity but decreased insulin receptor substrate-1 binding to phosphatidylinositol (PI) 3-kinase and activation of protein kinase B. Thus the present study characterizes a novel cell system to selectively analyze molecular and functional interactions between novel and classical beta-adrenoceptor types with insulin action. Furthermore, it indicates insulin receptor-independent, but PI 3-kinase-dependent, potent negative effects of the novel beta(1)-adrenoceptor state on diverse biological end points of insulin action. 相似文献
19.
Wada T Hoshino M Kimura Y Ojima M Nakano T Koya D Tsuneki H Sasaoka T 《American journal of physiology. Endocrinology and metabolism》2011,300(6):E1112-E1123
Although elevation of the blood glucose level is a causal adverse effect of treatment with interferon (IFN), the precise underlying molecular mechanism is largely unknown. We examined the effects of type I and type II IFN (IFN-β and IFN-γ) on insulin-induced metabolic signaling leading to glucose uptake in 3T3-L1 adipocytes. IFN-β suppressed insulin-induced tyrosine phosphorylation of IRS-1 without affecting its expression, whereas IFN-γ reduced both the protein level and tyrosine phosphorylation. Although both IFNs stimulated phosphorylation of STAT1 (at Tyr(701)) and STAT3 (at Tyr(705)) after treatment for 30 min, subsequent properties of induction of the SOCS isoform were different. IFN-β preferentially induced SOCS1 rather than SOCS3, whereas IFN-γ strongly induced SOCS3 expression alone. In addition, adenovirus-mediated overexpression of either SOCS1 or SOCS3 inhibited insulin-induced tyrosine phosphorylation of IRS-1, whereas the reduction of IRS-1 protein was observed only in SOCS3-expressed cells. Notably, IFN-β-induced SOCS1 expression and suppression of insulin-induced tyrosine phosphorylation of IRS-1 were attenuated by siRNA-mediated knockdown of STAT1. In contrast, adenovirus-mediated expression of a dominant-negative STAT3 (F-STAT3) attenuated IFN-γ-induced SOCS3 expression, reduction of IRS-1 protein, and suppression of insulin-induced glucose uptake but did not have any effect on the IFN-β-mediated SOCS1 expression and inhibition of insulin-induced glucose uptake. Interestingly, pretreatment of IFN-γ with IL-6 synergistically suppressed insulin signaling, even when IL-6 alone had no significant effect. These results indicate that type I and type II IFN induce insulin resistance by inducing distinct SOCS isoforms, and IL-6 synergistically augments IFN-γ-induced insulin resistance by potentiating STAT3-mediated SOCS3 induction in 3T3-L1 adipocytes. 相似文献
20.
Hsieh TJ Hsieh PC Wu MT Chang WC Hsiao PJ Lin KD Chou PC Shin SJ 《Cell biology and toxicology》2011,27(6):397-411
According to several population-based studies, betel nut chewing is associated with metabolic syndrome and diabetes in British
South Asians and Taiwanese. However, the underlying molecular mechanism is not yet clear. Arecoline is an alkaloid-type natural
product found in betel nuts. Our aim was to clarify the influence of betel nut extract and arecoline on lipid accumulation
and insulin signaling in adipocytes. We found that betel nut extract and arecoline blocked lipid storage in 3T3-L1 adipocytes.
The possible mechanism may function by inhibiting the expression of the insulin receptor, glucose transporter-4, fatty acid
synthase, and the lipid droplet proteins perilipin and adipophilin. In addition, betel nut extract and arecoline increased
the basal level of IRS-1 serine307 phosphorylation and decreased insulin-stimulated IRS-1 tyrosine, Akt, and PI3 kinase phosphorylation. In conclusion, betel
nut extract and arecoline have diabetogenic potential on adipocytes that may result in insulin resistance and diabetes at
least in part via the obstruction of insulin signaling and the blockage of lipid storage. 相似文献