首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular chaperones have been understood to be preferentially transcribed to prevent perturbations in response to various stresses. In this study, three single nucleotide polymorphisms (SNPs), g.324G>C, g.589C>T and g.651C>G in Heat shock factor binding protein 1 (HSBP1) gene were found and genotyped in 930 Chinese Holstein cattle. The results indicated that only g.589C>T polymorphism locus met Hardy–Weinberg equilibrium (P > 0.05). Pair linkage disequilibrium analysis and haplotype construction of HSBP1 gene were performed using SHEsis software. Seven haplotypes were constructed and fourteen haplotype combinations were found. Association analysis showed that H2H2 haplotype combination was advantageous for thermo tolerance breeding in Chinese Holstein. The cows with H2H2 haplotype combination have lower decrease rate of milk yield than those with H2H3 haplotype combination (P < 0.05) and lower potassium content in erythrocytes (PCE) than those with H2H5 (P < 0.05), H4H4 (P < 0.05) and H4H5 (P < 0.01) haplotype combination. The association between SNP and thermo tolerance traits showed that PCE of cows with GG genotype was lower than those with CG genotype at g.651C>G locus (P < 0.01). Pair linkage disequilibrium analysis revealed that the three loci were at a strong disequilibrium state. So we presumed that the effect of H2H2 haplotype combination on thermo tolerance traits major due to the SNP of g.651C>G.  相似文献   

2.
The aim of the study was to detect polymorphism in the POU1F1 gene in Sarda breed goat, as well as to establish if SNPs could be associated with milk productive traits. The research was conducted on 129 Sarda breed goats from 4 to 5 years old, multiparous, lactating and in their third to fifth lactation. We report nine exonic and seven non-coding regions SNPs within the Sarda goat POU1F1 gene, namely, Ex 1 61 G>C; Ex 1 108 G>A; Ex 3 C>T; Ex 3 92 C>T; Ex 4 110 A>G; Ex 5 34 G>A resulting in Arg213Lys change; IVS4 641 G>A, IVS4 643 A>C, IVS4 659 G>A, IVS4 677 A>C, IVS4 G699Del, IVS4 709 C>G, Ex 6 17 G>A resulting in Arg228Ser change, Ex 6 58 G>T, Ex 6 172 T>C, 3′UTR 110 T>C. A statistically significant association was found between genotype TT, in position 17 of the exon 6 (3.1 % of frequency), and increased milk yield (P < 0.01) while genotype GT (25.6 % of frequency) was associated with a higher fat content. Genotype TT in position 58 of the exon 6 (3.9 % of frequency) was found to be associated with a higher fat (P < 0.01) and protein content (P < 0.05). Twenty-eight haplotypes were detected, but no significant association between the haplotypes and the milk production traits have been found. Our data, as well as providing new SNPs extending the POU1F1 gene characterization, evidence a relationship between polymorphism and milk production traits in Sarda goat breed.  相似文献   

3.
4.
Liver X receptor α (LXRα) has emerged as an important regulator of lipid and energy metabolism. In this study, to better understand the effects of LXRα gene on growth traits in cattle, the mRNA tissue expression patterns and the polymorphisms of some exons of LXRα were revealed. The expression profile of the bovine LXRα gene was detected by quantitative real-time polymerase chain reaction (qRT-PCR) in 11 different Jiaxian cattle tissues and was found mainly expressed in spleen, liver, fat tissue, kidney, muscle, and lung. Meanwhile, it showed that four single nucleotide polymorphisms (SNPs), named g.1028 T>C, g.1514 T>C, g.2929G>A, and g.3493 T>C, were detected and 12 different haplotypes were constructed. Haplotype with CCGT was dominant with frequency of 40.8 %. There was a strong link between g.1028 T>C and g.1514 T>C (r 2?=?0.374). Association analysis of SNPs with growth- and body-related traits was carried out in 445 Chinese native cattle. The results displayed that the heterozygous genotypes of g.1028 T>C and g.1514 T>C showed a molecular heterosis on four performance traits related to body size: height at withers, body length, hipbone width, and hip width (P?<?0.05). The multiple effects of four sites showed that the height at withers, body length, hipbone width, and hip width of individuals of TC-TC-GG-TT combined genotypes were significantly higher than other genotypes (P?<?0.05). The effects of the four loci genotype combination on conformation traits were consistent with the effects of g.1028 T>C and g.1514 T>C loci. The SNPs of g.1028 T>C and g.1514 T>C of the bovine LXRα gene could be potential genetic markers for growth traits in cattle. These results suggest that LXRα gene is expressed in many tissues and may provide primary molecular information for further studies on body size traits in Chinese indigenous cattle.  相似文献   

5.
Plasma matrix metalloproteinase (MMP)-9 is a predictor of cardiovascular mortality, and MMP-9 polymorphisms affect plasma MMP-9 levels. However, no study examined whether MMP-9 haplotypes affect MMP-9 levels in obese adults. We examined whether MMP-9 polymorphisms and haplotypes are associated with obesity, and whether they affect MMP-9 levels in obese subjects. We examined the plasma levels of MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 in 105 subjects with normal weight (controls), 100 obese subjects, and 156 obese subjects with ≥3 metabolic risk factors (MRFs). We determined genotypes for three polymorphisms: C-1562T (rs3918242), Q279R (A>G, rs17576), and R668Q (G>A, rs17577). MMP-9 levels and activity (MMP-9/TIMP-1 ratio) were higher in obese subjects than in controls (P < 0.05). However, MMP-9 levels were higher in obese subjects with ≥3 MRFs than in obese subjects (P < 0.05). Obese subjects with ≥3 MRFs carrying the GA+AA genotypes for R668Q (G>A) polymorphism had higher MMP-9 levels than subjects carrying the AA genotype (P < 0.05). The “T, G, A” haplotype was more common in both groups of obese subjects than in controls (OR 3.95 and 4.39, respectively; P < 0.01). Notably, obese subjects with ≥3 MRFs carrying the “T, G, A” haplotype had higher MMP-9 levels than subjects carrying the “C, A, G” reference haplotype (P < 0.05). The “T, G, A” haplotype was associated with an increased risk of obesity and affected MMP-9 levels in obese subjects with ≥3 MRFs. Our findings suggest that plasma MMP-9 levels and MMP-9 haplotypes may help to discriminate obese subjects at an increased cardiovascular risk.  相似文献   

6.
The aim of this study was to investigate the adipocyte size and fate in subcutaneous fat (scAT) of cows diverging for genetic merit at mid lactation stage, when anabolic activity increases and animals are in a state of positive energy balance. Twenty mid lactation cows (180 ± 20 days in milk) grouped according to the Estimated Breeding Values (EBV) for milk yield in plus (EBVp) and minus (EBVm) variants were selected. Average of adipocytes area, proliferation and apoptotic labelling index as well as DLK-1 expression, a marker of pre-adipocytes, were immunohistochemically evaluated in scAT biopsies. In EBVp cows, the BCS was lower (P < 0.01) whereas milk yield, protein, fat yield (P < 0.001) and plasma free fatty acid concentration (P < 0.05) were higher. The scAT of EBVp cows showed a significantly (P < 0.001) higher frequency between 500 and 3000 μm2 classes in comparison to EBVm cows, that showed a significantly (P < 0.01) higher apoptotic labeling index. The immunohistochemical reaction showed DLK-1 positivity in scAT of EBVp cows. Taking together, the data indicate a link between milk yield genetic merit of cows, scAT morphology and function, suggesting greater dynamics and metabolic flexibility in EBVp cows.  相似文献   

7.
The maternal effect has been widely proposed to affect the production traits in domestic animals. However, the sequence polymorphisms of mitochondrial DNA (mtDNA) and association with milk production traits in Holstein cows have remained unclear. In this study, we investigated the single nucleotide polymorphisms (SNPs) of mtDNA ATPase 8/6 genes and association with four milk production traits of interest in 303 Holstein cows. A total of 18 SNPs were detected among the 842 bp fragment of ATPase 8/6 genes, which determined six haplotypes of B. taurus (H1-H4) and B. indicus (H5-H6). The mixed model analysis revealed that there was significant association between haplotype and 305-day milk yield (MY). The highest MY was observed in haplotype H4. However, we did not detect statistically significant differences among haplotypes for the traits of milk fat (MF), milk protein (MP), and somatic cell count (SC). The overall haplotype diversity and nucleotide diversity of ATPase 8/6 genes were 0.563 ± 0.030 and 0.00609 ± 0.00043, respectively. The results suggested that mitochondrial ATPase 8/6 genes could be potentially used as molecular marker to genetically improve milk production in Holstein cows.  相似文献   

8.
Holstein cows were fed total mixed rations (TMR) supplemented with protected palm fat (PPF), whole sunflower seed (WSS) or extruded linseed (ELS) for 100 days. Percentage of dietary crude fat was 5.3, 5.1 and 5.1, respectively. Diet had no (p > 0.05) effect on feed intake, milk yield or milk protein content. Percentage of milk fat and yield of fat – corrected milk were significantly increased when diets were supplemented with WSS and ELS. Feeding PPF resulted in the lowest (p < 0.05) ruminal concentration of volatile fatty acids. No significant dietary effect on plasma characteristics was observed. Concentration of polyunsaturated fatty acids (PUFA) was higher (p < 0.05), and PUFA n-6/n-3 ratio lower (p < 0.05), in the milk fat from cows fed ELS compared to WSS. Supplementation of TMR with oilseeds compared to PPF increased the content of CLA in milk fat (p < 0.005) and decreased its atherogenicity, primarily due to a significant reduction of palmitic acid concentration. Both oilseeds significantly improved the spreadability index of manufactured butter. ELS, but not WSS, increased the susceptibility of milk fat to oxidation (p < 0.05). It can be concluded that feeding of oilseeds to dairy cows improved nutritional quality of milk fat, with supplementation with ELS producing an even more desirable milk fatty acid profile than WSS supplementation.  相似文献   

9.
Two experiments were conducted to examine the effect of zinc (Zn) source on the performance, Zn status, immune response, and rumen fermentation of lactating cows to find the most available Zn source for dairy production. In Experiment 1, a total of 30 multiparous Holstein cows were randomly allocated by body weight and milk yield to one of five treatments in a completely randomized design. Cows were fed a total mixed ration (TMR) with no Zn addition (containing 37.60 mg?Zn/kg TMR by analysis), and the basal TMR supplemented with 40 mg?Zn/kg TMR from either Zn sulfate or one of three organic Zn chelates with weak (Zn-AA W), moderate (Zn-Pro M), or strong (Zn-Pro S) chelation strengths, respectively for 55 days. In Experiment 2, the in vitro rumen fermentation method was used in a completely randomized design involving a 4?×?3 factorial arrangement of treatments. The four Zn sources were the same as those used in Experiment 1, and the three supplemental Zn levels in the rumen fluid were 0, 10, and 20 μg/mL, respectively. The feed intake, milk composition, and somatic cell count (SCC) were unaffected (P?>?0.05) by treatments. However, the milk yield was increased (P?<?0.05) by addition of Zn from both the Zn-AA W and Zn-Pro S. Plasma Zn level at the end of the experiment was increased (P?<?0.05) by addition of Zn from all three organic sources. Serum antibody titers on day 21 after vaccination with foot and mouth disease (FMD) vaccine were increased (P?<?0.05) by both supplemental Zn-AA W and Zn-Pro S. The organic Zn sources with different chelation strengths supplemented at the added Zn level of 10 μg/mL were more effective (P?<?0.05) in improving the rumen fermentation than Zn sulfate, with the most effective being Zn-AA W. In conclusion, Zn source had no influence on the feed intake, milk composition, and SCC; however, both the Zn-AA W and Zn-Pro S were more effective than Zn-Pro M and Zn sulfate in enhancing the rumen fermentation, Zn status, and humoral immune response as well as improving milk yield of lactating cows. The improved milk production might be attributed to the improved rumen fermentation, Zn status, and immune function.  相似文献   

10.
The throughput of automatic milking systems (AMS) is likely affected by differential traffic behavior and subsequent effects on the milking frequency and milk production of cows. This study investigated the effect of increasing stocking rate and partial mixed ration (PMR) on the milk production, dry matter intake (DMI), feed conversion efficiency (FCE) and use of AMS by two genotypes of Holstein-Friesian cows in mid-lactation. The study lasted 8 weeks and consisted in a factorial arrangement of two genotypes of dairy cattle, United States Holstein (USH) or New Zealand Friesian (NZF), and two pasture-based feeding treatments, a low stocking rate system (2 cows/ha) fed temperate pasture and concentrate, or a high stocking rate system (HSR; 3 cows/ha) fed same pasture and concentrate plus PMR. A total of 28 cows, 14 USH and 14 NZF, were used for comparisons, with 12 cows, six USH and six NZF, also used for tracking of animal movements. Data were analyzed by repeated measure mixed models for a completely randomized design. No differences (P>0.05) in pre- or post-grazing herbage mass, DMI and FCE were detected in response to increases in stocking rate and PMR feeding in HSR. However, there was a significant (P<0.05) grazing treatment×genotype×week interaction on milk production, explained by differential responses of genotypes to changes in herbage mass over time (P<0.001). A reduction (P<0.01) in hours spent on pasture was detected in response to PMR supplementation in HSR; this reduction was greater (P=0.01) for USH than NZF cows (6 v. 2 h, respectively). Regardless of the grazing treatment, USH cows had greater (P=0.02) milking frequency (2.51 v. 2.26±0.08 milkings/day) and greater (P<0.01) milk yield (27.3 v. 16.0±1.2 kg/day), energy-corrected milk (24.8 v. 16.5±1.0 kg/day), DMI (22.1 v. 16.6±0.8 kg/day) and FCE (1.25 v. 1.01±0.06 kg/kg) than NZF cows. There was also a different distribution of milkings/h between genotypes (P<0.001), with patterns of milkings/h shifting (P<0.001) as a consequence of PMR feeding in HSR. Results confirmed the improved FCE of grazing dairy cows with greater milk production and suggested the potential use of PMR feeding as a tactical decision to managing HSR and milkings/day in AMS farms.  相似文献   

11.
In this study, polymorphism in the exon 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 of bovine NUCB2 gene was detected by PCR-SSCP and DNA sequencing methods in 686 individuals from three Chinese cattle breeds. Two haplotypes (M and N), three observed genotypes (MM, MN and NN) and two SNPs (NC_007313: g. 27451G>A, NC_007313: g. 27472T>C) were detected. The frequencies of haplotypes M and N in inland Chinese three breeds were 0.531–0.721 and 0.279–0.469 respectively. The studied showed that Nanyang, Jiaxian Red and Qinchuan cattle populations were in Hardy–Weinberg equilibrium at SNPs locus of NUCB2 gene (P > 0.05). Polymorphism of the NUCB2 gene was shown to be associated with growth traits in Qingchuan and Nanyang cattle breed. The linkage of two mutant sites in the bovine NUCB2 gene had significant effects on body length, body weight, heart girth, and average daily gain at 24 months (P < 0.05). Results of this study suggested that the NUCB2-gene-specific SNP may be a useful marker for growth traits in future marker-assisted selection programmes in inland Chinese cattle.  相似文献   

12.
The objective of this study was to analyze the effects of single and combined genotypes of MC4R and POU1F1 genes in Chinese well-known indigenous chicken (Langshan chicken) population. Genetic variants within MC4R gene and POU1F1 gene were screened through PCR-SSCP and DNA sequencing methods. A C/T mutation at nt 944 in MC4R gene (NC_006089.2:g. 944C>T) and a G/A mutation at nt 3109 in POU1F1 gene (NC_006088.2:g. 3109 G>A) were identified. Associations between the mutations of the two genes with two production traits were analyzed. The results showed that, at MC4R locus, individuals with BB and AB genotypes had highly significantly higher body weight at 16 weeks (p < 0.01) than did those with the AA genotype. And, individuals within AA and AB genotypes had significantly higher egg numbers at 300 days (p < 0.05). At POU1F1 locus, individuals with CD genotype had higher body weight at 16 weeks and egg numbers at 300 days (p < 0.05). Furthermore, combined genotypes from these two loci were found to be associated with egg numbers at 300 days (p < 0.05). The individuals within combined genotype AB/CD had higher egg production. Therefore, variations identified within the MC4R and POU1F1genes are suitable for future use in identifying chickens with the genetic potential of higher body weight and reproductive traits, at least in the population of Langshan chickens.  相似文献   

13.
Peroxisome proliferator-activated receptor alpha (PPARα) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. In this research, polymerase chain reaction (PCR) technique was used to amplify 766 and 589 bp fragments of intron 3 and 7 of PPARα gene in Chinese Holstein (n = 771). Sequencing results showed that three novel single nucleotide polymorphisms (SNPs) were identified at position 44087 (G/A), 65550 (G/A), and 65676(G/A) in the PPARα gene. PCR–restriction fragment length polymorphism technology was used to genotype the three SNPs. Association analysis showed that cows with H1H8 (P < 0.05), H2H8 (P < 0.01), H5H7 (P < 0.05), H5H8 (P < 0.05), and H8H8 (P < 0.05) haplotype combinations had lower potassium content in erythrocytes than those with H2H6 haplotype combination. Cows with H1H8, and H8H8 haplotype combinations had lower decrease rate of milk yield than those with H2H6 and H6H8 haplotype combinations (P < 0.05). Cows with H2H8 and H8H8 haplotype combinations had lower rectal temperature than those with H5H8 and H7H7 haplotype combinations (P < 0.05). In conclusion, H8H8 haplotype combination may be advantageous for heat resistance traits in Chinese Holstein cattle.  相似文献   

14.
We hypothesised that adding a combination of fibrolytic and amylolytic enzymes to the diet of early-lactation dairy cows would improve rumen enzyme activity and bacterial diversity, promote energy metabolism, and benefit milk production in cows. Twenty multiparous early-lactation (90 ± 5 d) Holstein cows with similar body conditions were randomly allocated to control (CON, n = 10) and experimental (EXP, n = 10) groups in a completely randomised single-factor design. The CON was fed only a basal total mixed ration diet, and the diet of the EXP was supplemented with a combination of fibrolytic and amylolytic enzymes at 70 g/cow/d (cellulase 3 500 CU/g, xylanase 2 000 XU/g, β-glucanase 17 500 GU/g, and amylase 37 000 AU/g). The experiment lasted 28 days, with 21 days for adaptation and 7 days for sampling. Enzyme addition increased the activity levels of α-amylase and xylanase, and the ammonia-N concentration (P < 0.05) tended to increase the activity of β-glucanase (P = 0.08) in rumen fluid. However, there was no significant difference in the rumen bacterial richness and diversity, phylum (richness > 0.1%) or genus (richness > 1%) composition between the CON and EXP groups (P > 0.05). A tendency of difference was found between CON and EXP (R = 0.22, P = 0.098) in principal component analysis. Ten genera showed different abundances across the CON and EXP groups (linear discriminant analysis effect size, linear discriminant analysis > 2). EXP increased the ratio of albumin to globulin and the concentrations of total cholesterol and low-density lipoprotein cholesterol (P < 0.05) and tended to increase triglycerides (P = 0.09) in blood. Milk yield, 3.5% fat-corrected milk yield and energy-corrected milk yield increased with enzyme supplementation (P < 0.05). The production levels of milk fat and lactose increased, but the percentage of solids, not fat and protein, decreased in EXP (P < 0.05). Although the DM intake was not affected, the feed efficiency tended to increase (P = 0.07) in EXP. In conclusion, dietary supplementation with a mixture of fibrolytic and amylolytic enzymes on multiparous early-lactation dairy cows increased α-amylase and xylanase activity levels in rumen fluid, enhanced milk performance and tended to improve the feed efficiency in cows.  相似文献   

15.
The stearoyl‐CoA desaturase (delta‐9‐desaturase) gene encodes a key enzyme in the cellular biosynthesis of monounsaturated fatty acids. In our initial genome‐wide association study (GWAS) of Chinese Holstein cows, 19 SNPs fell in a 1.8‐Mb region (20.3–22.1 Mb) on chromosome 26 underlying the SCD gene and were highly significantly associated with C14:1 or C14 index. The aims of this study were to verify whether the SCD gene has significant genetic effects on milk fatty acid composition in dairy cattle. By resequencing the entire coding region of the bovine SCD gene, a total of six variations were identified, including three coding variations (g.10153G>A, g.10213T>C and g.10329C>T) and three intronic variations (g.6926A>G, g.8646G>A and g.16158G>C). The SNP in exon 3, g.10329C>T, was predicted to result in an amino acid replacement from alanine (GCG) to valine (GTG) in the SCD protein. An association study for 16 milk fatty acids using 346 Chinese Holstein cows with accurate phenotypes and genotypes was performed using the mixed animal model with the proc mixed procedure in sas 9.2. All six detected SNPs were revealed to be associated with six medium‐ and long‐chain unsaturated fatty acids (= 0.0457 to < 0.0001), specifically for C14:1 and C14 index (= 0.0005 to < 0.0001). Subsequently, strong linkage disequilibrium (D′ = 0.88–1.00) was observed among all six SNPs in SCD and the five SNPs (rs41623887, rs109923480, rs42090224, rs42092174 and rs42091426) within the 1.8‐Mb region identified in our previous GWAS, indicating that the significant association of the SCD gene with milk fatty acid content traits reduced the observed significant 1.8‐Mb chromosome region in GWAS. Haplotype‐based analysis revealed significant associations of the haplotypes encompassing the six SCD SNPs and one SNP (rs109923480) in a GWAS with C14:1, C14 index, C16:1 and C16 index (= 0.0011 to < 0.0001). In summary, our findings provide replicate evidence for our previous GWAS and demonstrate that variants in the SCD gene are significantly associated with milk fatty acid composition in dairy cattle, which provides clear evidence for an increased understanding of milk fatty acid synthesis and enhances opportunities to improve milk‐fat composition in dairy cattle.  相似文献   

16.
Leptin is a protein hormone which plays a critical role in the regulation of both body-weight through reducing food intake and stimulating energy expenditure. Several polymorphisms in leptin gene (LEP), which encodes for leptin, have been described. However, its association with obesity is still controversial. Therefore, in the present study, we aimed to investigate whether LEP c.-2548 G>A polymorphism was associated with serum leptin levels, lipid parameters, and body mass index in Turkish obese patients. Forty-seven obese patients and 48 healthy individuals were included in the study. Blood samples were collected for DNA extraction. LEP c.-2548 G>A polymorphism were detected using polymerase chain reaction–restriction fragment length polymorphism technique. Serum leptin levels and lipid parameters were measured by ELISA and enzyme colorimetric assay techniques, respectively. GA or AA genotypes and A allele carrier frequencies of the c.-2548 G>A polymorphism in the LEP were higher in obese (38.3, 34.0 and 72.3 %) when compared with controls (14.6, 12.5, and 27.1 %; p = 0.011, 0.016, and 0.002, respectively). On the other hand, AA or AG genotypes were also related to increased serum leptin levels (p < 0.001) and body mass index (p < 0.0001). All these consequences showed that LEP -2548 AA or AG genotypes are important predictors for increased levels of leptin and BMI in Turkish obese patients and it may be a useful marker for obesity risk in our population.  相似文献   

17.
In this study, we aimed to detect the single nucleotide polymorphisms (SNPs) of the chicken FATP1 gene and discern the potential association between FATP1 SNPs and chicken carcass traits. A total of 620 meat-type quality chickens from six commercial pure lines (S01, S02, S03, S05, S06 and D99) and two cross lines (S05 × S01 and S06 × S01) were screened by using the single-strand conformational polymorphism analysis (SSCP) and DNA sequencing. Five SNPs [g.49360G > A, g.48195G > A, g.46847A > G, g.46818A > G, and g.46555A > G] were identified in chicken FATP1 gene. SNP g.46818 A > G was a rare variant and was not considered in the subsequent analysis. Sixteen haplotypes were reconstructed on the basis of the other four SNPs. The linear regression model analysis indicated that there were significant associations of certain diplotypes with part of carcass traits, such as live weight (LW), carcass weight (CW), and semi-eviscerated weight (SEW) (P < 0.05). In particular, diplotype H2H4 had a negative effect on LW, CW, SEW, and abdominal fat weight (AW); diplotype H6H10 had the highest reducing effect on subcutaneous fat thickness (SFT). Our results suggested that FATP1gene polymorphisms were associated with chicken carcass traits or was linked with the major gene. The SNPs in this gene may be utilized as potential markers for marker-assisted selection (MAS) during chicken breeding.  相似文献   

18.
Liu J  Ju Z  Li Q  Huang J  Li R  Li J  Ma L  Zhong J  Wang C 《Immunogenetics》2011,63(11):727-742
Mannose-binding lectin (MBL) is a member of the collectin protein family that binds a broad range of microorganisms and activates the lectin-complement pathway of innate immunity. MBL deficiency is associated with an increased risk for various infections and arises from five polymorphisms in the promoter and first exon of the MBL gene in humans. In this study, three novel single-nucleotide polymorphisms (SNPs) in the promoter region and two previously reported SNPs in exon 2 of the MBL1 gene were detected using PCR single-strand conformation polymorphism, restriction fragment length polymorphism, and DNA sequencing in 537 cattle from three Chinese breeds. Analysis of the genotypes and haplotypes was used to investigate the polymorphisms and their possible implications, especially their association with serum MBL-A levels, complement activity (CH50 and ACH50), and milk production traits was investigated. The g.2651G>A SNP in exon 2 affected the serum MBL-A concentrations and the serum CH50 values, whereas the g.−1330G>A SNP significantly affected CH50 and the somatic cell scores (SCSs). Statistical analysis revealed that cows with the ATGGC/ACAAC combined genotype and those with the AAGGT/ACGGT combined genotype exhibited the lowest and highest SCSs, respectively. Serum antibacterial activities were also conducted to verify the effect of the SNPs on resistance to mastitis pathogens. Results of real-time PCR showed that the liver of cows with clinical mastitis exhibited a higher MBL1 expression compared with healthy ones (P < 0.05). Findings of this study indicate that the MBL1 gene possibly contributes to bacterial infection resistance and can be used as a molecular marker of milk production traits to control mastitis.  相似文献   

19.
The objective of this study was to determine whether the genetic variants of CAPN1 developed in several cattle populations can be applied for Hanwoo, regarding genetic effects on meat traits. The traits were examined for 286 purebred Hanwoo steers with genotypes classified by restriction fragment length polymorphism (RFLP) and single strand conformation polymorphism (SSCP) analysis. The nucleotide positions of primers and previously identified genetic variants were based on sequences of the calpain 1 (CAPN1) gene with GenBank accession numbers (AF252504, AF248054, and AY639597). The analysis of genetic distribution estimated levels of minor allele frequencies ranged from 0.165 to 0.392, showing no significant departures from Hardy–Weinberg Equilibrium for all markers. Overall averages of heterozygosites (He) and polymorphic information contents (PICs) for all markers were calculated to 0.503 and 0.429, respectively, and the g.4558G>A marker showed the lowest He (0.425) and PIC (0.367). Animals from 29 months of age were slaughtered to measure Warner–Bratzler shear force (WBSF), cooking loss, water-holding capacity, pH, fat, and moisture. All the CAPN1 markers explained variations of WBSF, showing significant additive effects except g.5709G>A. A significant marginal mean difference in genotypes of g.6545C>T (P = 0.046) was found in moisture with additive effects. From the result it may be possible to use three calpain markers (g.4558G>A, g.4685C>T, and g.6545C>T) classified by RFLP and SSCP analysis in marker assisted selection programs to improve WBSF as meat tenderness in Hanwoo.  相似文献   

20.
Feeding greatly affects milk yield and composition. The research is highlighting the potential of genetic polymorphism at some loci to affect milk yield and quality traits. These loci can be up/down regulated depending on the production environment; therefore, we hypothesized that milk yield and composition could differ when cows with different genotype at SCD, DGAT1 and ABCG2 loci are reared in different feeding systems. The polymorphisms of SCD, DGAT1 and ABCG2 genes were investigated in Modicana breed. In all, three polymorphic sites, responsible for the genetic variation of quantitative trait loci and therefore defined quantitative trait nucleotides, were genotyped: the transition g.10329C>T in 5th exon determines a substitution p.A293V in the SCD, the dinucleotide mutation g.10433-10434AA>GC in 8th exon responsible for p.K232A substitution in the DGAT1 and the transition g.62569A>C in the 14th exon responsible for p.Y581S substitution in the ABCG2 gene. In the sample of 165 Modicana cows, SCD and DGAT1 genes resulted polymorphic; the alleles g.10329T and g.10433-10434GC were the most frequent in SCD and DGAT1 (0.73 and 0.91) respectively, whereas ABCG2 locus was monomorphic for allele A (p.581Y). Sequencing analysis was carried out on 14 samples with different genotypes to confirm the results of the PCR-RFLP protocols. Based on the genotypes at SCD locus, 47 Modicana cows were selected for the nutritional trial: 24 cows in a semi-intensive farm, with 2 h/day grazing on natural pasture, and 23 cows in an extensive farm, with 8 h/day grazing on natural pasture. Monthly, milk yield and composition were evaluated and individual milk samples were analyzed for fatty acids composition by gas chromatography. No differences in milk yield, fat, protein, lactose, casein and urea were associated to SCD genotype. Feeding systems affected milk yield and composition. No significant genotype×feeding system interaction was observed for milk yield and composition. Fatty acids composition was significantly affected only by the feeding system. Significant interactions were found between SCD genotype and feeding system for six fatty acids: 4:0, 6:0, 8:0, 10:0, 12:0 and t11 18:1. We concluded that the feeding system was the factor that mostly affected milk production and composition; moreover, our results do not confirm what reported in literature as regard the effect of the SCD polymorphism on milk fatty acid composition. The high amount of pasture seemed to have resized the SCD polymorphism effects because of the different fatty acids composition of the diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号