首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim: The study describes the development of a simple and rapid tool to identify yeast‐like microalgae belonging to the genus Prototheca. Methods and Results: The method, based on two‐step Real Time PCR reaction followed by DNA Resolution Melting Analysis (qPCR/RMA), has been developed using reference strains belonging to both pathogenic (P. zopfii genotype 2, P. wickerhamii and P. blaschkeae) and nonpathogenic species (P. zopfii genotype 1, P. stagnora and P. ulmea). In order to validate the method, seventy recently isolated Prototheca strains were thus tested in parallel with both the first qPCR/RMA and the conventional genotype‐specific PCR assay: they were classified as P. zopfii genotype 1, P. zopfii genotype 2 and P. blaschkeae, with a perfect accordance between the two above methodologies. Furthermore, we used the second qPCR/RMA to identify the other species (P. stagnora, P. ulmea and P. wickerhamii), which cannot be discriminated by conventional PCR assay. Conclusions: The assay two‐step Real Time PCR is accurate, robust, cost‐effective and faster than auxonographical, biochemical or conventional molecular biology methods. Significance and Impact of the Study: the rapid and high throughout two‐step qPCR/RMA tool can be usefully used for the identification of clinical and environmental Prototheca species into the framework of the diagnosis of animal (e.g. bovine mastitis) or human protothecosis.  相似文献   

2.
The aim of this study was to establish a murine protothecal mastitis model and to evaluate the treatment efficiency of gentamicin. Challenge routes were determined with a pathogenic Prototheca zopfii genotype 2 (P. zopfii) strain. 25 BALB/c mice were inoculated in mammary glands with graded dosages (103, 104, 105, 106, 107 CFU of P. zopfii) and killed on the 7th day. Another 25 animals were also killed at 1, 3, 5, 7, and 9 days after inoculation of 1 × 106 CFU of P. zopfii, the milk somatic cell counts, pathological section of mammary glands, and P. zopfii burden were observed. The antimicrobial activity was tested using disc diffusion test and minimum inhibitory concentrations. Gentamicin was given intramuscularly to analyze the therapeutic effect. The results showed that the best infection route was intra-mammary gland, and the mastitis model was established with 1 × 106 CFU of P. zopfii. After infection, the somatic cell counts increased significantly. The pathological reaction mainly consisted of infiltration of inflammatory cells, destruction of acini, accumulation of lymphocyte cells and the severity of the changes was dosage and time-dependent. The P. zopfii burden revealed that P. zopfii continuously replicated. In vitro susceptibility tests indicated that the Prototheca strains were antimicrobial susceptible to gentamicin at concentrations between 0.03 and 4 μg/ml. In vivo therapeutic assay demonstrated that high concentrations of gentamicin (≥20 mg/kg) could inhibit the growth of P. zopfii. We conclude that the murine model of protothecal mastitis was established successfully and gentamicin may be an effective choice for treatment of P. zopfii.  相似文献   

3.
Species of the heterotrophic green microalgal genus Prototheca and related taxa were phylogenetically analyzed based on the nuclear small subunit (SSU) and the 5′ end of the large subunit (LSU) rRNA gene (rDNA) sequences. We propose restricting the genus Prototheca to the four species: P. moriformis Krüger, P. stagnora (Cooke) Pore, P. ulmea Pore, and P. zopfii Krüger. The main diagnostic feature of these taxa is the absence of growth on trehalose.Of these, it was suggested that P. moriformis should be merged into P. zopfii; P. moriformis and three varieties of P. zopfii constituted a paraphyletic assemblage with estimated short evolutionary distances. The trehalose‐assimilating strains (Prototheca wickerhamii Tubaki et Soneda strains and Auxenochlorella protothecoides (Krüger) Kalina et Pun?ochá?ová SAG 211‐7a), together with an invertebrate pathogen Helicosporidium sp., diverged before the radiation of the four species of Prototheca in the SSU rDNA and composite (SSU rDNA plus LSU rDNA) analyses. Comparison between the results from physiological data in this work (fermentative pattern) and those described earlier (growth requirements) lead us to propose a hypothesis that the phenotypic variation, which did not represent diagnostic characters for species delimitation, may reflect the history of genetic diversification within the genus Prototheca as inferred from rDNA sequence characters.  相似文献   

4.
Protothecosis has been reported in humans (gastroenteritis, bursitis, etc.) and in many other animal species. Bovine mastitis represents the main form of occurrence of protothecosis in cattle. Milk as well as dairy products, when contaminated with Prototheca spp., represent a potential means of transmission of this zoonosis. The purpose of this study was to evaluate the susceptibility of forty Prototheca zopfii strains isolated from milk from intramammary infections in dairy cows and also from bulk milk tanks of dairy farms, to the different ratios of temperature/time employed in the thermal treatment of milk: 72–75 °C/1 5 seconds, 72–75 °C/20 seconds and 62–65 °C/30 minutes. The samples were subjected to these different temperature/time ratios. The evaluation of the thermal susceptibility of the P. zopfii strains showed that 34 strains were resistant in at least one of the tests. The results point out the need to consider the importance of mastitis caused by Prototheca spp. asrepresenting a public health risk. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Kano  Rui 《Mycopathologia》2020,185(5):747-754

The genus Prototheca consists of achlorophyllic algae that are ubiquitous in the environment and animal intestines. However, this organism has forfeited its photosynthetic ability and switched to parasitism. In 1894, Krüger described two microorganisms isolated in Germany from mucous flux of Tilia and Ulmus spp., namely Prototheca moriformis and P. zopfii. Based on their yeast-like colony morphology, Krüger classified these organisms as fungi. The genus is now included within the class Trebouxiophyceae, order Chlorellales, and family Chlorellaceae. Historically, protothecosis and infections caused by green algae have been studied in the field of medical mycology. Prototheca spp. have been found to colonize human skin, fingernails, the respiratory tract, and digestive system. Although human infection by Prototheca is considered rare, an increase in infections has been noted among immunosuppressed patients, those on corticosteroid treatment, or both. Moreover, the first human outbreak of protothecal algaemia and sepsis was recently reported in a tertiary care chemotherapy oncology unit in 2018. Prototheca is also a causative pathogen of bovine disease. Prototheca zopfii and P. blaschkeae are associated with bovine mastitis, which causes a reduction in milk production and secretion of thin, watery milk containing white flakes. Economic losses are incurred either directly via reduced milk production and premature culling of affected animals or indirectly as a result of treatment and veterinary care expenses. Thus, knowledge of this fungal-like pathogen is essential in human and veterinary medicine. In this mini-review, I briefly introduce human and animal protothecoses.

  相似文献   

6.
Prototheca species are achlorophyllous algae ubiquitous in nature and known to cause localized and systemic infection both in humans and animals. Although identification of the Prototheca species in clinical specimens is a challenge, there are an increasing number of cases in which molecular techniques have successfully been used for diagnosis of protothecosis. In this study, we characterized nuclear ribosomal DNA (rDNA) of a strain of Prototheca (FL11-0001) isolated from a dermatitis patient in Japan for its species identification. When nuclear rDNA of FL11-0001 and that of various other Prototheca strains were compared by polymerase chain reaction (PCR), the results indicated that the sizes of ribosomal internal transcribed spacer (ITS) were different in a species-dependent manner, suggesting that the variation might be useful for differentiation of Prototheca spp. Especially, ITS of P. wickerhamii, the most common cause of human protothecosis, was distinctively larger than that of other Prototheca spp. FL11-0001, whose ITS was comparably large, could easily be identified as P. wickerhamii. The usefulness of the PCR analysis of ITS was also demonstrated by the discovery that one of the clinical isolates that had previously been designated as P. wickerhamii was likely a novel species. Furthermore, our data demonstrated that nucleotide sequences of P. wickerhamii ITS are heterogenous between different rDNA copies in each strain and also polymorphic between strains. Phylogenetic analysis suggested that the ITS sequences could be classified to four clades, based on which P. wickerhamii strains might be grouped into at least two genotypes. Comprehensive characterization of Prototheca rDNA may provide valuable insights into diagnosis and epidemiology of protothecosis, as well as evolution and taxonomy of Prototheca and related organisms.  相似文献   

7.
Gao J  Zhang HQ  He JZ  He YH  Li SM  Hou RG  Wu QX  Gao Y  Han B 《Mycopathologia》2012,173(4):275-281
Prototheca zopfii (P. zopfii) has become an important cause of bovine mastitis in many countries. In the present study, to better understand the occurrence of one clinical mastitis (CM) outbreak due to P. zopfii, the molecular characterization and resistance patterns of the microalga were described. P. zopfii strains were isolated from 17 of 23 quarters, which suffered CM in the outbreak, and 7 of 46 CM recovered quarters before the outbreak, as well as 2 of 75 environmental samples in the dairy farm. All strains were identified as genotype 2 by genotype-specific PCR analysis. Results of in vitro antimicrobial and antifungal susceptibility tests indicated that these strains were resistant to majority of tested drugs, with the only exception of amphotericin B, nystatin, streptomycin, gentamicin, and amikacin. This is the first report about CM outbreak caused by P. zopfii in China. These data suggest that P. zopfii may represent a serious risk in the studied herd, and this microalga could be an important potential pathogen causing mastitis in dairy herds of Beijing.  相似文献   

8.
Biochemical, serological, and genetic analyses have identified two genotypes of Prototheca zopfii, a unicellular microalga belonging to the family Chlorellaceae. The P. zopfii genotype 1, abundantly present in cow barns and environment, remains nonpathogenic, while P. zopfii genotype 2 has been isolated from cows with bovine mastitis. The present study was carried out to identify the protein expression level difference between the pathogenic and nonpathogenic strains of P. zopfii. A total of 782 protein spots were observed on the 2D fluorescence difference gel electrophoresis (2D DIGE) gels among which 63 and 44 proteins were identified to be overexpressed in genotypes 1 and 2, respectively. The limited number of protein entries specific for Prototheca in public repositories resulted mainly in the identification of proteins described in other algae, microorganisms, or plants. Gene ontology (GO) analysis indicated reduced carbohydrate metabolism in genotype 1, while genotype 2 displayed enhanced DNA binding, kinase activity, and signal transduction. These effects point to metabolic and signaling adaptations in the pathogenic strain and provide insights into the evolution of otherwise highly similar strains. All MS data have been deposited in the ProteomeXchange with identifier PXD000126.  相似文献   

9.
Domestic swine faeces and fresh faeces from trapped barnyard rats were heavily contaminated with Prototheca zopfii, a cause of dairy cow mastitis. When the pigs and rats were maintained on Prototheca-free diets, the transient intestinal population of P. zopfii decreased precipitously and disappeared. When combined with the information that other farm animals excrete P. zopfii, it was concluded that contaminated animal feed may be the source of large numbers of P. zopfii in the farm environment. We found P. zopfii in wet spoiled feed. Rats are logical vectors for contamination of feed.  相似文献   

10.
Protothecosis is a rare disease caused by environmental algae of the genus Prototheca. These are saprophytic, non-photosynthetic, aerobic, colorless algae that belong to the Chlorellaceae family. Seven different species have been described. Prototheca zopfii genotype 2 and P. wickerhamii are most commonly involved in pathogenic infections in humans and animals. The objective of this work is to describe, for the first time, a case of protothecosis caused by P. zopfii genotype 1 in a dog. The dog, a 4-year-old mix bred male, was presented to a veterinary clinic in Montevideo, Uruguay, with multiple skin nodules, one of which was excised by surgical biopsy. The sample was examined histologically and processed by PCR, DNA sequencing, and restriction fragments length polymorphisms for the detection and genotyping of P. zopfii. In addition, transmission electron microscopy and scanning electron microscopy were performed. Histology showed severe ulcerative granulomatous dermatitis and panniculitis with myriads of pleomorphic algae. Algal cells were 4–17 µm in size, with an amphophilic, 2–4-µm-thick wall frequently surrounded by a clear halo, contained flocculant material and a deeply basophilic nucleus, and internal septae with daughter cells (endospores) consistent with endosporulation. Ultrastructurally, algal cells/endospores at different stages of development were found within parasitophorous vacuoles in macrophages. Prototheca zopfii genotype 1 was identified by molecular testing, confirming the etiologic diagnosis of protothecosis.  相似文献   

11.
Bovine mastitis caused by the yeast-like alga Prototheca zopfii represents a serious veterinary problem and may result in heavy economic losses to particular dairy farms. The purpose of this study was to evaluate the survival of 50 isolates of P. zopfii in milk subjected to different heat treatments and the survival of further 106 P. zopfii isolates after exposure to three classes of teat disinfectants: iodine (Dipal), quaternary ammonium compounds (Teat), and dodecylbenzenesulphonic acid (Blu-gard). Of the 50 isolates tested for thermal tolerance, 29 (58%) survived heat treatment at 62°C for 30 s and 13 (26% of all isolates) of those survived after heat treatment at 72°C for 15 s. None of the 106 isolates were able to withstand the in-use concentrations of the three disinfectants tested. The highest disinfectant concentrations that permitted survival of at least one isolate were dilutions: 1:1,000 for Dipal (survival rate of 52.8–57.5%), 1:100 for Teat (88.7–90.6%), and 1:10 for Blu-gard (100%). No differences in the survival rates of P. zopfii were observed with respect to the duration of exposure to disinfectant. The results of this study support the previous findings that P. zopfii may resist high-temperature treatments, including that applied in the high-temperature, short-time (HTST) pasteurization process. The obtained data also demonstrate the efficacy of the three classes of teat disinfectants against P. zopfii, with the efficacy of iodine being most pronounced. The study emphasizes the necessity of using higher temperatures in the pasteurization of raw milk to kill the Prototheca algae, as well as the particular suitability of the iodine for the control procedures of protothecal mastitis.  相似文献   

12.
The storage glucans of Chlorella pyrenoidosa and Prototheca zopfii are identical and consist of a linear polyglucan akin to amylose and a branched amylopectin component. The branched glucans of these algae differ markedly from that formed by the hot-springs alga, Cyanidium caldarium. The more highly branched Cyanidium glucan appears to be formed by branching glucosyltransferases which are different from those of the other two algae. The relevance of the data to the possibility of Cyanidium being a Prototheca-like Chlorella that has acquired symbiotic Cyanobacteria as chloroplasts is discussed.  相似文献   

13.
Five physiological and biochemical characters, which had proved to be valuable for the taxonomy of the genus Chlorella, were studied in the genus Prototheca. There is no hydrogenase activity and no liquefaction of gelatin. Most strains are very acidtolerant (limit of growth at pH 2.0 or 2.5) and very salt-tolerant (limit of growth at 4 or 5% NaCl). Two strains grow well at 38°C. The 16 strains, which were previously assigned to seven taxa, fall into four different groups. Our results tend to support the assumption that Prototheca might be related to Chlorella protothecoides.  相似文献   

14.
A non-pigmented, unicellular alga isolated from the faeces of British anuran tadpoles and which is associated with growth inhibition in these tadpoles, was described and identified using cytological, ultrastructural, nutrient assimilation and immunological studies. The alga possessed all the distinctive morphological features of the genus Prototheca, it grew weakly on Prototheca Isolation Medium (PIM), it required thiamine for continued growth and replication, and it could assimilate the five major substrates used to speciate the protothecans. All of these characteristics, together with previous nucleic acid hybridisation studies, indicated that the microorganism belonged to the genus Prototheca. There are currently five species recognised as valid (Pore, 1985 & 1986): Prototheca zopfii Kruger, 1884, P. wickerhamii Tubaki & Soneda, 1959, P. moriformis Kruger, 1884, P. stagnora Cooke, 1968 and P. ulmea Pore, 1986.The immunology showed that the new species was related to two of the protothecans, but overall it showed that the alga was antigenically distinct from the other protothecans tested in the immunoassay. This, together with its inability to grow strongly on PIM, its ability to assimilate a wide rage of carbon substrates and its ability to mediate growth inhibition in anuran tadpoles, indicated a new species of Prototheca. We therefore propose the name Prototheca richardsi sp. n.  相似文献   

15.
Protothecosis is a disease caused by saprophyte aerobic unicellular algae belonging to the genus Prototheca. In dogs, it mainly occurs as a disseminated form, with initial clinical manifestations often referable to the gastrointestinal tract, followed by typical ocular and neurological signs. So far, Prototheca zopfii genotype 2 infection has been reported in severe forms of disseminated protothecosis, while in dogs has never been associated with cutaneous forms. In this study, we describe a case of Prototheca zopfii genotype 2 infection in a dog characterized by nodular and ulcerative dermatitis and with evidence of dissemination. In December 2015, a 5-year-old unneutered male English Setter dog was presented with a 4-month history of footpads ulcerations and multifocal nodular lesions (3–5 cm diameter) on both front limbs. Cytological examination of the aspirated fluid collected from all nodules revealed the presence of sporangic forms compatible with Prototheca spp. organisms. Suspected Prototheca spp. colonies were isolated from the aspirated fluid and identified as Prototheca zopfii genotype 2 by molecular methods. Few days after the visit, the patient developed serious neurological and ocular signs, and the owners elected humane euthanasia. To the authors’ knowledge, this case could represent the first report of a disseminated Prototheca zopfii genotype 2 infection associated with cutaneous lesions in a dog. This study underlines the importance of considering Prototheca zopfii genotype 2 infection in the differential etiological diagnosis of nodular and ulcerative dermatitis in dogs.  相似文献   

16.
Prototheca zopfii (12 strains) is able to use glucose, fructose, propanol, glycerol, and acetate as sources of carbon for growth. One of the strains is biochemically (utilization also of galactose and mannose), and two strains are morphologically slightly different.Two strains can be identified as P. wikerhamii. They exhibit good growth with glucose, fructose, galactose, trehalose, propanol, glycerol, acetate, and glutamate as sources of carbon. P. spec. 263-2 grows only with glucose and acatate. P. zopfii and P. wickerhamii are able to use urea, glycine, and glutamate as sources of nitrogen. P. spec. 263-2, on the other hand, cannot utilize these organic nitrogen compounds for growth.Four strains of Chlorella protothecoides are able to use glucose, fructose, galactose, and acetate as sources of carbon for growth in the dark. Three of them utilize also mannose, trehalose, and glutamate. Two strains can grow with glycerol, and one is able to use lactose. — Urea and glycine can serve as sources of nitrogen for the four strains of C. protothecoides. Glutamate supports growth of three strains, and one strain is able to use nicotinamide.  相似文献   

17.
The Prototheca algae have recently emerged as an important cause of bovine mastitis globally. Here, we present results of a first large-scale, cross-country survey on the prevalence of Prototheca spp. in dairy cows, and their environment in Poland. A total of 1211 samples were collected and microbiologically analysed. Included within this number were milk (= 638), body swabs (= 374) and environmental samples (= 199), originating from 400 dairy cows and their surroundings, on 16 dairy farms, based in all major provinces of the country. Prototheca spp. were the third, after Streptococcus and Staphylococcus spp., most common mastitis pathogens. The overall prevalence of protothecal mastitis was 8.3% (33/400), with the majority (75.8%) of cases having a subclinical course, and all but one attributable to P. zopfii genotype 2. Prototheca spp. were cultured from body swabs of both healthy and mastitic cows, yet the isolation rate among the latter was conspicuously lower (12.3% vs. 17.8%). Forty-two (21.2%) environmental samples yielded growth of Prototheca spp. However, no clear association between Prototheca mastitis in dairy cows and the algal isolation from the herd environment was found. Nor was there any association between the environmental recovery of the algae and farm management practices.  相似文献   

18.
Haloarchaeal strains require high concentrations of NaCl for their growth, with optimum concentrations of 10–30%. They display a wide variety of morphology and physiology including pH range for growth. Many strains grow at neutral to slightly alkaline pH, and some only at alkaline pH. However, no strain has been reported to grow only in acidic pH conditions within the family Halobacteriaceae. In this study, we isolated many halophiles capable of growth in a 20% NaCl medium adjusted to pH 4.5 from 28 commercially available salts. They showed growth at pH 4.0 to 6.5, depending slightly on the magnesium content. The most acidophilic strain MH1-52-1 isolated from an imported solar salt (pH of saturated solution was 9.0) was non-pigmented and extremely halophilic. It was only capable of growing at pH 4.2–4.8 with an optimum at pH 4.4 in a medium with 0.1% magnesium chloride, and at pH 4.0–6.0 (optimum at pH 4.0) in a medium with 5.0% magnesium. The 16S rRNA and DNA-dependent RNA polymerase subunit B' gene sequences demonstrated clearly that the strain MH1-52-1 represents a new genus in the family Halobacteriaceae.  相似文献   

19.
The presence of sucrose and the enzymes related to sucrose metabolism, i.e. sucrose synthase (SS) (UDP-glucose: D-fructose-2-glucosyl transferase, EC 2.4.1.13), sucrose phosphate synthase (SPS) (UDP-glucose: D-fructose-6-phosphate-2-glucosyl transferase, EC 2.4.1.14) and invertase (β-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was demonstrated in Prototheca zopfii, a colorless alga. The levels of enzyme activities were lower than those obtained in Chlorella vulgaris, which is generally considered the photosynthetic counterpart of P. zopfii. Whem enzyme activities were measured in bleached cells of C. vulgaris, the levels were of the same order than those found in P. zopfii. These results would indicate that the sucrose metabolizing enzymes are not related to the algae ability to carry on photosynthesis.  相似文献   

20.
We have isolated four strains of Rhodococcus which specifically degrade estrogens by using enrichment culture of activated sludge from wastewater treatment plants. Strain Y 50158, identified as Rhodococcus zopfii, completely and rapidly degraded 100 mg of 17β-estradiol, estrone, estriol, and ethinyl estradiol/liter, as demonstrated by thin-layer chromatography and gas chromatography-mass spectrometry analyses. Strains Y 50155, Y 50156, and Y 50157, identified as Rhodococcus equi, showed degradation activities comparable with that of Y 50158. Using the random amplified polymorphism DNA fingerprinting test, these three strains were confirmed to have been derived from different sources. R. zopfii Y 50158, which showed the highest activity among these four strains, revealed that the strain selectively degraded 17β-estradiol during jar fermentation, even when glucose was used as a readily utilizable carbon source in the culture medium. Measurement of estrogenic activities with human breast cancer-derived MVLN cells showed that these four strains each degraded 100 mg of 17β-estradiol/liter to 1/100 of the specific activity level after 24 h. It is thus suggested that these strains degrade 17β-estradiol into substances without estrogenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号