首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic defence peptides show high therapeutic potential as antimicrobial and anticancer agents. Some of these peptides carry a C-terminal amide moiety which has been shown to be required for antimicrobial activity. However, whether this is a general requirement or whether C-terminal amidation is required for the anticancer activity of defence peptides is unclear. In response, this study analyses the toxicity of a series of C-terminally amidated defence peptides and their non-amidated isoforms to normal fibroblast cells, a variety of tumour cells and bacterial cells. The toxicities of these peptides to microbial and cancer cells were generally <200 μM. Peptides were either unaffected by C-terminal amidation or showed up to 10-fold decreases or increases in efficacy. However, these peptides all showed toxicity to normal fibroblast cells with levels (generally <150 μM) that were comparable to those of their antimicrobial and anticancer activities. In contrast to previous claims which have been based on analysis of single amidation events, the results of this study clearly show that the C-terminal amidation of defence peptides has a variable effect on their antimicrobial and anticancer efficacy and no clear effect on their selectivity for these cell types.  相似文献   

2.
Multiple linear regression was used to quantify the dependence of the antimicrobial activity of 13 peptides upon three calculated or experimentally determined parameters: mean hydrophobicity, mean hydrophobic moment, and α-helix content. Mean hydrophobic moment is a measure of the amphiphilicity of peptides in an α-helical conformation. Antimicrobial activity was quantified as the reciprocal of the measured minimal inhibitory concentration (MIC) against Escherichia coli. One of the peptides was magainin 2, and the remainder were novel peptides designed for this study. The multiple linear regression results revealed that the amphiphilicity of the peptides was the most important factor governing anti-microbial activity compared to mean hydrophobicity orα-helix content. A better regression cf the data was obtained using In(1/MIC + constant) as the dependent variable than with either 1/MIC or In(1/MIC). These results should be useful in designing peptides with higher antimicrobial activity. © 1995 Wiley-Liss, Inc.  相似文献   

3.
In order to decrease the variability of formic acid treatments against the honey bee parasite the varroa mite, Varroa destructor, it is necessary to determine the dose-time combination that best controls mites without harming bees. The concentration × time (CT) product is a valuable tool for studying fumigants and how they might perform under various environmental conditions. This laboratory study is an assessment of the efficacy of formic acid against the varroa mite under a range of formic acid concentrations and temperatures. The objectives are 1) to determine the effect of temperature and dose of formic acid on worker honey bee and varroa mite survival, 2) to determine the CT50 products for both honey bees and varroa mites and 3) to determine the best temperature and dose to optimize selectivity of formic acid treatment for control of varroa mites. Worker honey bees and varroa mites were fumigated at 0, 0.01, 0.02, 0.04, 0.08, and 0.16 mg/L at 5, 15, 25, and 35 °C for 12 d. Mite and bee mortality were assessed at regular intervals. Both mite and bee survival were affected by formic acid dose. Doses of 0.08 and 0.16 mg/L were effective at killing mites at all temperatures tested above 5 °C. There was a significant interaction between temperature, dose, and species for the CT50 product. The difference between the CT50 product of bees and mites was significant at only a few temperature-dose combinations. CT product values showed that at most temperatures the greatest fumigation efficiency occurred at lower doses of formic acid. However, the best fumigation efficiency and selectivity combination for treatments occurred at a dose of 0.16 mg/L when the temperature was 35 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Three new phenotypes of human erythrocyte acid phosphatase (ACP1) have been detected and found to be unique by direct comparison with previously identified ACP1 variants. One of these new electrophoretic variants, labeled as ACP1FA, has been detected in the Hispanic population of California. The electrophoretic variants identified as ACP1GA and ACP1GB have been detected in a black family in North Carolina. A family study has shown that ACP 1 G is transmitted as an allele of ACP1.  相似文献   

5.
Antimicrobial peptides (AMPs) constitute a diverse class of naturally occurring or synthetic antimicrobial molecules that have potential for use in the treatment of drug-resistant infections. Several undesirable properties of AMPs, however, may ultimately hinder their development as antimicrobial agents. Thus, new synthetic strategies, including primarily the de novo design of AMPs, urgently need to be developed. In this study, a series of peptides, H-(RWL) n (n = 1, 2, 3, 4, or 5), were designed. H represents GLRPKYS from the C-terminal sequence of AvBD-4. Our results showed that these RWL-tagged peptides can kill not only bacteria but also human hepatocellular carcinoma HepG2 cells. However, the peptide tagged with two repeats of RWL (GW13) showed less affinity to human embryonic lung fibroblast MRC-5 cells or human red blood cells (hRBCs) than HepG2 cells. These results demonstrated that GW13, with high amphiphilicity, exerted great selectivity toward bacteria and cancer cells, sparing host mammalian cells. The mechanism of action against bacteria was elucidated through combined studies of scanning electron microscopy (SEM) and fluorescence assays, showing that the peptide possessed membrane-lytic activities against microbial cells. The fluorescence assays illustrated that GW13 induced apoptosis in HepG2 cells. The cell morphology of HepG2 cells, observed by SEM, further illustrated that GW13 causes cell death by damaging the cell membrane. Our results indicate that GW13 has considerable potential for future development as an antimicrobial and antitumor agent.  相似文献   

6.
Microsatellite loci were isolated from the Blue‐and‐gold Macaw (Ara ararauna), a Neotropical parrot, from a GTn and CTn enriched genomic library. Six loci were characterized varying from one to 11 alleles per locus. Five loci exhibited greater than 50% heterozygosity within the 49 individuals genotyped. Furthermore, the primers also amplified the DNA from two additional genera of Neotropical parrots, indicating the potential utility of these markers for population‐level studies and conservation efforts of Neotropical parrots.  相似文献   

7.
Water lettuce, Pistia stratiotes, and red water fern, Azolla filiculoides, are floating aquatic macrophytes that have become problematic in South Africa. Two weevils, Neohydronomus affinis and Stenopelmus rufinasus, are successful biological control agents of these two species in South Africa. The aim of this study was to investigate the thermal requirements of these two species to explain their establishment patterns in the field. Laboratory results showed that both weevils are widely tolerant to cold and warm temperatures. The critical thermal minima (CTmin) of N. affinis was determined to be 5.58?±?0.31°C and the critical thermal maxima (CTmax) was 44.52?±?0.27°C, while the CTmin of S. rufinasus was 5.38?±?0.33°C and the CTmax?44.0?±?0.17°C. In addition, the lower lethal temperatures were ?9.85?±?0.06°C for N. affinis and ?6.85?±?0.13°C for S. rufinasus, and the upper lethal temperatures were 42.7?±?0.85°C for N. affinis and 41.9?±?2.52°C S. rufinasus. Using the reduced major axis regression method, the development for N. affinis was described using the formula y?=?12.976x?+?435.24, while the development of S. rufinasus was described by y?=?13.6x?+?222.45. These results showed that S. rufinasus develops twice as fast as N. affinis. Using these formulae and temperature data obtained from the South African Weather Service, N. affinis was predicted to complete between 4 and 9 generations per year in South Africa, while S. rufinasus was predicted to complete between 5 and 14 generations per year around the country. These results suggest that both species should not be limited by cold winter, nor warm summer temperatures, and should establish throughout the ranges of the weeds in South Africa.  相似文献   

8.
The upper thermal tolerance of brook trout Salvelinus fontinalis was estimated using critical thermal maxima (CTmax) experiments on fish acclimated to temperatures that span the species' thermal range (5–25°C). The CTmax increased with acclimation temperature but plateaued in fish acclimated to 20, 23 and 25°C. Plasma lactate was highest, and the hepato-somatic index (IH) was lowest at 23 and 25°C, which suggests additional metabolic costs at those acclimation temperatures. The results suggest that there is a sub-lethal threshold between 20 and 23°C, beyond which the fish experience reduced physiological performance.  相似文献   

9.
Insect thermal tolerance shows a range of responses to thermal history depending on the duration and severity of exposure. However, few studies have investigated these effects under relatively modest temperature variation or the interactions between short‐ and longer‐term exposures. In the present study, using a full‐factorial design, 1 week‐long acclimation responses of critical thermal minimum (CTmin) and critical thermal maximum (CTmax) to temperatures of 20, 25 and 30 °C are investigated, as well as their interactions with short‐term (2 h) sub‐lethal temperature exposures to these same conditions (20, 25 and 30 °C), in two fruit fly species Ceratitis capitata (Wiedemann) and Ceratitis rosa Karsch from South Africa. Flies generally improve heat tolerance with high temperature acclimation and resist low temperatures better after acclimation to cooler conditions. However, in several cases, significant interaction effects are evident for CTmax and CTmin between short‐ and long‐term temperature treatments. Furthermore, to better comprehend the flies' responses to natural microclimate conditions, the effects of variation in heating and cooling rates on CTmax and CTmin are explored. Slower heating rates result in higher CTmax, whereas slower cooling rates elicit lower CTmin, although more variation is detected in CTmin than in CTmax (approximately 1.2 versus 0.5 °C). Critical thermal limits estimated under conditions that most closely approximate natural diurnal temperature fluctuations (rate: 0.06 °C min?1) indicate a CTmax of approximately 42 °C and a CTmin of approximately 6 °C for these species in the wild, although some variation between these species has been found previously in CTmax. In conclusion, the results suggest critical thermal limits of adult fruit flies are moderated by temperature variation at both short and long time scales and may comprise both reversible and irreversible components.  相似文献   

10.
One hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus. Seven of the 15 loci included in the genetic structure analyses exhibited significant deviation from panmixia, of which two showed excess and five showed deficiency of heterozygote. The cluster analysis (CA) revealed ten groups with 32 instances of synonymy among cultivars and groups differed significantly for frequency and composition of alleles for different loci. The principal components analysis (PCA) confirmed the results of CA with some groups more differentiated than the others. Further, the model based Bayesian approach clustering suggested a subtle population structure with mixed ancestry for most figs. The gene diversity analysis indicated that much of the total variation is found within groups (H G /H T = 0.853; 85.3%) and the among groups within total component (G GT = 0.147) accounted for the remaining 14.7%, of which ~64% accounted for among groups within clusters (G GC = 0.094) and ~36% among clusters (G CT = 0.053). The analysis of molecular variance (AMOVA) showed approximately similar results with nearly 87% of variation within groups and ~10% among groups within clusters, and ~3% among clusters. Overall, the gene pool of cultivated fig analyzed possesses substantial genetic polymorphism but exhibits narrow differentiation. It is evident that fig accessions from Turkmenistan are somewhat genetically different from the rest of the Mediterranean and the Caucasus figs. The long history of domestication and cultivation with widespread dispersal of cultivars with many synonyms has resulted in a great deal of confusion in the identification and classification of cultivars in fig.  相似文献   

11.
Summary The regional localization of the gene coding for soluble acid phosphatase (ACP1) has been under debate in the two different chromosome regions, 2p23 or 2p25. Gene dosage studies in a case with a karyotype of 46,XX,dir dup(2) (p25.1→p25.3) showed that the ACP1 activity was increased to 1.4 times the mean value of normal individuals with the same ACP1 phenotype, while the level of soluble malate dehydrogenase (MDH1) was normal. These gene dosage effects indicated that the ACP1 gene locus can be mapped to 2p25.  相似文献   

12.
Molecular docking of a library of all 8000 possible tripeptides to the active site of DPP-IV was used to determine their binding potential. A number of tripeptides were selected for experimental testing, however, there was no direct correlation between the Vina score and their in vitro DPP-IV inhibitory properties. While Trp-Trp-Trp, the peptide with the best docking score, was a moderate DPP-IV inhibitor (IC50 216 μM), Lineweaver and Burk analysis revealed its action to be non-competitive. This suggested that it may not bind to the active site of DPP-IV as assumed in the docking prediction. Furthermore, there was no significant link between DPP-IV inhibition and the physicochemical properties of the peptides (molecular mass, hydrophobicity, hydrophobic moment (μH), isoelectric point (pI) and charge). LIGPLOTs indicated that competitive inhibitory peptides were predicted to have both hydrophobic and hydrogen bond interactions with the active site of DPP-IV. DPP-IV inhibitory peptides generally had a hydrophobic or aromatic amino acid at the N-terminus, preferentially a Trp for non-competitive inhibitors and a broader range of residues for competitive inhibitors (Ile, Leu, Val, Phe, Trp or Tyr). Two of the potent DPP-IV inhibitors, Ile-Pro-Ile and Trp-Pro (IC50 values of 3.5 and 44.2 μM, respectively), were predicted to be gastrointestinally/intestinally stable. This work highlights the needs to test the assumptions (i.e. competitive binding) of any integrated strategy of computational and experimental screening, in optimizing screening. Future strategies targeting allosteric mechanisms may need to rely more on structure–activity relationship modeling, rather than on docking, in computationally selecting peptides for screening.  相似文献   

13.
Tests of hypotheses for the evolution of thermal physiology often rely on mean temperatures, but mounting evidence suggests geographic variation in temperature extremes is also an important predictor of species’ thermal tolerances. Although the tropics are less thermally variable than higher latitude regions, rain shadows on the leeward sides of mountains can experience greater diel and seasonal variation in temperature than windward sites. Rain shadows provide opportunities to test predictions about the relationships of extreme temperatures with thermal physiology while controlling for latitude. We tested the hypothesis that populations of leaf-cutting ants (Atta cephalotes) in leeward, montane, and windward sites in Costa Rica would differ in upper thermal tolerances (CTmax) of workers. As predicted from rain shadow effects via extreme high temperatures, the leeward rain shadow site yielded the highest mean CTmax (rain shadow site 42.1 ± 0.3°C, Montane site 38.2 ± 0.5°C, and windward site 38.2 ± 0.3°C). This suggests that high-temperature extremes in tropical rain shadow forests can select for higher thermal tolerances. CTmax increased with worker body size within sites, but CTmax increased with body size more gradually at the two lowland sites, as predicted if local high temperatures selected more strongly on the most thermally vulnerable society members (small workers). This suggests that warmer lowland climates selected for colonies with less variation in heat tolerance than cooler high elevation climates.  相似文献   

14.
The bacterial flagellar export switching machinery consists of a ruler protein, FliK, and an export switch protein, FlhB and switches substrate specificity of the flagellar type III export apparatus upon completion of hook assembly. An interaction between the C‐terminal domain of FliK (FliKC) and the C‐terminal cytoplasmic domain of FlhB (FlhBC) is postulated to be responsible for this switch. FliKC has a compactly folded domain termed FliKT3S4 (residues 268–352) and an intrinsically disordered region composed of the last 53 residues, FliKCT (residues 353–405). Residues 301–350 of FliKT3S4 and the last five residues of FliKCT are critical for the switching function of FliK. FliKCT is postulated to regulate the interaction of FliKT3S4 with FlhBC, but it remains unknown how. Here we report the role of FliKCT in the export switching mechanism. Systematic deletion analyses of FliKCT revealed that residues of 351–370 are responsible for efficient switching of substrate specificity of the export apparatus. Suppressor mutant analyses showed that FliKCT coordinates FliKT3S4 action with the switching. Site‐directed photo‐cross‐linking experiments showed that Val‐302 and Ile‐304 in the hydrophobic core of FliKT3S4 bind to FlhBC. We propose that FliKCT may induce conformational rearrangements of FliKT3S4 to bind to FlhBC.  相似文献   

15.
Tropical ectothermic species are currently depicted as more vulnerable to increasing temperatures because of the proximity between their upper thermal limits and environmental temperatures. Yet, the acclimatory capacity of thermal limits has rarely been measured in tropical species, even though they are generally predicted to be smaller than in temperate species. We compared critical thermal maximum (CTmax) and warming tolerance (WT: the difference between CTmax and maximum temperature, Tmax), as well as CTmax acclimatory capacity of toad species from the Atlantic forest (AF) and the Brazilian Caatinga (CAA), a semi-arid habitat with high temperatures. Acclimation temperatures represented the mean temperatures of AF and CAA habitats, making estimates of CTmax and WT more ecologically realistic. CAA species mean CTmax was higher compared to AF species in both acclimation treatments. Clutches within species, as well as between AF and CAA species, differed in CTmax plasticity and we discuss the potential biological meaning of these findings. We did not find a trade-off between absolute CTmax and CTmax plasticity, indicating that species can have both high CTmax and high CTmax plasticity. Although CTmax was highly correlated to Tmax, CTmax plasticity was not related to Tmax or Tmax coefficients of variation. CAA species mean WT was lower than for AF species, but still very high for all species, diverging from other studies with tropical species. This might be partially related to over-estimation of vulnerability due to under-appreciation of realistic acclimation treatments in CTmax estimation. Thus, some tropical species might not be as vulnerable to warming as previously predicted if CTmax is considered as a shifting population parameter.  相似文献   

16.
Stability of membrane protein is crucial during protein purification and crystallization as well as in the fabrication of protein-based devices. Several recent studies have examined how various surfactants can stabilize membrane proteins out of their native membrane environment. However, there is still no single surfactant that can be universally employed for all membrane proteins. Because of the lack of knowledge on the interaction between surfactants and membrane proteins, the choice of a surfactant for a specific membrane protein remains purely empirical. Here we report that a group of short amphiphilic peptides improve the thermal stability of the multi-domain protein complex photosystem-I (PS-I) in aqueous solution and that the peptide surfactants have obvious advantages over other commonly used alkyl chain based surfactants. Of all the short peptides studied, Ac-I5K2-CONH2 (I5K2) showed the best stabilizing effect by enhancing the melting temperature of PS-I from 48.0°C to 53.0°C at concentration of 0.65 mM and extending the half life of isolated PS-I significantly. AFM experiments showed that PS-I/I5K2/Triton X-100 formed large and stable vesicles and thus provide interfacial environment mimicking that of native membranes, which may partly explain why I5K2 enhanced the thermal stability of PS-I. Hydrophobic and hydrophilic group length of IxKy had an important influence on the stabilization of PS-I. Our results showed that longer hydrophobic group was more effective in stabilizing PS-I. These simple short peptides therefore exhibit significant potential for applications in membrane protein studies.  相似文献   

17.
Four peptides mimicking the four P-regions of the electric eel sodium channel were chemically synthesized to characterize their secondary structure and their contribution to the channel selectivity. Circular dichroism spectra of these peptides in trifluoroethanol demonstrate an important β-sheet conformational component. This β-sheet content is much enhanced upon interaction with phosphatidylcholine small unilamellar vesicles. As expected (and except for P of domain III), no significant voltage-dependence is revealed in either macroscopic or single-channel conductance experiments. The concentration-dependences of macroscopic conductances suggest that tetramers are the membrane conducting aggregates. In asymmetric ionic conditions, these channels made up of P-peptides were mostly specific for sodium over chloride whilst caesium was largely excluded. Single-channel conductance analysis discloses a moderate selectivity for sodium over potassium for PI and PII. This selectivity is larger with PIII but inverted for PIV. Finally, a control random peptide of the same length and with a comparable mean hydrophibicity was also tested. Its conformation in TFE is mainly unordered and no activity was detected in planar lipid bilayers. The data suggest that the presumed selectivity filter may not assume a circular symmetry and that molecular recognition between the different P-regions has to be taken into account.  相似文献   

18.
Understanding the capacity for different species to reduce their susceptibility to climate change via phenotypic plasticity is essential for accurately predicting species extinction risk. The climatic variability hypothesis suggests that spatial and temporal variation in climatic variables should select for more plastic phenotypes. However, empirical support for this hypothesis is limited. Here, we examine the capacity for ten Drosophila species to increase their critical thermal maxima (CTMAX) through developmental acclimation and/or adult heat hardening. Using four fluctuating developmental temperature regimes, ranging from 13 to 33 °C, we find that most species can increase their CTMAX via developmental acclimation and adult hardening, but found no relationship between climatic variables and absolute measures of plasticity. However, when plasticity was dissected across developmental temperatures, a positive association between plasticity and one measure of climatic variability (temperature seasonality) was found when development took place between 26 and 28 °C, whereas a negative relationship was found when development took place between 20 and 23 °C. In addition, a decline in CTMAX and egg‐to‐adult viability, a proxy for fitness, was observed in tropical species at the warmer developmental temperatures (26–28 °C); this suggests that tropical species may be at even greater risk from climate change than currently predicted. The combined effects of developmental acclimation and adult hardening on CTMAX were small, contributing to a <0.60 °C shift in CTMAX. Although small shifts in CTMAX may increase population persistence in the shorter term, the degree to which they can contribute to meaningful responses in the long term is unclear.  相似文献   

19.
Thermal adaptation theory predicts that thermal specialists evolve in environments with low temporal and high spatial thermal variation, whereas thermal generalists are favored in environments with high temporal and low spatial variation. The thermal environment of many organisms is predicted to change with globally increasing temperatures and thermal specialists are presumably at higher risk than thermal generalists. Here we investigated critical thermal maximum (CTmax) and preferred temperature (Tp) in populations of the common pond snail (Radix balthica) originating from a small‐scale system of geothermal springs in northern Iceland, where stable cold (ca. 7°C) and warm (ca. 23°C) habitats are connected with habitats following the seasonal thermal variation. Irrespective of thermal origin, we found a common Tp for all populations, corresponding to the common temperature optimum (Topt) for fitness‐related traits in these populations. Warm‐origin snails had lowest CTmax. As our previous studies have found higher chronic temperature tolerance in the warm populations, we suggest that there is a trade‐off between high temperature tolerance and performance in other fitness components, including tolerance to chronic thermal stress. Tp and CTmax were positively correlated in warm‐origin snails, suggesting a need to maintain a minimum “warming tolerance” (difference in CTmax and habitat temperature) in warm environments. Our results highlight the importance of high mean temperature in shaping thermal performance curves.  相似文献   

20.
Resistance and side effects are common problems for anticancer drugs used in chemotherapy. Thus, continued research to discover novel and specific anticancer drugs is obligatory. Marine sponges hold great promise as a source of potent cytotoxic peptides with future applications in cancer treatments. This study aimed to purify and identify cytotoxic peptides from the protein hydrolysates of the giant barrel sponge Xestospongia testudinaria, guided by a cytotoxicity assay based on the human cervical cancer cell line (HeLa). Comparison among trypsin, chymotrypsin, papain and alcalase hydrolysates of X. testudinaria revealed papain hydrolysate (PH) to be the most active. PH was purified consecutively by membrane ultrafiltration, gel filtration chromatography, and reversed-phase high performance liquid chromatography (RP-HPLC). Following liquid chromatography-tandem mass spectrometric analysis, two peptides were identified from the most cytotoxic RP-HPLC fraction: KENPVLSLVNGMF and LLATIPKVGVFSILV. Between the two, only the synthetic peptide KENPVLSLVNGMF showed cytotoxicity toward HeLa cells in a dose-dependent manner. KENPVLSLVNGMF (EC50 0.67 mM) was 3.8-fold more cytotoxic compared with anticancer drug 5-fluorouracil (EC50 2.56 mM). Furthermore, KENPVLSLVNGMF show only marginal 5% cytotoxicity to Hek293, a non-cancerous, human embryonic kidney cell line, when tested at 0.67 mM. The half-life of the peptide was 3.2?±?0.5 h in human serum in vitro, as revealed by RP-HPLC analyses. These results suggest that KENPVLSLVNGMF identified from X. testudinaria papain hydrolysate has potential applications as peptide lead in future development of potent and specific anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号