首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMP-activated protein kinase (AMPK) is a sensor of cellular energy state in response to metabolic stress and other regulatory signals. AMPK is controlled by upstream kinases which have recently been identified as LKB1 or Ca2+/calmodulin-dependent protein kinase kinase beta (CaMKKbeta). Our study of human endothelial cells shows that AMPK is activated by thrombin through a Ca2+-dependent mechanism involving the thrombin receptor protease-activated receptor 1 and Gq-protein-mediated phospholipase C activation. Inhibition of CaMKK with STO-609 or downregulation of CaMKKbeta using RNA interference decreased thrombin-induced AMPK activation significantly, indicating that CaMKKbeta was the responsible AMPK kinase. In contrast, downregulation of LKB1 did not affect thrombin-induced AMPK activation but abolished phosphorylation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside. Thrombin stimulation led to phosphorylation of acetyl coenzyme A carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), two downstream targets of AMPK. Inhibition or downregulation of CaMKKbeta or AMPK abolished phosphorylation of ACC in response to thrombin but had no effect on eNOS phosphorylation, indicating that thrombin-stimulated phosphorylation of eNOS is not mediated by AMPK. Our results underline the role of Ca2+ as a regulator of AMPK activation in response to a physiologic stimulation. We also demonstrate that endothelial cells possess two pathways to activate AMPK, one Ca2+/CaMKKbeta dependent and one AMP/LKB1 dependent.  相似文献   

2.
The primary objective of this study was to investigate the impact of lipid oversupply on the AMPK pathway in skeletal muscle, liver, and adipose tissue. Male Wistar rats were infused with lipid emulsion (LE) or phosphate‐buffered saline for 5 h/day for 6 days. Muscles exposed to LE for 6 days exhibited increased AMPK and acetyl‐CoA carboxylase (ACC) phosphorylation, along with a greater association between AMPK and Ca2+/calmodulin‐dependent protein kinase kinase (CaMKK). No differences in muscle protein phosphatase 2C (PP2C) activity, LKB1 phosphorylation or AMPK and LKB1 association were observed. Muscle ACCβ, and adiponectin receptor 1 (AdipoR1) mRNA levels and PPARγ‐co‐activator 1α (PGC1α) protein levels were also increased in LE‐treated rats. In contrast, AMPK and ACC phosphorylation decreased and PP2C activity increased in rat livers exposed to LE. Hepatic mRNA levels of ACCα, PPARα, AdipoR1, AdipoR2, and sterol regulatory element–binding protein‐1c (SREBP1c) were also reduced after LE infusion. In adipose tissue, there was no significant alteration in AMPK or ACC phosphorylation. These results demonstrate that following lipid oversupply the AMPK pathway was enhanced in rat skeletal muscle while diminished in the liver and was unchanged in adipose tissue. CaMKK in skeletal muscle and PP2C in the liver, at least in part, appear to mediate these alterations. Alterations in AMPK pathway in the liver induced metabolic defects associated with lipid oversupply.  相似文献   

3.
The current study presents that ascofuranone isolated from a phytopathogenic fungus, Ascochyta viciae, has antitumor activity against various transplantable tumors and a considerable hypolipidemic activity. AMP-activated protein kinase (AMPK) plays a critical role in cellular glucose and lipid homeostasis. We found that ascofuranone improves ER stress-induced insulin resistance by activating AMPK through the LKB1 pathway. In L6 myotube cells, ascofuranone treatment increased the phosphorylation of the Thr-172 residue of the AMPKα subunit and the Ser-79 subunit of acetyl-CoA carboxylase (ACC) and cellular glucose uptake. Ascofuranone-induced phosphorylation of AMPK and ACC was not increased in A549 cells lacking LKB1. Interestingly, ascofuranone treatment also improved insulin signaling impaired by ER stress in L6 myotube cells. These effects were all reversed by pretreatment with Compound C, an AMPK inhibitor or with adenoviral-mediated dominant-negative AMPKα2. Taken together, these results indicated that ascofuranone-mediated enhancement of glucose uptake and reduction of impaired insulin sensitivity in L6 cells is predominantly accomplished by activating AMPK, thereby mediating beneficial effects in type 2 diabetes and insulin resistance.  相似文献   

4.
Metformin, the most widely used drug for type 2 diabetes activates 59 adenosine monophosphate (AMP)‐activated protein kinase (AMPK), which regulates cellular energy metabolism. Here, we report that ovarian cell lines VOSE, A2780, CP70, C200, OV202, OVCAR3, SKOV3ip, PE01 and PE04 predominantly express ‐α1, ‐β1, ‐γ1 and ‐γ2 isoforms of AMPK subunits. Our studies show that metformin treatment (1) significantly inhibited proliferation of diverse chemo‐responsive and ‐resistant ovarian cancer cell lines (A2780, CP70, C200, OV202, OVCAR3, SKVO3ip, PE01 and PE04), (2) caused cell cycle arrest accompanied by decreased cyclin D1 and increased p21 protein expression, (3) activated AMPK in various ovarian cancer cell lines as evident from increased phosphorylation of AMPKα and its downstream substrate; acetyl co‐carboxylase (ACC) and enhanced β‐oxidation of fatty acid and (4) attenuated mTOR‐S6RP phosphorylation, inhibited protein translational and lipid biosynthetic pathways, thus implicating metformin as a growth inhibitor of ovarian cancer cells. We also show that metformin‐mediated effect on AMPK is dependent on liver kinase B1 (LKB1) as it failed to activate AMPK‐ACC pathway and cell cycle arrest in LKB1 null mouse embryo fibroblasts (mefs). This observation was further supported by using siRNA approach to down‐regulate LKB1 in ovarian cancer cells. In contrast, met formin inhibited cell proliferation in both wild‐type and AMPKα1/2 null mefs as well as in AMPK silenced ovarian cancer cells. Collectively, these results provide evidence on the role of metformin as an anti‐proliferative therapeutic that can act through both AMPK‐dependent as well as AMPK‐independent pathways.  相似文献   

5.
Energy deprivation in the myocardium is associated with impaired heart function and increased morbidity. LKB1 is a kinase that is required for activation of AMP-activated protein kinase (AMPK) as well as 13 AMPK-related protein kinases. AMPK stimulates ATP production during ischemia and prevents post-ischemic dysfunction. We used the Cre–Lox system to generate mice where LKB1 was selectively knocked out in cardiomyocytes and muscle cells (LKB1-KO) to assess the role of LKB1 on cardiac function in these mice.Heart rates of LKB1-KO mice were reduced and ventricle diameter was increased. Ex vivo, cardiac function was impaired during aerobic perfusion of isolated working hearts, and recovery of function after ischemia was reduced. Although oxidative metabolism and mitochondrial function were normal, the AMP/ATP ratio was increased in LKB1-KO hearts. This was associated with a complete ablation of AMPKα2 activity, and a stimulation of signaling through the mammalian target of rapamycin. Our results establish a critical role for LKB1 for normal cardiac function under both aerobic conditions and during recovery after ischemia. Ablation of LKB1 leads to a decreased cardiac efficiency despite normal mitochondrial oxidative metabolism.  相似文献   

6.
7.
We have studied the mechanism of A-769662, a new activator of AMP-activated protein kinase (AMPK). Unlike other pharmacological activators, it directly activates native rat AMPK by mimicking both effects of AMP, i.e. allosteric activation and inhibition of dephosphorylation. We found that it has no effect on the isolated alpha subunit kinase domain, with or without the associated autoinhibitory domain, or on interaction of glycogen with the beta subunit glycogen-binding domain. Although it mimics actions of AMP, it has no effect on binding of AMP to the isolated Bateman domains of the gamma subunit. The addition of A-769662 to mouse embryonic fibroblasts or primary mouse hepatocytes stimulates phosphorylation of acetyl-CoA carboxylase (ACC), effects that are completely abolished in AMPK-alpha1(-/-)alpha2(-/-) cells but not in TAK1(-/-) mouse embryonic fibroblasts. Phosphorylation of AMPK and ACC in response to A-769662 is also abolished in isolated mouse skeletal muscle lacking LKB1, a major upstream kinase for AMPK in this tissue. However, in HeLa cells, which lack LKB1 but express the alternate upstream kinase calmodulin-dependent protein kinase kinase-beta, phosphorylation of AMPK and ACC in response to A-769662 still occurs. These results show that in intact cells, the effects of A-769662 are independent of the upstream kinase utilized. We propose that this direct and specific AMPK activator will be a valuable experimental tool to understand the physiological roles of AMPK.  相似文献   

8.
We hypothesized that protein turnover would be substantially suppressed during estivation in the land snail, Otala lactea, as part of a wholesale move to conserve ATP in the hypometabolic state, and that decreased rates of protein synthesis and degradation would be mediated by altering the phosphorylation state of key proteins. Rates of protein translation, measured in vitro, decreased by ~80% in extracts of foot muscle and hepatopancreas after 2 days of estivation, and this reduction was associated with strong increases in the phosphorylation of ribosomal factors, eIF2α and eEF2, as well as decreased phosphorylation of 4E-BP1. Reductions in levels of markers of ribosomal biogenesis and a tissue-specific reduction in the phosphorylation state of eIF4E and eIF4GI were also evident after 14 days of estivation. Activity of the 20S proteasome decreased by 60–80% after 2 days of estivation and this decrease was mediated by protein kinase G in vitro, whereas protein phosphatase 2A activated the proteasome. Levels of protein carbonyls did not change in snail tissues during estivation whereas the expression heat shock proteins increased, suggesting that protein resistance to damage is enhanced in estivation. In conclusion, protein synthesis and degradation rates were coordinately suppressed during estivation in O. lactea and this is associated with the phosphorylation of ribosomal initiation and elongation factors and the 20S proteasome.  相似文献   

9.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is implicated as a key factor in controlling whole body homeostasis, including fatty acid oxidation and glucose uptake. We report that a synthetic structural isomer of dihydrocapsiate, isodihydrocapsiate (8-methylnonanoic acid 3-hydroxy-4-methoxy benzyl ester) improves type 2 diabetes by activating AMPK through the LKB1 pathway. In L6 myotube cells, phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and glucose uptake were significantly increased, whereas these effects were attenuated by an AMPK inhibitor, compound C. In addition, increased phosphorylation of AMPK and ACC by isodihydrocapsiate was significantly reduced by radicicol, an LKB1 destabilizer, suggesting that increased glucose uptake in L6 cells with isodihydrocapsiate treatment is predominantly accomplished by a LKB1-mediated AMPK activation pathway. Oral administration of isodihydrocapsiate to diabetic (db/db) mice reduced blood glucose levels by 40% after a 4-week treatment period. Our results support the development of isodihydrocapsiate as a potential therapeutic agent to target AMPK in type 2 diabetes.  相似文献   

10.
Recent work has shown that the LKB1 tumour suppressor protein kinase phosphorylates and activates protein kinases belonging to the AMP activated kinase (AMPK) subfamily. In this study, we identify the sucrose non-fermenting protein (SNF1)-related kinase (SNRK), a largely unstudied AMPK subfamily member, as a novel substrate for LKB1. We demonstrate that LKB1 activates SNRK by phosphorylating the T-loop residue (Thr173), and that the LKB1 regulatory subunits STRAD and MO25 are required for LKB1 to activate SNRK. We find that SNRK is not active when expressed in HeLa cells that lack expression of LKB1, and its activity is restored by expression of wild type LKB1, but not catalytically deficient LKB1. We also present evidence that two other AMPK-related kinases more distantly related to AMPK than SNRK, namely NIM1 and testis-specific serine/threonine kinase-1 (TSSK1) are not substrates for LKB1. Tissue distribution analysis indicates that SNRK protein is mainly expressed in testis, similar to TSSK isoforms, whereas NIM1 is more widely expressed. These results provide evidence that SNRK could mediate some of the physiological effects of LKB1.  相似文献   

11.
Estivation, a state of aerobic dormancy, facilitates survival during adverse environmental conditions and is characterized at the molecular level by regulatory protein phosphorylation. The Akt (protein kinase B) signaling pathway regulates diverse responses in cells and the present study analyzes its role in the estivating desert snail Otala lactea. Kinetic analysis (maximal velocity, substrate affinities) determined that Akt was activated in tissues of estivating snails and Western blotting and in vitro incubations promoting changes to Akt phosphorylation state both confirmed that higher amounts of active (phosphorylated Ser473) Akt were present during estivation. Akt protein stability was also enhanced during estivation as assessed from urea denaturation studies. Multiple downstream targets of Akt were differentially regulated during estivation. Estivating animals showed elevated levels of phosphorylated FOXO3a (Ser253) and BAD (Ser136), no change in mTOR (Ser2481 and Ser2448), and reduced amounts of phosphorylated glycogen synthase kinase-3 (GSK-3) beta subunit (Ser9). Kinetic analysis of GSK-3 showed 1.5-1.7 fold higher activities in estivating snails coupled with increased GSK-3 substrate affinities in hepatopancreas. The data suggest an active role for Akt signaling during estivation emphasizing anti-apoptotic actions but uncoupling growth/proliferation actions to help achieve life extension on a limited energy budget.  相似文献   

12.
5'-AMP-activated protein kinase (AMPK), by way of its inhibition of acetyl-CoA carboxylase (ACC), plays an important role in regulating malonyl-CoA levels and the rate of fatty acid oxidation in skeletal and cardiac muscle. In these tissues, LKB1 is the major AMPK kinase and is therefore critical for AMPK activation. The purpose of this study was to determine how the lack of muscle LKB1 would affect malonyl-CoA levels and/or fatty-acid oxidation. Comparing wild-type (WT) and skeletal/cardiac muscle-specific LKB1 knockout (KO) mice, we found that the 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR)-stimulated decrease in malonyl-CoA levels in WT heart and quadriceps muscles was entirely dependent on the presence of LKB1, as was the AICAR-induced increase in fatty-acid oxidation in EDL muscles in vitro, since these responses were not observed in KO mice. Likewise, the decrease in malonyl-CoA levels after muscle contraction was attenuated in KO gastrocnemius muscles, suggesting that LKB1 plays an important role in promoting the inhibition of ACC, likely by activation of AMPK. However, since ACC phosphorylation still increased and malonyl-CoA levels decreased in KO muscles (albeit not to the levels observed in WT mice), whereas AMPK phosphorylation was entirely unresponsive, LKB1/AMPK signaling cannot be considered the sole mechanism for inhibiting ACC during and after muscle activity. Regardless, our results suggest that LKB1 is an important regulator of malonyl-CoA levels and fatty acid oxidation in skeletal muscle.  相似文献   

13.
Reports on the role of AMP-activated protein kinase (AMPK) in thrombin-mediated activation of endothelial nitric-oxide synthase (eNOS) in endothelial cells have been conflicting. Previously, we have shown that under culture conditions that allow reduction of ATP-levels after stimulation, activation of AMPK contributes to eNOS phosphorylation and activation in endothelial cells after treatment with thrombin. In this paper we examined the signaling pathways mediating phosphorylation and activation of eNOS after stimulation of cultured human umbilical vein endothelial cells (HUVEC) with histamine and the role of LKB1-AMPK in the signaling. In Morgan's medium 199 intracellular ATP was lowered by treatment with histamine or the ionophore A23187 while in medium RMPI 1640 ATP was unchanged after identical treatment. In medium 199 inhibition of Ca+ 2/CaM kinase kinase (CaMKK) by STO-609 only partially inhibited AMPK phosphorylation but after gene silencing of LKB1 with siRNA there was a total inhibition of AMPK phosphorylation by STO-609 after treatment with either histamine or thrombin, demonstrating phosphorylation of AMPK by both upstream kinases, LKB1 and CaMKK. Downregulation of AMPK with siRNA partially inhibited eNOS phosphorylation caused by histamine in cells maintained in medium 199. Downregulation of LKB1 by siRNA inhibited both phosphorylation and activity of eNOS and addition of the AMPK inhibitor Compound C had no further effect on eNOS phosphorylation. When experiments were carried out in medium 1640, STO-609 totally prevented the phosphorylation of AMPK without affecting eNOS phosphorylation. AMPKα2 downregulation resulted in a loss of the integrity of the endothelial monolayer and increased expression of GRP78, indicative of endoplasmic reticular (ER) stress. Downregulation of AMPKα1 had no such effect. The results show that culture conditions affect endothelial signal transduction pathways after histamine stimulation. Under conditions where intracellular ATP is lowered by histamine, AMPK is activated by both LKB1 and CaMKK and, in turn, mediates eNOS phosphorylation in an LKB1 dependent manner. Both AMPKα1 and − α2 are involved in the signaling. Under conditions where intracellular ATP is unchanged after histamine treatment, CaMKK alone activates AMPK and eNOS is phosphorylated and activated independent of AMPK.  相似文献   

14.
In adult rat cardiac myocytes adrenaline decreased AMPK (AMP-activated protein kinase) activity with a half-time of approximately 4?min, decreased phosphorylation of AMPK (α-Thr172) and decreased phosphorylation of ACC (acetyl-CoA carboxylase). Inactivation of AMPK by adrenaline was through both α1- and β-ARs (adrenergic receptors), but did not involve cAMP or calcium signalling, was not blocked by the PKC (protein kinase C) inhibitor BIM I (bisindoylmaleimide I), by the ERK (extracellular-signal-regulated kinase) cascade inhibitor U0126 or by PTX (pertussis toxin). Adrenaline caused no measurable change in LKB1 activity. Adrenaline decreased AMPK activity through a process that was distinct from AMPK inactivation in response to insulin or PMA. Neither adrenaline nor PMA altered the myocyte AMP:ATP ratio although the adrenaline effect was attenuated by oligomycin and by AICAR (5-amino-4-imidazolecarboxamide-1-β-D-ribofuranoside), agents that mimic 'metabolic stress'. Inactivation of AMPK by adrenaline was abolished by 1?μM okadaic acid suggesting that activation of PP2A (phosphoprotein phosphatase 2A) might mediate the adrenaline effect. However, no change in PP2A activity was detected in myocyte extracts. Adrenaline increased phosphorylation of the AMPK β-subunit in vitro but there was no detectable change in vivo in phosphorylation of previously identified AMPK sites (β-Ser24, β-Ser108 or β-Ser182) suggesting that another site(s) is targeted.  相似文献   

15.
16.
Two splice variants of LKB1 exist: LKB1 long form (LKB1L) and LKB1 short form (LKB1S). In a previous study, we demonstrated that phosphorylation of Ser-428/431 (in LKB1L) by protein kinase Cζ (PKCζ) was essential for LKB1-mediated activation of AMP-activated protein kinase (AMPK) in response to oxidants or metformin. Paradoxically, LKB1S also activates AMPK although it lacks Ser-428/431. Thus, we hypothesized that LKB1S contained additional phosphorylation sites important in AMPK activation. Truncation analysis and site-directed mutagenesis were used to identify putative PKCζ phosphorylation sites in LKB1S. Substitution of Ser-399 to alanine did not alter the activity of LKB1S, but abolished peroxynitrite- and metformin-induced activation of AMPK. Furthermore, the phosphomimetic mutation (S399D) increased the phosphorylation of AMPK and its downstream target phospho-acetyl-coenzyme A carboxylase (ACC). PKCζ-dependent phosphorylation of Ser-399 triggered nucleocytoplasmic translocation of LKB1S in response to metformin or peroxynitrite treatment. This effect was ablated by pharmacological and genetic inhibition of PKCζ, by inhibition of CRM1 activity and by substituting Ser-399 with alanine (S399A). Overexpression of PKCζ up-regulated metformin-mediated phosphorylation of both AMPK (Thr-172) and ACC (Ser-79), but the effect was ablated in the S399A mutant. We conclude that, similar to Ser-428/431 (in LKB1L), Ser-399 (in LKB1S) is a PKCζ-dependent phosphorylation site essential for nucleocytoplasmic export of LKB1S and consequent AMPK activation.  相似文献   

17.
SIRT1, a histone/protein deacetylase, and AMP-activated protein kinase (AMPK) are key enzymes responsible for longevity and energy homeostasis. We examined whether a mechanistic connection exists between these molecules that involves the major AMPK kinase LKB1. Initial studies demonstrated that LKB1 is acetylated in cultured (HEK293T) cells, mouse white adipose tissue, and rat liver. In the 293T cells, SIRT1 overexpression diminished lysine acetylation of LKB1 and concurrently increased its activity, cytoplasmic/nuclear ratio, and association with the LKB1 activator STRAD. In contrast, short hairpin RNA for SIRT1, where studied, had opposite effects on these parameters. Mass spectrometric analysis established that acetylation of LKB1 occurs on multiple, but specific, lysine residues; however, only mutation of lysine 48 to arginine, which mimics deacetylation, reproduced all of the effects of activated SIRT1. SIRT1 also affected downstream targets of LKB1. Thus its overexpression increased AMPK and acetyl-CoA carboxylase phosphorylation, and conversely, RNA interference-mediated SIRT1 knockdown reduced AMPK phosphorylation and that of another LKB1 target MARK1. Consistent with the results in cultured cells, total LKB1 lysine acetylation was decreased by 60% in the liver of 48-h starved rats compared with starved-refed rats, and this was associated with modest but significant increases in both LKB1 and AMPK activities. These results suggest that LKB1 deacetylation is regulated by SIRT1 and that this in turn influences its intracellular localization, association with STRAD, kinase activity, and ability to activate AMPK.  相似文献   

18.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that has been implicated as a key factor for controlling intracellular lipids and glucose metabolism. β-Sitosterol, a plant sterol known to prevent cardiovascular disease was identified from Schizonepeta tenuifolia to an AMPK activator. In L6 myotube cells, β-sitosterol significantly increased phosphorylation of the AMPKα subunit and acetyl-CoA carboxylase (ACC) with stimulating glucose uptake. In contrast, β-sitosterol treatment reduced intracellular levels of triglycerides and cholesterol in L6 cells. These effects were all reversed by pretreatment with AMPK inhibitor Compound C or LKB1 destabilizer radicicol. Similarly, β-sitosterol-induced phosphorylation of AMPK and ACC was not increased in HeLa cells lacking LKB1. These results together suggest that β-sitosterol-mediated enhancement of glucose uptake and reduction of triglycerides and cholesterol in L6 cells is predominantly accomplished by LKB1-mediated AMPK activation. Our findings further reveal a molecular mechanism underlying the beneficial effects of β-sitosterol on glucose and lipid metabolism.  相似文献   

19.

Background

Recently, MicroRNAs (miR) and AMP-kinase (AMPK) have emerged as prominent players in the development of cardiac hypertrophy and heart failure. We hypothesized that components of the adenosine monophosphate-activated kinase (AMPK) pathway are targeted by miRs and alter AMPK signaling during pathological cardiac stress.

Methodology/Principal Findings

Using a mouse model of hypertrophic cardiomyopathy (HCM), we demonstrated early elevation of miR-195 and miR-451 in HCM hearts, which targets MO25, a central component of the MO25/STRAD/LKB1 complex that acts as an upstream kinase for AMPK. We show functional targeting of MO25 by miR-195 and -451. Further in vitro interrogation of MO25 as a functional target validated this hypothesis where over-expression of miR-195 in C2C12 cells knocked down MO25 expression levels and downstream AMPK signaling (phosphorylation of Acetyl CoA carboxylase [ACC] and AMPK activity assay), similar to MO25 knockdown in C2C12 cells by siRNA. Parallel changes were measured in 60 day R403Q HCM male hearts that were rescued by short-term administration of AICAR, an AMPK agonist.

Conclusions/Significance

Elevated miR-195 targets the LKB1/AMPK signaling axis in HCM progression and implicates a functional role in HCM disease progression. MiR-195 may serve as potential therapeutics or therapeutic targets for heart disease.  相似文献   

20.
AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H(2)O(2), 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H(2)O(2) markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-zeta, LKB1, and AMPK caused by exposure to H(2)O(2). This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H(2)O(2)-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-zeta and LKB1 phosphorylation and the activation of PP2A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号