首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous study, we demonstrated that the BRCC2 (breast cancer cell 2) gene is a proapoptotic molecule that interacts with Bcl-XL. BRCC2 downregulation is associated with poor disease-free and overall survival in breast cancer. In this study, we aimed to investigate the role of BRCC2 in tumor suppression in breast cancer. In clinical breast cancer samples, we found that BRCC2 expression was significantly downregulated in cancer lesions compared with paired normal breast tissues. By silencing or overexpressing BRCC2 in breast cancer cells, we found that BRCC2 could inhibit cell growth and metastasis in vitro. An in vivo assay showed that BRCC2 not only dramatically inhibited breast cancer cell xenograft formation and growth but also inhibited breast cancer cell metastasis in a lung metastasis model. Moreover, we demonstrated that BRCC2 inhibited breast cancer metastasis via regulation of the Akt pathway. Thus, our study provided evidence that BRCC2 functions as a novel tumor suppressor in breast cancer and may be a potential therapeutic target for breast cancer management.  相似文献   

2.
Kruppel-like factors (KLFs) play an important role in many biological processes including cell proliferation, differentiation and development. Our study showed that the level of KLF9 is lower in PCa cell lines compared to a benign prostate cell line; the androgen-independent cell line PC3 expresses significantly lower KLF9 than the androgen-dependent cell line, LNCaP. Forced overexpression of KLF9 suppressed cell growth, colony formation, and induced cell apoptosis in LNCaP cells. We also found that KLF9 expression was induced in response to apoptosis caused by flutamide, and further addition of dihydrotestosterone antagonized the action of flutamide and significantly decreased KLF9 expression. Furthermore, activation of the androgen receptor (AR) was inhibited by the overexpression of KLF9. Our research shows that KLF9 is lower in androgen-independent cell lines than in androgen-dependent cell lines; Overexpression of KLF9 dramatically suppresses the proliferation, anchorage-independent growth, and induces apoptosis in androgen-dependent cells; KLF9 inhibition on prostate cancer cell growth may be acting through the AR pathway. Our results therefore suggest that KLF9 may play a significant role in the transition from androgen-dependent to androgen-independent prostate cancer and is a potential target of prevention and therapy.  相似文献   

3.
Breast cancer is the most common neoplastic disorder diagnosed in women. The main goal of this study was to explore the effect of melatonin against breast cancer metastasis and compared this with the actions of taxol (a well-known chemotherapeutic drug), and the impact of their combination against breast cancer metastasis. Melatonin showed no cytotoxic effect while taxol showed antiproliferative and cytotoxic effects on MCF-7 and MDA-MB-231 cells. Furthermore, melatonin inhibited the generation of reactive oxygen species. Melatonin and taxol clearly decreased cell migration and invasion at low doses, especially those matching the normal physiological concentration at night. Melatonin and taxol markedly reduced DJ-1 and ID-1 and increased KLF17 messenger RNA and protein expression levels. The present results also showed that melatonin and taxol induced GSK3-β nuclear and Snail cytosolic localization. These changes were accompanied by a concurrent rise in E-cadherin expression. The above data show that normal levels of melatonin may help in preventing breast cancer metastasis through inhibiting DJ-1/KLF17/ID-1 signaling pathway. The combination of melatonin and taxol is a potent candidate against breast cancer metastasis, better than using melatonin or taxol as a single drug.  相似文献   

4.
Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.  相似文献   

5.
BRCA1 mutations and estrogen use are risk factors for the development of breast cancer. Recent work has identified estrogen receptors localized at the plasma membrane that signal to cell biology. We examined the impact of BRCA1 on membrane estrogen and growth factor receptor signaling to breast cancer cell proliferation. MCF-7 and ZR-75-1 cells showed a rapid and sustained activation of extracellular signal-related kinase (ERK) in response to estradiol (E2) that was substantially prevented by wild-type (wt) but not mutant BRCA1. The proliferation of MCF-7 cells induced by E2 was significantly inhibited by PD98059, a specific ERK inhibitor, or by dominant negative ERK2 expression and by expression of wt BRCA1 (but not mutant BRCA1). E2 induced the synthesis of cyclins D1 and B1, the activity of cyclin-dependent kinases Cdk4 and CDK1, and G(1)/S and G(2)/M cell cycle progression. The intact tumor suppressor inhibited all of these. wt BRCA1 also inhibited epidermal growth factor and insulin-like growth factor I-induced ERK and cell proliferation. The inhibition of ERK and cell proliferation by BRCA1 was prevented by phosphatase inhibitors and by interfering RNA knockdown of the ERK phosphatase, mitogen-activated kinase phosphatase 1. Our findings support a novel tumor suppressor function of BRCA1 that is relevant to breast cancer and identify a potential interactive risk factor for women with BRCA1 mutations.  相似文献   

6.
Arsenic trioxide (ATO) has been reported to exert its anti-cancer activities in human cancers. However, the molecular mechanism of ATO-triggered anti-tumor activity has not been fully elucidated. Recently, multiple studies demonstrated that ATO could regulate miRNAs in human cancers. Therefore, in this study, we investigated whether ATO regulated let-7a in breast cancer cells. We found that ATO upregulated let-7a level in breast cancer cells. We also found that up-regulation of let-7a inhibited cell growth and induced apoptosis and retarded cell migration and invasion. We also observed that up-regulation of let-7a enhanced cell growth inhibition and invasion suppression induced by ATO treatment. Our findings suggest that ATO suppressed cell growth, stimulated apoptosis, and retarded cell invasion partly via upregulation of let-7a in breast cancer cells. Our study provides a new anti-tumor mechanism of ATO treatment in breast cancer.  相似文献   

7.
Breast cancer is the most commonly diagnosed cancer type worldwide among women and more than 90% of patients die from tumor metastasis. Lycorine, a natural alkaloid, has been widely reported possessing potential efficacy against cancer proliferation and metastasis. In our study, the anti-tumor potency on breast cancer was evaluated in vitro and in vivo for the first time. Our results indicated that lycorine inhibited breast cancer cells growth, migration and invasion as well as induced their apoptosis.In in vivo study, lycorine not only suppressed breast tumor growth in xenograft models and inhibited breast tumor metastasis in MDA-MB-231 tail vein model. More importantly, we found lycorine had less toxicity than first-line chemotherapy drug paclitaxel at the same effective dose in vivo. Furthermore, on mechanism, lycorine inhibited tumor cell migration and invasion via blocking the Src/FAK(focal adhesion kinase)-involved pathway. In conclusion, our study implied lycorine was a potential candidate for the treatment of breast cancer by inhibition of tumor growth and metastasis.  相似文献   

8.
The discovery that the hop constituent 8-prenylnaringenin (8PN) shows potent estrogenic activity, higher than that of the known phytoestrogens coumestrol, genistein and daidzein, has spurred an intense activity aimed at elucidating its biological profile and its dietary relevance connected with the consumption of beer. We have investigated if 8PN can induce signal transduction pathways via rapid estrogen receptor (ER) activation. Under conditions of estrogen-dependent growth, treatment of MCF-7 human breast cancer cells with 8PN induced a rapid and transient activation of the MAP kinase Erk-1 and Erk-2, with kinetics similar to those induced by 17beta-estradiol (E2). 8PN could trigger the MAP kinase pathway via dual c-Src kinase activation and association with ERalpha. Co-treatment with the ER antagonist ICI 182,780 blocked each step of this transduction pathway, confirming its ER dependence. However, and in striking contrast with E2, 8PN could not induce the PI3K/Akt pathway, resulting in altered kinetics and levels of cyclin D1 expression. In accordance with these observations, flow cytometric and biochemical analysis showed that 8PN inhibited cell cycle progression and induced apoptosis in MCF-7 cells. Interference with an ER associated PI3K pathway is proposed as a possible mechanism underlying the inhibition of survival and proliferation of estrogen responsive cells by 8PN. Taken together, our finding show that 8PN is an interesting new chemotype to explore the biology of ERs.  相似文献   

9.
Fructose analog, psicose, and glucose analog, mannose, inhibited root growth of lettuce seedlings. Psicose is phosphorylated by hexokinase and fructokinase (EC 2.7.1.4) to psicose-6-phosphate with no known capacity for further metabolism. Mannose is phosphorylated by hexokinase (EC 2.7.1.1) to mannose-6-phosphate which is further metabolized very slowly. Hexokinase is known to have a sugar-sensing function and possibly triggers a signal cascade resulting in changes of several gene expressions. It was determined, compared with the behaviour of mannose, whether psicose inhibits the root growth through this system. The addition of phosphate into the growth medium of lettuce seedlings did not affect the inhibition by psicose and mannose, and both sugars did not reduce adenosine triphosphate (ATP) level in the roots, suggesting that the inhibition is not due to phosphate starvation and ATP depletion. The inhibiting effects of psicose and mannose were overcome by adding sucrose into the medium, which suggests that the inhibition is not caused by accumulation of psicose-6-phosphate or mannose-6-phosphate in the seedlings. Mannoheptulose, a specific competitive inhibitor of hexokinase, defeated the mannose-induced inhibiting but was not able to relieve the psicose-induced inhibition. Thus, the phosphorylation of mannose by hexokinase may trigger a signal cascade resulting in the growth inhibition of lettuce roots, which is consistent with the hypothesis established in Arabidopsis . However, psicose cannot inhibit the growth of lettuce roots via a hexokinase-mediated pathway, and the phosphorylation of psicose by fructokinase might trigger a hexokinase-independent signal cascade resulting in the growth inhibition.  相似文献   

10.
11.
12.
Previous studies have indicated that centromere protein K (CENPK) is upregulated in several cancers and related to tumorigenesis. Nevertheless, the potential function of CENPK in gastric cancer (GC) remains unknown. Here, we investigated the function of CENPK on oncogenicity and explored its underlying mechanisms in GC. Our results showed that CENPK was dramatically overexpressed in GC and was associated with poor prognosis through bioinformatics analysis. We demonstrated that CENPK is upregulated in GC tissues and cell lines. Moreover, knockdown of CENPK significantly inhibited proliferation in vitro and attenuated the growth of implanted GCs in vivo. In addition, CENPK silencing induced G1 phase cell cycle arrest and facilitated apoptosis of GC cells. KEGG pathway analysis indicated that the PI3K-AKT signalling pathway was considerably enriched. Knockdown of CENPK decreased the expression of PI3K, p-Akt (Ser437) and p-GSK3β (Ser9) in GC cells, and increased the expression of PTEN. In conclusion, this study indicated that CENPK was overexpressed in GC and may promote gastric carcinogenesis through the PTEN-PI3K-AKT signalling pathway. Thus, CENPK may be a potential target for cancer therapeutics in GC.  相似文献   

13.
14.
Although bone morphogenetic protein-6 (BMP-6) has been identified as a tumor suppressor associated with breast cancer differentiation and metastasis, the potential roles of BMP-6 in regulating cell cycle progression have not been fully examined. In the present study, we provide the novel finding that induction of BMP-6 in MDA-MB-231 breast cancer cells significantly inhibits cell proliferation by decreasing the number of cells in S phase of the cell cycle, resulting in inhibition of tumorigenesis in a nude mouse xenograft model. Further investigation indicated that BMP-6 up-regulates the expression of microRNA-192 (miR-192) in MDA-MB-231 cells. Elevated expression of miR-192 caused cell growth arrest, which is similar to the effect of BMP-6 induction. Importantly, depletion of endogenous miR-192 by miRNA inhibition significantly attenuated BMP-6-mediated repression of cell cycle progression. In breast cancer tissue, miR-192 expression is significantly down-regulated in tumor samples and positively correlates with the expression of BMP-6, demonstrating the inhibitory effect of BMP-6 on cell proliferation through miR-192 regulation. Additionally, using the RT2 Profiler PCR Array, retinoblastoma 1 (RB1) was identified as a direct target of the BMP-6/miR-192 pathway in regulating cell proliferation in breast cancer. In conclusion, we have identified an important role for BMP-6/miR-192 signaling in the regulation of cell cycle progression in breast cancer. Furthermore, BMP-6/miR-192 was expressed at low levels in breast cancer specimens, indicating that this pathway might represent a promising therapeutic target for breast cancer treatment.  相似文献   

15.
16.
Chronic inflammation is a risk factor for the development of colon cancer, providing genotoxic insults, growth and pro-angiogenic factors that can promote tumorigenesis and tumor growth. Immunomodulatory agents can interfere with the inflammation that feeds cancer, but their impact on the transformed cell is poorly understood. The calcium/calcineurin signaling pathway, through activation of NFAT, is essential for effective immune responses, and its inhibitors cyclosporin A (CsA) and FK506 are used in the clinics to suppress immunity. Moreover, the kinases GSK3β and mTOR, modulated by PI-3K/Akt, can inhibit NFAT activity, suggesting a cross-talk between the calcium and growth factor signaling pathways. Both NFAT and mTOR activity have been associated with tumorigenesis. We therefore investigated the impact of calcineurin and PI-3K/mTOR inhibition in growth of human colon carcinoma cells. We show that despite the efficient inhibition of NFAT1 activity, FK506 promotes tumor growth, whereas CsA inhibits it due to a delay in cell cycle progression and induction of necroptosis. We found NFκB activation and mTORC1 activity not to be altered by CsA or FK506. Similarly, changes to mitochondrial homeostasis were equivalent upon treatment with these drugs. We further show that, in our model, NFAT1 activation is not modulated by PI3K/mTOR. We conclude that CsA slows cell cycle progression and induces necroptosis of human carcinoma cell lines in a TGFβ-, NFAT-, NFκB- and PI3K/mTOR-independent fashion. Nevertheless, our data suggest that CsA, in addition to its anti-inflammatory capacity, may target transformed colon and esophagus carcinoma cells without affecting non-transformed cells, promoting beneficial tumoristatic effects.  相似文献   

17.
Chronic inflammation is a risk factor for the development of colon cancer, providing genotoxic insults, growth and pro-angiogenic factors that can promote tumorigenesis and tumor growth. Immunomodulatory agents can interfere with the inflammation that feeds cancer, but their impact on the transformed cell is poorly understood. The calcium/calcineurin signaling pathway, through activation of NFAT, is essential for effective immune responses, and its inhibitors cyclosporin A (CsA) and FK506 are used in the clinics to suppress immunity. Moreover, the kinases GSK3β and mTOR, modulated by PI-3K/Akt, can inhibit NFAT activity, suggesting a cross-talk between the calcium and growth factor signaling pathways. Both NFAT and mTOR activity have been associated with tumorigenesis. We therefore investigated the impact of calcineurin and PI-3K/mTOR inhibition in growth of human colon carcinoma cells. We show that despite the efficient inhibition of NFAT1 activity, FK506 promotes tumor growth, whereas CsA inhibits it due to a delay in cell cycle progression and induction of necroptosis. We found NFκB activation and mTORC1 activity not to be altered by CsA or FK506. Similarly, changes to mitochondrial homeostasis were equivalent upon treatment with these drugs. We further show that, in our model, NFAT1 activation is not modulated by PI3K/mTOR. We conclude that CsA slows cell cycle progression and induces necroptosis of human carcinoma cell lines in a TGFβ-, NFAT-, NFκB- and PI3K/mTOR-independent fashion. Nevertheless, our data suggest that CsA, in addition to its anti-inflammatory capacity, may target transformed colon and esophagus carcinoma cells without affecting non-transformed cells, promoting beneficial tumoristatic effects.  相似文献   

18.

Background

Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer.

Methods

The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them.

Results

The FA-CS-DOX nano-particles were irregular and spherical particles around 30–40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway.

Conclusion

Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway.  相似文献   

19.
Phenylacetate induced tumor cytostasis and differentiation. The chemotherapeutic function of the compound in lung cancer has been previously reported, however, whether or not phenylacetate performs other activities is not known. In this study, the potential usage of synthetic phenylacetate derivatives, 4-fluoro-N-butylphenylacetamides (H6) was investigated in human cervical cancer cells. H6 displayed anti-proliferative and apoptosis effects, with an IC50 of 1.0–1.5 mM and an ID50 of about 3 days. Moreover, it significantly induced apoptosis as evidenced by morphological changes, DAPI and TUNEL staining and DNA fragmentation. H6 increased the expression of Bax protein, whereas it decreased the expression of Bcl-2 protein. H6 also induced accumulation of cytosolic cytochrome c and activation of caspase cascade (caspase-9 and -3), and then DNA fragmentation and apoptosis occurred. The underlying anti-proliferative mechanism for H6 is likely due to the down-regulation of G2/M-phase association cdks and cyclins and up-regulation of p53 to mediate G2/M-phase arrest. Furthermore, the decrease of Bcl-2 and activation of Bax, caspase-9/caspase-3 may be the effectors of H6-induced apoptosis.  相似文献   

20.
Pyrogallol (PG) is a polyphenol compound and a known O2 generator. We evaluated the effects of PG on the growth and apoptosis of human pulmonary adenocarcinoma Calu-6 cells. PG decreased the viability of Calu-6 cells in a dose- and time-dependent manner. The induction of apoptosis by PG was accompanied by the loss of mitochondrial membrane potential (ΔΨm), cytochrome c release from mitochondria and activation of caspase-3 and caspase-8. All tested caspase inhibitors, especially the pan-caspase inhibitor (Z-VAD), markedly rescued Calu-6 cells from PG-induced cell death. Rescue was accompanied by inhibition of caspase-3 activation and PARP cleavage. Treatment with Z-VAD also prevented the loss of mitochondrial membrane potential (ΔΨm). In conclusion, PG inhibits the growth of Calu-6 cells via caspase-dependent apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号