首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
The aim of this study was to assess the oxidative stress status in rheumatoid arthritis (RA) by measuring markers of free radical production, systemic activity of disease, and levels of antioxidant. 52 RA patients and 30 healthy controls were included in the study, and clinical examination and investigations were performed and disease activity was assessed. Peripheral blood samples were used for all the assays. We assessed the markers of oxidative stress, including plasma levels of index of lipid peroxidation-thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), superoxide anion radical (O2 ?), nitric oxide (NO), and superoxide dismutase activity (SOD), catalase activity (CAT) and glutathione levels in erythrocytes. In the RA group, levels of H2O2, O2 ?, and TBARS were significantly higher than in controls (4.08 ± 0.31 vs. 2.39 ± 0.13 nmol/l, p < 0.01; 8.90 ± 1.28 vs. 3.04 ± 0.38 nmol/l, p < 0.01, 3.65 ± 0.55 vs. 1.06 ± 0.17 μmol/l, p < 0.01). RA patients had significantly increased SOD activity compared with healthy controls (2,918.24 ± 477.14 vs. 643.46 ± 200.63UgHbx103, p < 0.001). Patients had significantly higher levels of pro-oxidants (O2 ?, H2O2, and TBARS) compared to controls, despite significantly higher levels of SOD. Significant differences were also observed in serum levels of NO in patients with high-diseases activity. Our findings support an association between oxidative/nitrosative stress and RA. Stronger response in samples with higher diseases activity suggests that oxidative/nitrosative stress markers may be useful in evaluating the progression of RA as well as in elucidating the mechanisms of disease pathogenesis.  相似文献   

3.
Apoptosis of thyroid follicular cells is induced by high doses of iodide, epidermal growth factor (EGF), transforming growth factor-β (TGF-β), as well as H2O2 and might be attenuated by antioxidants. Therefore, we examined the apoptotic index induced by these substances in selenium-treated vs untreated human thyroid follicular cells. Reconstituted human thyroid follicles were incubated with sodium selenite (10 or 100 nM) for 72 h; controls received none. The follicles were then distributed to 24-well plates and incubated with potassium iodide (5, 10, or 20 nM), EGF (5 ng/mL), TGF-β (5 ng/mL), or H2O2 (100 μM). Apoptosis was determined by a mitochondrial potential assay and the number of apoptotic cells counted by two independent, experienced technicians and the glutathione peroxidase (GPx) activity was determined. A significant increase of apoptic cells was obtained in control thyroid follicles treated with iodine (5, 10, or 20 μM), thyroid-stimulating hormone (TSH) 1, or 10 mU/mL in combination with 5 and 10 μM iodine, EGF (5 ng/mL) and TGF-β (5 ng/mL), or H2O2 (100 μM) (p<0.001). In contrast, in thyroid follicles preincubated with 10 or 100 nM sodium selenite, the apoptototic index was identical to the basal rate. In H2O2-treated follicles, the apoptotic index was still significantly elevated but 50% lower compared to control cells. The GPx activity increased from 1.4±0.2 to 2.25±0.4 mU/μg DNA with 10 nM selenite and 2.6+0.4 mU/μg DNA with 100 nM selenite. Sodium selenite might increase the antioxidative potential in human thyroid follicles in vitro and therefore diminish the apoptosis induced by TGF-β, EGF, iodide, and even H2O2  相似文献   

4.
Hydrogen sulphide (H2S) is a gaseous signalling molecule that regulates blood flow and pressure. It is synthesised from cysteine via cystathionine β-synthase and cystathionine γ-lyase. We examined whether thiol precursors of H2S, transsulphuration pathway gene variants (CBS-844ins68 and CTH-G1364T) and key B-vitamin cofactors might be critical determinants of hypertension in an elderly Australian population. An elderly Australian retirement village population (n = 228; age 65–96 years, 91 males and 137 females) was assessed for the prevalence of two transsulphuration pathway–related variant genes associated with cysteine synthesis and hence H2S production. Thiols were determined by HPLC, genotypes by PCR and dietary intake by food frequency questionnaire. Homocysteine levels were statistically higher in the hypertensive phenotype (p = 0.0399), but there was no difference for cysteine or glutathione. Using nominal logistic regression, cysteine, CTH-G1364T genotype, dietary synthetic folate and vitamin B6 predicted clinical phenotype (determined as above/below 140/90 mm Hg) and then only in female subjects (p = 0.0239, 0.0178, 0.0249 and 0.0371, respectively). Least-squares regression supports cysteine being highly inversely predictive of diastolic blood pressure: p and r 2 values <0.0001 and 0.082; 0.0409 and 0.046; and <0.0001 and 0.113 for all subjects, males and females, respectively. Additionally, CTH-G1364T genotype predicts diastolic blood pressure in males (p = 0.0217; r 2 = 0.083), but contrasts with observations for females. Overall, analyses, including stepwise regression, suggest cysteine, dietary natural and synthetic folate, vitamins B6 and B12, and both genetic variants (CTH-C1364T and CBS-844ins68) are all aetiologically relevant in the regulation of blood pressure. Hydrogen sulphide is a vasorelaxant gasotransmitter with characteristics similar to nitric oxide. Cysteine and the G1364T and 844ins68 variants of the cystathionine γ-lyase and cystathionine β-synthase genes, respectively, are the biological determinants of H2S synthesis, and all three are shown here to influence the hypertensive phenotype. Additionally, B-vitamin cofactors for these three enzymes may also be important determinants of blood pressure.  相似文献   

5.
The ability of bovine blastocysts to recover after cryopreservation and thawing procedures is often assessed by evaluating their re-expansion during in vitro co-culture. However, the influence of factors such as feeder cell type and gas atmosphere on blastocyst survival and evolution have never been considered. This study therefore compared two cell co-culture systems and two different gas atmospheres to assess survival of in vitro produced bovine blastocysts after vitrification. Day-7 blastocysts (n=181) were vitrified in a mixture of 25% glycerol/25% ethylene glycol. After warming and dilution, they were co-cultured either on Buffalo rat liver cells (BRL CC cell line) or on granulosa cells (GR CC primary culture) in TCM 199 supplemented with 10% FCS and under an atmosphere of 5% or 20% O2. Surviving and hatching rates were recorded at 24 h intervals for 3 days. After 72 h of culture, surviving blastocysts were treated for differential counting of inner cell mass (ICM) and trophectoderm cells. Blastocyst survival rates were higher when BRL and granulosa co-culture were performed under 20% oxygen as compared to 5% oxygen (20% O2: 62% vs. 5% O2: 25%, P<0.0001). However, the quality of blastocysts surviving in the granulosa co-culture condition was lower under 20% O2 than under 5% O2 as indicated by lower total and trophectoderm cell numbers (respectively 79±6 and 56±6 at 20% O2 vs. 100±10 and 74±10 at 5% O2, P<0.05), by an altered ICM/trophectoderm ratio (20% O2: 28% vs. 5% O2: 23%, P<0.05), by a higher total nuclear fragmentation (20% O2: 3.7% vs. 5% O2: 1.5%, P<0.05) and a trend to decreased hatching (20% O2: 32% vs. 5% O2: 81%, P=0.07). Whereas, for BRL co-culture, 20% O2 yielded higher quality blastocysts than 5% O2 as evaluated by higher ICM and trophectoderm cell numbers (19±1 and 71±5 at 20% O2 vs. 15±2 and 48±9 at 5% O2, respectively, P<0.05), by lower nuclear fragmentation in the ICM (20% O2: 2.2% vs. 5% O2: 6.7%, P<0.05). In conclusion, co-culture conditions may influence blastocysts survival and quality after cryopreservation. In our conditions, co-culture with BRL cells under 20% O2 seems to be the best combination to evaluate blastocyst survival and quality after vitrification.  相似文献   

6.

Purpose and experimental design

Although an increase in regulatory T cells (Tregs) is observed in tumor microenvironments, the underlying mechanism is not fully clarified. Since it was suggested that Tregs showed a lower sensitivity toward oxidative stress in comparison with conventional T cells, in the present study, we investigated the H2O2 production and apoptosis of Tregs in gastric and esophageal cancer tissues, employing flow cytometric analysis using fresh samples (n = 93) and immunohistochemical analysis (n = 203).

Results

The increased tumor-infiltrating Tregs coexisted with elevated H2O2 production according to disease progression. The grade of apoptosis in Tregs was less pronounced than that in conventional T cells, and there was a positive correlation between H2O2 production and the grade of apoptosis in conventional T cells, while there was no correlation between H2O2 production and the grade of apoptosis in Tregs. Moreover, Tregs were less sensitive to H2O2-induced apoptosis compared with conventional T cells in vitro.

Conclusions

We have demonstrated that the increased prevalence of tumor-infiltrating Tregs closely related to their lower sensitivity to H2O2-induced apoptosis.  相似文献   

7.
BackgroundThere is ongoing interest in generating cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) to study human cardiac physiology and pathophysiology. Recently we found that norepinephrine-stimulated calcium currents (ICa) in hiPSC-cardiomyocytes were smaller in conventional monolayers (ML) than in engineered heart tissue (EHT). In order to elucidate culture specific regulation of β1-adrenoceptor (β1-AR) responses we investigated whether action of phosphodiesterases (PDEs) may limit norepinephrine effects on ICa and on cytosolic cAMP in hiPSC-cardiomyocytes. Results were compared to adult human atrial cardiomyocytes.MethodsAdult human atrial cardiomyocytes were isolated from tissue samples obtained during open heart surgery. All patients were in sinus rhythm. HiPSC-cardiomyocytes were dissociated from ML and EHT. Förster-resonance energy transfer (FRET) was used to monitor cytosolic cAMP (Epac1-camps sensor, transfected by adenovirus). ICa was recorded by whole-cell patch clamp technique. Cilostamide (300 nM) and rolipram (10 μM) were used to inhibit PDE3 and PDE4, respectively. β1-AR were stimulated with the physiological agonist norepinephrine (100 μM).ResultsIn adult human atrial cardiomyocytes, norepinephrine increased cytosolic cAMP FRET ratio by +13.7 ± 1.5% (n = 10/9, mean ± SEM, number of cells/number patients) and ICa by +10.4 ± 1.5 pA/pF (n = 15/10). This effect was not further increased in the concomitant presence of rolipram, cilostamide and norepinephrine, indicating saturation by norepinephrine alone. In ML hiPSC-cardiomyocytes, norepinephrine exerted smaller increases in cytosolic cAMP and ICa (FRET +9.6 ± 0.5% n = 52/21, number of cells/number of ML or EHT, and ICa + 1.4 ± 0.2 pA/pF n = 34/7, p < 0.05 each) and both were augmented in the presence of the PDE4 inhibitor rolipram (FRET +16.7 ± 0.8% n = 94/26 and ICa + 5.6 ± 1.4 pA/pF n = 11/5, p < 0.05 each). Cilostamide increased the response to norepinephrine on FRET (+12.7 ± 0.5% n = 91/19, p < 0.05), but not on ICa. In EHT hiPSC-cardiomyocytes, norepinephrine responses on both, FRET and ICa, were larger than in ML (FRET +12.1 ± 0.3% n = 87/32 and ICa + 3.3 ± 0.2 pA/pF n = 13/5, p < 0.05 each). Rolipram augmented the norepinephrine effect on ICa (+6.2 ± 1.6 pA/pF; p < 0.05 vs. norepinephrine alone, n = 10/4), but not on FRET.ConclusionOur results show culture-dependent differences in hiPSC-cardiomyocytes. In conventional ML but not in EHT, maximum norepinephrine effects on cytosolic cAMP depend on PDE3 and PDE4, suggesting immaturity when compared to the situation in adult human atrial cardiomyocytes. The smaller ICa responses to norepinephrine in ML and EHT vs. adult human atrial cardiomyocytes depend at least partially on a non-physiological large impact of PDE4 in hiPSC-cardiomyocytes.  相似文献   

8.
Cardiomyocyte apoptosis is an important contributor to the progressive cardiac dysfunction that culminates in congestive heart failure. Bone marrow cells (BMCs) restore cardiac function following ischaemia, and transplanted BMCs have been reported to fuse with cells of diverse tissues. We previously demonstrated that the myogenic conversion of bone marrow stromal cells increased nearly twofold when the cells were co‐cultured with apoptotic (TNF‐α treated) cardiomyocytes. We therefore hypothesized that cell fusion may be a major mechanism by which BMCs rescue cardiomyocytes from apoptosis. We induced cellular apoptosis in neonatal rat cardiomyocytes by treatment with hydrogen peroxide (H2O2). The TUNEL assay demonstrated an increase in apoptosis from 4.5 ± 1.3% in non‐treated cells to 19.0 ± 4.4% (< 0.05) in treated cells. We subsequently co‐cultured the apoptotic cardiomyocytes with BMCs and assessed cell fusion using flow cytometry. Fusion was rare in the non‐treated control cardiomyocytes (0.3%), whereas H2O2 treatment led to significantly higher fusion rates than the control group (< 0.05), with the highest rate of 7.9 ± 0.3% occurring at 25 μM H2O2. We found an inverse correlation between cell fusion and completion of cardiomyocyte apoptosis (R2 = 0.9863). An in vivo mouse model provided evidence of cell fusion in the infarcted myocardium following the injection of BMCs. The percentage of cells undergoing fusion was significantly higher in mice injected with BMCs following infarction (8.8 ± 1.3%) compared to mice that did not undergo infarction (4.6 ± 0.6%, < 0.05). Enhancing cell fusion may be one method to preserve cardiomyocytes following myocardial infarction, and this new approach may provide a novel target for cardiac regenerative therapies.  相似文献   

9.
This study was aimed to evaluate the effect of Strobilanthes crispus extract for possible protection against lipid peroxidation and DNA damage induced by iron nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2). Fe-NTA is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of H2O2-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. Incubation of postmitochondrial supernatant and/or calf thymus DNA with H2O2 (40 mM) in the presence of Fe-NTA (0.1 mM) induces lipid peroxidation and DNA damage to about 2.3-fold and 2.9-fold, respectively, as compared to control (P < 0.05). In lipid peroxidation protection studies, S. crispus treatment showed a dose-dependent inhibition (45–53% inhibition, P < 0.05) of Fe-NTA and H2O2 induced lipid peroxidation. Similarly, in DNA damage protection studies, S. crispus treatment also showed a dose-dependent inhibition (18–30% inhibition, P < 0.05) of DNA damage. In addition, the protection was closely related to the content of phenolic compounds as evident by S. crispus extract showing the value of 124.48 mg/g total phenolics expressed as gallic acid equivalent (GAE, mg/g of extract). From these studies, it is concluded that S. crispus inhibits peroxidation of membrane lipids and DNA damage induced by Fe-NTA and H2O2 and possesses the potential to be used to treat or prevent degenerative diseases where oxidative stress is implicated.  相似文献   

10.
To verify the antioxidative role of SelW in oxidant-induced chicken splenic lymphocyte, in this report, the influence of selenite supplementation and SelW gene silence on H2O2-mediated cell viability and cell apoptosis in cultured splenic lymphocyte derived from spleen of chicken were examined. The cultured cells were treated with sodium selenite and H2O2, or knocked down SelW with small interfering RNAs (siRNAs). The lymphocytes were examined for cell viability, cell apoptosis and mRNA expression levels of SelW and apoptosis-related genes (Bcl-2, Bax, Bak-1, caspase-3 and p53). The results show that the mRNA expression of SelW were effectively increased after treatment with sodium selenite, and H2O2-induced cell apoptosis was significantly decreased and cell viability was significantly increased. 20 μM H2O2 was found to induce cell apoptosis and decrease cell viability, which was alleviated obviously when cells were pretreated with sodium selenite before exposure to 20 μM H2O2. Meanwhile, H2O2 induced a significantly up-regulation of the Bax/Bcl-2 ratio, Bax, Bak-1, caspase-3 and p53 and down-regulation of Bcl-2 (P < 0.05). When lymphocytes were pretreated with Se before treated with H2O2, the Bax/Bcl-2 ratio and mRNA expression of those genes were significantly decreased, and Bcl-2 was increased (P < 0.05). SelW siRNA-transfected cells were more sensitive to the oxidative stress induced by treatment of H2O2 than control cells. Silencing of the lymphocyte SelW gene decreased their cell viability, and increased their apoptosis rate and susceptibility to H2O2. Silencing of SelW significantly up-regulated the Bax/Bcl-2 ratio, Bax, Bak-1, caspase-3 and p53 and down-regulated Bcl-2 (P < 0.05). The present study demonstrates that SelW plays an important role in protection of splenic lymphocyte of birds from oxidative stress.  相似文献   

11.
The present study was carried out to observe the protective effects of αB-crystallin protein on hydrogen peroxide (H2O2)-induced injury in rat myocardial cells (H9c2) and to investigate the mechanisms of these protective effects at the cellular level, which could provide the experimental basis for future applications of αB-crystallin in the treatment of cardiovascular disease. Western blotting was used to measure the expression of αB-crystallin in cultured H9c2 cells in vitro. A αB-crystallin recombinant expression vector, pcDNA3.1-Cryab, was constructed to transfect H9c2 cells for the establishment of cells that stably expressed αB-crystallin. A tetrazolium-based colorimetric assay (MTT test) was used to measure changes in the viability of the H9c2 cells at 1, 2, 3 and 4 h after induced by 150 μM H2O2 to establish a model of H2O2 injury to cells. H2O2 was applied to H9c2 cells that were stably transfected with αB-crystallin, and the effect of αB-crystallin overexpression on the viability of myocardial cells subjected to H2O2-induced injury was measured by the MTT assay. The effect of αB-crystallin overexpression on the H2O2-induced injury of H9c2 cells was also analyzed by flow cytometry. The mitochondrial components and cytoplasmic components of H9c2 cells were separated, and western blotting was used to measure the effect of αB-crystallin overexpression on the release of cytochrome c from the mitochondria. Western blotting was also used to measure the effect of αB-crystallin overexpression on the expression of the anti-apoptosis protein Bcl-2 and components of the phosphatidylinositol 3-OH kinase (PI3K)/AKT pathway. The αB-crystallin recombinant expression vector pcDNA3.1-Cryab successfully transfected H9c2 cells, and H9c2 cells that were stably transfected with αB-crystallin were established after G418 selection. The measurements carried out by western blotting showed that αB-crystallin proteins are expressed in normal H9c2 cells, but the proteins’ expression was much higher in pcDNA3.1-Cryab transfected cells (P < 0.01). The MTT assays showed that 4 h of H2O2 treatment induced significant injury in H9c2 cells (P < 0.01), but αB-crystallin overexpression can effectively antagonize the H2O2-induced injury to H9c2 cells (P < 0.05). The results of flow cytometry analysis showed that αB-crystallin overexpression can significantly reduce apoptosis in H2O2-injured H9c2 cells (P < 0.05). The results of western blotting showed that αB-crystallin overexpression in myocardial cells can reduce the H2O2-induced release of cytochrome c from the mitochondria (P < 0.05), antagonize the H2O2-induced downregulation of Bcl-2 (P < 0.05) and magnify the decrease in phosphorylated AKT levels induced by H2O2 injury (P < 0.05). The overexpression of αB-crystallin has a protective effect on H2O2-injured H9c2 cells, and αB-crystallin can play a protective role by reducing apoptosis, reducing the release of cytochrome c from the mitochondria and antagonizing the downregulation of Bcl-2 expression. The protective effects of αB-crystallin may be related to the PI3K/AKT pathway.  相似文献   

12.
13.
Fibroblast growth factors (FGFs) comprise a large family of signaling molecules that involve cell patterning, mobilization, differentiation, and proliferation. Various FGFs, including FGF-1, FGF-2, and FGF-5, have been shown to play a role in cytoprotection during adverse cardiac events; however, whether FGF-8 is a cytoprotective remains unclear. The current study was designed to evaluate the effect of FGF-8 treatment on oxidative stress-induced apoptosis in H9c2 cells. Cells were divided into three groups: control, H2O2 (400 µm H2O2), and H2O2 + FGF-8 (4 ng/ml FGF-8). Our results suggest apoptosis was significantly (p < 0.05) enhanced in the H2O2 group relative to control. Moreover, a significant (p < 0.05) decline in apoptosis was observed in the H2O2 + FGF-8 group compared to H2O2-treated cells as evidenced by TUNEL staining, a cell death detection ELISA, and cell viability. Levels of downstream apoptotic mediators, caspase-3 and caspase-9, were significantly (p < 0.05) upregulated following H2O2 treatment but were abrogated following FGF-8 application. Expression levels of Forkhead box protein O1 (FoxO-1), MnSOD, catalase, pAKT, and p-mTOR were significantly (p < 0.05) reduced in the H2O2 group (p < 0.05). Notably, these levels were significantly (p < 0.05) reversed following FGF-8 treatment. Our data, for the first time, suggest FGF-8 is an anti-apoptotic mediator in oxidative-stressed H9c2 cells. Furthermore, our data demonstrate that apoptotic inhibition by FGF-8 is consequent to FoxO-1 oxidative detoxification as well as augmentation to the PI3K/AKT cell survival pathway.  相似文献   

14.
In mammalian ventricular cardiomyocytes, invaginations of the surface membrane form the transverse tubular system (T-system), which consists of transverse tubules (TTs) that align with sarcomeres and Z-lines as well as longitudinal tubules (LTs) that are present between Z-lines in some species. In many cardiac disease etiologies, the T-system is perturbed, which is believed to promote spatially heterogeneous, dyssynchronous Ca2+ release and inefficient contraction. In general, T-system characterization approaches have been directed primarily at isolated cells and do not detect subcellular T-system heterogeneity. Here, we present MatchedMyo, a matched-filter-based algorithm for subcellular T-system characterization in isolated cardiomyocytes and millimeter-scale myocardial sections. The algorithm utilizes “filters” representative of TTs, LTs, and T-system absence. Application of the algorithm to cardiomyocytes isolated from rat disease models of myocardial infarction (MI), dilated cardiomyopathy induced via aortic banding, and sham surgery confirmed and quantified heterogeneous T-system structure and remodeling. Cardiomyocytes from post-MI hearts exhibited increasing T-system disarray as proximity to the infarct increased. We found significant (p < 0.05, Welch’s t-test) increases in LT density within cardiomyocytes proximal to the infarct (12 ± 3%, data reported as mean ± SD, n = 3) versus sham (4 ± 2%, n = 5), but not distal to the infarct (7 ± 1%, n = 3). The algorithm also detected decreases in TTs within 5° of the myocyte minor axis for isolated aortic banding (36 ± 9%, n = 3) and MI cardiomyocytes located intermediate (37 ± 4%, n = 3) and proximal (34 ± 4%, n = 3) to the infarct versus sham (57 ± 12%, n = 5). Application of bootstrapping to rabbit MI tissue revealed distal sections comprised 18.9 ± 1.0% TTs, whereas proximal sections comprised 10.1 ± 0.8% TTs (p < 0.05), a 46.6% decrease. The matched-filter approach therefore provides a robust and scalable technique for T-system characterization from isolated cells through millimeter-scale myocardial sections.  相似文献   

15.
The objective of the study is to investigate the effect of hypoxic preconditioning on the immunomodulatory properties of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and the effect of cotransplantation of hUC-MSCs and human umbilical cord blood (hUCB)-derived CD34+ cells in a rabbit model of myocardial infarction. hUC-MSCs with or without hypoxic preconditioning by cobalt chloride were plated in a 24-well plate, and then cocultured with hUCB-CD34+ cells and PBMCs for 96 h at 37 °C in a 5 % CO2 incubator. For the negative control, hUC-MSCs were omitted. The groups were divided as follows: A1 = HP-MSCs + hUCB-CD34+ cells + PBMC, A2 = hUC-MSCs + hUCB-CD34+ cells + PBMC, Negative Control = hUCB-CD34+ cells + PBMC. Culture supernatants of each group were collected, and the IL-10 and IFN-γ levels were measured by ELISA. A rabbit model of MI was established using a modified Fujita method. The animals were then randomized into three groups and received intramyocardial injections of 0.4 ml of PBS alone (n = 8, PBS group), hUC-MSCs in PBS (n = 8, hUC-MSCs group), or hUC-MSCs + CD34+ cells in PBS (n = 8, Cotrans group), at four points in the infarct border zone. Echocardiography was performed at baseline, 4 weeks after MI induction, and 4 weeks after cell transplantation, respectively. Stem cell differentiation and neovascularization in the infracted area were characterized for the presence of cardiac Troponin I (cTnI) and CD31 by immunohistochemical staining, and the extent of myocardial fibrosis was evaluated by hematoxylin and eosin (H&E) and Masson’s trichrome. IFN-γ was 27.00 ± 1.11, 14.20 ± 0.81, and 7.22 ± 0.14 pg/ml, and IL-10 was 31.68 ± 3.08, 61.42 ± 1.08, and 85.85 ± 1.80 pg/ml for the Control, A1 and A2 groups, respectively, which indicated that hUCB-CD34+ cells induced immune reaction of peripheral blood mononuclear cells, whereas both hUC-MSCs and HP-MSCs showed an immunosuppressive effect, which, however, was attenuated by hypoxic preconditioning. The Cotrans group had less collagen deposition in the infarcted myocardium and better heart function than the hUC-MSCs or PBS group. The presence of cTnI-positive cells and CD31-positive tubular structures indicated the differentiation of stem cells into cardiomyocytes and neovascularization. The microvessel density was 12.19 ± 3.05/HP for the hUC-MSCs group and 31.63 ± 2.45/HP for the Cotrans group, respectively (P < 0.01). As a conclusion, both hUC-MSCs and HP-MSCs have an immunosuppressive effect on lymphocytes, which, however, can be attenuated by hypoxic preconditioning. Cotransplantation of hUC-MSCs and hUCB-CD34+ cells can improve heart function and decrease collagen deposition in post-MI rabbits. Thus, a combined regimen of hUC-MSCs and hUCB-CD34+ cells would be more desirable than either cells administered alone. This is most likely due to the increase of cardiomyocytes and enhanced angiogenesis in the infarcted myocardium.  相似文献   

16.
It has been widely suggested that selenium (Se) deficiency play an important role in the pathophysiology of epilepsy. It has been reported that Se provides protection against the neuronal damage in patients and animals with epilepsy by restoring the antioxidant defense mechanism. The neuroprotective effects of topiramate (TPM) have been reported in several studies but the putative mechanism of action remains elusive. We investigated effects of Se and TPM in neuronal PC12 cell by evaluating Ca2+ mobilization, lipid peroxidation and antioxidant levels. PC12 cells were divided into eight groups namely control, TPM, Se, H2O2, TPM + H2O2, Se + H2O2, Se + TPM and Se + TPM + H2O2. The toxic doses and times of H2O2, TPM and Se were determined by cell viability assay which is used to evaluate cell viability. Cells were incubated with 0.01 mM TPM for 5 h and 500 nM Se for 10 h. Then, the cells were exposed to 0.1 mM H2O2 for 10 h before analysis. The cells in all groups except control, TPM and Se were exposed to H2O2 for 15 min before analysis. Cytosolic Ca2+ release and lipid peroxidation levels were higher in H2O2 group than in control, Se and TPM combination groups although their levels were decreased by incubation of Se and TPM combination. However, there is no difference on Ca2+ release in TPM group. Glutathione peroxidase activity, reduced glutathione and vitamin C levels in the cells were lower in H2O2 group than in control, Se and TPM groups although their values were higher in the cells incubated with Se and TPM groups than in H2O2 groups. In conclusion, these results indicate that Se induced protective effects on oxidative stress in PC12 cells by modulating cytosolic Ca2+ influx and antioxidant levels. TPM modulated also lipid peroxidation and glutathione and vitamin C concentrations in the cell system.  相似文献   

17.

Background

Women have a higher risk of lethal arrhythmias than men in long QT syndrome type 2 (LQTS2), but the mechanisms remain uncertain due to the limited availability of healthy control human tissue. We have previously reported that in female rabbits, estrogen increases arrhythmia risk in drug-induced LQTS2 by upregulating L-type Ca2+ (ICa,L) and sodium-calcium exchange (INCX) currents at the base of the epicardium by a genomic mechanism. This study investigates if the effects of estrogen on rabbit ICa,L and INCX apply to human hearts.

Methods

Postmortem human left ventricular tissue samples were probed with selective antibodies for regional heterogeneities of ion channel protein expression and compared to rabbit myocardium. Functionally, ICa,L and INCX were measured from female and male cardiomyocytes derived from human induced pluripotent stem cells (iPS-CMs) with the voltage-clamp technique from control and estrogen-treated iPS-CMs.

Results

In women (n = 12), Cav1.2α (primary subunit of the L-type calcium channel protein 1) and NCX1 (sodium-calcium exchange protein) levels were higher at the base than apex of the epicardium (40 ± 14 and 81 ± 30%, respectively, P < 0.05), but not in men (n = 6) or postmenopausal women (n = 6). Similarly, in cardiomyocytes derived from female human iPS-CMs, estrogen (1 nM, 1–2 days) increased ICa,L (31%, P < 0.05) and INCX (7.5-fold, ??90 mV, P < 0.01) and their mRNA levels (P < 0.05). Moreover, in male human iPS-CMs, estrogen failed to alter ICa,L and INCX.

Conclusions

The results show that estrogen upregulates cardiac ICa,L and INCX in women through genomic mechanisms that account for sex differences in Ca2+ handling and spatial heterogeneities of repolarization due to base-apex heterogeneities of Cav1.2α and NCX1. By analogy with rabbit studies, these effects account for human sex-difference in arrhythmia risk.
  相似文献   

18.
The present study was carried out to investigate the antioxidant and neuroprotective effects of Hyptis suaveolens methanol extract (HSME) using various in vitro systems. The total phenol and flavonoids contents of the HSME were quantified by colorimetric methods. The HSME extract exhibited potent antioxidant activity as determined by 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 2,2-diphenyl-1-picrylhydrazyl, and ferric reducing antioxidant power assays. The neuroprotective activity of HSME was determined on mouse N2A neuroblastoma cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, intracellular ROS assays, and upregulation of brain neuronal markers at genetic level. The N2A cells were pretreated with different concentrations (0.5, 1, 1.5, and 2 mg/ml) of the extract and then exposed to H2O2 to induce oxidative stress and neurotoxicity. The survival of the cells treated with different concentrations of HSME and H2O2 increased as compared to cells exposed only to H2O2 (47.3 %) (p < 0.05). The HSME also dose-dependently reduced LDH leakage and intracellular ROS production (p < 0.05). Pretreatment with HSME promotes the upregulation of tyrosine hydroxylase (2.41-fold, p < 0.05), and brain-derived neurotrophic factor genes (2.15-fold, p < 0.05) against H2O2-induced cytotoxicity in N2A cells. Moreover, the HSME showed antioxidant activity and decreased neurotoxicity. These observations suggest that HSME have marked antioxidant and neuroprotective activities.  相似文献   

19.
The effects of two glycosylated whey hydrolysates (GWH-Gal A and GWH-Gal B) on glutathione (GSH) and related antioxidant enzymes in SGC-7901 cells were evaluated. Two whey glycosylated hydrolysates promoted an increase in reduced glutathione (GSH) in normal SGC-7901 cells. GSH, glutathione peroxidase (GPx), γ-glutamine cysteine synthetaase (γ-GCS), and catalase (CAT) at 1.0 and 2.0 mg/mL in normal SGC-7901 cells were higher in the GWH-Gal A group than in the GWH-Gal B group (P < 0.05). Compared with GWH-Gal B, GWH-Gal A more strongly inhibited decreases in intracellular GSH, GPx, γ-GCS, CAT, and superoxide dismutase (SOD) in H2O2-induced SGC-7901 cells. Compared with GWH-Gal B, GWH-Gal A at 1.0 and 2.0 mg/mL effectively inhibited increases in lactate dehydrogenase (LDH) and malondialdehyde (MDA) in H2O2-induced SGC-7901 cells (P < 0.05). Therefore, GSH content and related antioxidant enzyme activity levels (GPx, γ-GCS, CAT, SOD) in both normal and H2O2-induced SGC-7901 cells were considerably stronger in the GWH-Gal A group than in the GWH-Gal B group.  相似文献   

20.
The evolving concept of pro-oxidative mechanism-based antitumor activity of emodin (1,3,8-trihydroxy-6-methyl anthraquinone), derived mainly from in vitro studies, needs to be defined for in vivo tumor models. The present article describes apoptosis and regression of Dalton’s lymphoma (DL) in mice by emodin vis a vis modulations of hydrogen peroxide (H2O2) metabolizing antioxidant enzymes in the tumor cells in vivo. A non-toxic dose (40 mg/kg bw) of emodin, given intraperitoneally to the DL bearing mice daily up to 12th post DL transplantation day, caused a significant decline (P < 0.05) in the number of viable DL cells and could significantly increase life span of the DL mice (P < 0.01). A significant decline in Bcl2/Bax ratio consistent with the release of mitochondrial cytochrome c release in DL cells from emodin-treated DL mice suggested that emodin could induce mitochondrial pathway of apoptosis in the DL cells in vivo. Apoptosis of DL cells by emodin was further confirmed by the appearance of smaller DNA fragments on DNA ladder analysis. Over activation of both, the Cu–Zn-superoxide dismutases (SOD1) and Mn-SOD (SOD2), has been found correlated with the tumor suppression. Emodin caused significant increases in the expression and activity of SOD1 and SOD2 in the DL cells. H2O2 produced by SODs is degraded by catalase and glutathione peroxidase in the cells. Both these enzymes were observed to be declined significantly with a concomitant increment in H2O2 concentration (P < 0.01) in the DL cells from emodin-treated DL mice. It is concluded that emodin is able to induce mitochondrial pathway of apoptosis in the DL cells in vivo via reciprocal modulations of H2O2 producing and degrading antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号