首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Here we describe a comparative study of phenotypic properties of hepatic cells in situ and in vitro. We analyzed the expression levels and distribution patterns of ABC transporters MRP2 and MDR1, pan-cytokeratin, cytokeratin 18, albumin, alpha-fetoprotein and the specific hepatocyte marker OCH1E5 in the fetal and adult rat as well as human liver tissue and in human fetal hepatocytes of WRL 68 cell line using peroxidase immunohistochemistry or immunofluorescence. Transporters MRP2 and MDR1 were expressed in all examined liver tissues, except rat ED13 embryo. The immunopositivity of these proteins was localized to the canalicular membrane of differentiating and mature hepatocytes but in the later developmental stages and in the adult liver tissues it was also found in the apical membrane of cholangiocytes. In WRL 68 cells, MRP2 and MDR1 immunoreactivity appeared after 5-6 days of cultivation and both transporters were fully expressed in the plasmalemma and in the cytoplasm 9 days after the passage. In conclusion, we observed only moderate variances reflecting diverse ontogenetic phases between the fetal and adult liver tissue. To study functions of hepatocytes in vitro, WRL 68 cells have to differentiate prior to the examination. Our findings indicate that WRL 68 cells can undergo differentiation in vitro and their antigenic profile closely resembles hepatocytes in the human liver.  相似文献   

3.
Three ABC transporters (MDR1, MRP1, BCRP), belonging to the family of multidrug resistance (MDR) proteins, play a crucial role in the protection mechanisms during embryogenesis and mediate drug resistance in cancer cells. The distribution of these transporters in the series of human embryonal/fetal intestine, liver and kidneys of various stages of intrauterine development (IUD) by indirect two-step immunohistochemical method was investigated. The organ- and age-specific expression patterns of these transporters were depicted and compared with the expression in adult organs. The evaluation of intestine and liver samples demonstrate differences in expression pattern of ABC transporters during IUD. On the contrary, in kidneys the age-specific localization was not observed. However, the increasing positivity from the kidney surface towards deeper, more differentiated parts was found. Hopefully, our study may contribute to elucidation of the role of multidrug resistance (MDR) pathways during IUD in man.  相似文献   

4.
Expression of MDR1 and MRP genes in patients with low-grade and high-grade non-Hodgkin's lymphomas with primary bone marrow involvement before and after chemotherapy was investigated. The data demonstrate that overexpression of MDR1 and MRP genes in hematological malignancies elevates in patients after chemotherapy and correlates with poor clinic prognosis and more frequent recurrences of the malignancies.  相似文献   

5.
6.
It has been established beyond doubt that, as well as the liver, the small intestine is an important site of first-pass metabolism of numerous drugs, food components and toxic xenobiotics. However, there is not much information available about age-dependent changes of intestinal biotransformation pathways. In the present paper, we evaluated the relationships between intestinal cytochrome P450 complex activity and the age of animals. The study was carried out on male Sprague–Dawley rats (n = 5) from 5 age series: 0.5-, 2-, 4-, 20-, and 28 months old. Animals at every age series were divided into 4 groups: control and three groups of rats treated with the CYP450 specific inducers: phenobarbital, β-naphtoflavone and dexamethasone, respectively. RNA was isolated from intestinal mucosa, and then standard RT-PCR was used for the analysis of CYP1A1, CYP2B1/2 and CYP3A1 mRNA expression. Additionally, the activities of NADPH-cytochrome P450 and NADH-cytochrome b5 reductases in the microsomal fraction were biochemically estimated. The constitutive intestinal CYP1A1 mRNA expression changes during maturation and aging. Inducibility of CYP1A1 gene was evident in intestinal mucosa at 2-, 4- and 20-month-old rats. A similar pattern of changes was observed for CYP2B1/2 isoforms. CYP3A1 mRNA expression was not detected in small intestine of 2-week-old rats. In matured rats, constitutive intestinal CYP3A1 expression was low, although after induction, significant increases in CYP3A1 mRNA amount were noted in aged individuals. Intestinal activity of both analyzed reductases was lowest in immature rats and highest in 28-month-old animals. In conclusion, the activity of cytochrome P450 complex in rat small intestine was not decreased by the aging processes, so the high rate of oxidative metabolic reactions in intestinal mucosa can be maintained till the advanced life stage.  相似文献   

7.
Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16?%) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9?%) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.  相似文献   

8.
Potential causes of variability in drug response include intrinsic factors such as ethnicity and genetic differences in the expression of enzymes that metabolize drugs, such as those from Cytochrome P450 (CYPs) superfamily. Pharmacogenetic studies search for genetic differences between populations since relevant alleles occur with varying frequencies among different ethnic populations. The Brazilian population is one of the most heterogeneous in the world, resulting from multiethnic admixture of Amerindians, Europeans, and Africans across centuries. Since the knowledge of CYP allele frequency distributions is relevant to pharmacogenetic strategies and these data are scarce in the Brazilian population, this study aimed to describe genotype and allele distributions of 15 single nucleotide polymorphisms (SNPs) at CYP 1A2, 2C19, 3A4, and 3A5 genes in African and European descents from South Brazil. A sample of 179 healthy individuals of European and African ancestry was genotyped by the MassARRAY SNP genotyping system. CYP3A5*3, CYP1A2*1F, CYP3A4*1B, and CYP2C19*2 were the most frequent alleles found in our sample. Significant differences in genotype and allelic distribution between African and European descents were observed for CYP3A4 and CYP3A5 genes. CYP3A4*1B was observed in higher frequency in African descents (0.379) than in European descents (0.098), and European descents showed higher frequency of CYP3A5*3 (0.810) than African descents (0.523). Our results indicate that only a few polymorphisms would have impact in pharmacogenetic testing in South Brazilians. Further studies with larger sample sizes are required also among other Brazilian regions.  相似文献   

9.
10.
目的建立人结肠癌多药耐受性动物模型并初步探索其耐药机制。方法结合体内外诱导方法建立人结肠癌多药耐受性动物模型,利用VCR和CTX的肿瘤抑制实验评价其MDR特性;利用real-time PCR和West-ern blotting等方法分析其P-gp/MDR1和MRP1基因和蛋白的表达。结果肿瘤抑制实验结果显示,MDR和敏感型结肠癌模型的肿瘤生长速度差异不显著,MDR结肠癌动物模型对于VCR和CTX的耐药性均有较大程度的提高;表达分析结果显示,人结肠癌MDR动物模型的P-gp/MDR1表达水平有较大提高,而MRP1表达没有显著变化。结论人结肠癌多药耐受性动物模型具有较好的多药耐受性,其多药耐受性表型主要是由于P-gp/MDR1过量表达所导致。  相似文献   

11.
12.
13.

Background

The cytochrome P450 CYP1A1 and CYP1B1 enzymes are involved in carcinogenesis via activation of pro-carcinogenic compounds to carcinogenic metabolites. CYP1A1 and CYP1B1 have shown elevated levels in human tumors as determined by qRT-PCR and immunohistochemical studies. However studies that have examined CYP1 expression by enzyme activity assays are limited.

Results

In the current study the expression of CYP1A1 and CYP1B1 was investigated in a panel of human tumors of bladder and colorectal origin by qRT-PCR and enzyme activity assays. The results demonstrated that 35% (7/20) of bladder tumors and 35% (7/20) of colon tumors overexpressed active CYP1 enzymes. CYP1B1 mRNA was overexpressed in 65% and 60% of bladder and colon tumors respectively, whereas CYP1A1 was overexpressed in 65% and 80% of bladder and colon tumors. Mean mRNA levels of CYP1B1 and CYP1A1 along with mean CYP1 activity were higher in bladder and colon tumors compared to normal tissues (p<0.05). Statistical analysis revealed CYP1 expression levels to be independent of TNM status. Moreover, incubation of tumor microsomal protein in 4 bladder and 3 colon samples with a CYP1B1 specific antibody revealed a large reduction (72.5 ± 5.5 % for bladder and 71.8 ± 7.2% for colon) in catalytic activity, indicating that the activity was mainly attributed to CYP1B1 expression.

Conclusions

The study reveals active CYP1 overexpression in human tumors and uncovers the potential use of CYP1 enzymes and mainly CYP1B1 as targets for cancer therapy.  相似文献   

14.
15.
16.
【目的】细胞色素P450是分布极其广泛的超家族酶,在昆虫内源及外源化合物代谢中发挥着重要的作用。本文分析了飞蝗Locusta migratoria CYP408B1和CYP409A1基因在不同组织部位的表达差异,并对两种蛋白进行原核表达,为其分子特性和生物学功能的深入研究提供基础资料。【方法】提取飞蝗5龄若虫不同组织部位的总RNA,体外反转录成c DNA,采用Real-time PCR和RT-PCR技术分析飞蝗CYP408B1和CYP409A1在不同组织部位的表达模式,构建表达载体p CW/CYP408B1、p CW/CYP409A1和p AC/CPR,将p CW/CYP408B1和p CW/CYP409A1分别与p AC/CPR在大肠杆菌Escherichia coli BL21(DE3)中进行共表达。【结果】通过PCR检测,发现CYP408B1和CYP409A1在飞蝗5龄若虫触角、脑、视叶、咽下神经节、胸神经节和附腺中均有表达,其中CYP408B1在附腺中表达量较高。原核表达结果显示,CYP409A1和CPR(NADPH细胞色素P450还原酶)均可表达,蛋白分子量分别约为58 ku和77 ku,但均为包涵体,而CYP408B1未能成功表达。【结论】本文揭示了飞蝗CYP408B1和CYP409A1在不同组织部位的表达模式,并对CYP409A1和CPR进行了原核表达,研究结果为深入探讨飞蝗细胞色素P450基因对杀虫剂的代谢解毒作用提供了实验依据和基础资料。  相似文献   

17.
Compared to other species, little information is available on the xenobiotic-induced regulation of cytochrome P450 enzymes in the beagle dog. Dogs are widely used in the pharmaceutical industry for many study types, including those that will impact decisions on compound progression. The purpose of this study was (1) to determine the temporal kinetics of drug-induced changes in canine CYP1A, CYP2B, and CYP3A mRNA and enzymatic activity, and (2) to characterize concentration-response relationships for CYP1A2, CYP2B11, and CYP3A12 using primary cultures of canine hepatocytes treated with beta-naphthoflavone (BNF), phenobarbital (PB), and rifampin (RIF), respectively. CYP1A1 and CYP1A2 mRNA exhibited maximal expression (12,700-fold and 206-fold, respectively) after 36 h of treatment with BNF. PB treatment, but not RIF treatment, caused maximal induction of CYP2B11 mRNA (149-fold) after 48 h of treatment. CYP3A12 and CYP3A26 mRNA levels were increased maximally after 72 h of treatment with PB and RIF (CYP3A12, 35-fold and 18-fold, and CYP3A26, 72-fold and 22-fold with PB and RIF treatment, respectively). Concentration-response relationships for BNF induced 7-ethoxyresorufin O-dealkylation (EROD) (EC(50) = 7.8 +/- 4.2 microM), PB induced 7-benzyloxyresorufin O-dealkylation (BROD) (EC(50) = 123 +/- 30 microM), and PB and RIF induced testosterone 6beta-hydroxylation (EC(50) = 132 +/- 28 microM and 0.98 +/- 0.16 microM) resembled the relationship for human CYP induction compared to that of rodent. Interestingly, RIF had no effect on CYP2B11 expression, which represents a species difference overlooked in previous investigations. Overall, the induction of dog CYP1A, CYP2B, and CYP3A exhibits characteristics that are intermediate to those of rodent and human.  相似文献   

18.
Cytochrome P450 (CYP) and glutathione S-transferase (GST) enzymes are involved in activation and detoxification of many potential carcinogens. Genetic polymorphisms in those enzymes have been found to influence the interindividual susceptibility to cancer. Some polymorphisms of those enzymes have been associated specifically with susceptibility to gastric cancer. We conducted a study in a Costa Rican population, where gastric cancer incidence and mortality rates are among the highest in the world. We investigated whether such variations affected the risk of developing gastric cancer. Subjects included 31 with gastric cancer, 58 controls with gastric injures others than cancer and 51 normal controls confirmed by X-rays (double-contrast) or endoscopic diagnostic. DNA from peripheral white blood cell was obtained from all subjects. Deletion of GSTT1 and GSTM1 was assessed by multiplex PCR and genotyping of CYP2E1 was performed using a PCR-based restriction fragment length polymorphism assay with the restriction enzyme PstI and the gene CYP1A1 using the restriction enzyme MspI The prevalence of CYP1A1 Msp1 polymorphism, GSTT1 and GSTM1 null genotype was similar in the three groups of individuals (p = 0.73, p = 0.88 y p = 0.89 respectively). Our findings suggest that the polymorphism CYP2E1 PstI could be associated with a reduced risk of having gastric cancer (OR = 0.09, IC95%:0.01 - 0.83).  相似文献   

19.
20.
Numerous chemicals increase the metabolic capability of organisms by their ability to activate genes encoding various xenochemical-metabolizing enzymes, such as cytochromes P450 (CYPs), transferases and transporters. For example, natural and synthetic glucocorticoids (agonists and antagonists) as well as other clinically important drugs induce the hepatic CYP2B, CYP2C and CYP3A subfamilies in man, and these inductions might lead to clinically important drug-drug interactions. Only recently, the key cellular receptors that mediate such inductions have been identified. They include nuclear receptors, such as the constitutive androstane receptor (CAR, NR1I3), the retinoid X receptor (RXR, NR2B1), the pregnane X receptor (PXR, NR1I2), and the vitamin D receptor (VDR, NR1I1) and steroid receptors such as the glucocorticoid receptor (GR, NR3C1). There is a wide promiscuity of these receptors in the induction of CYPs in response to xenobiotics. Indeed, this adaptive system appears now as a tangle of networks, where receptors share partners, ligands, DNA response elements and target genes. Moreover, they influence mutually their relative expression. This review is focused on these different pathways controlling human CYP2B6, CYP2C9 and CYP3A4 gene expression, and the cross-talk between these pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号