首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Microsatellite or simple sequence repeat (SSR) marker analysis was carried out to assess allelic diversity and prepare a DNA fingerprint database of 24 rice genotypes including three premium traditional Basmati, 9 cross-bred Basmati, a local scented selection, eight indica and three japonica rice varieties. A total of 229 alleles were detected at the 50 SSR loci and 49 alleles were in fact present in only one of the 24 varieties. The size difference between the smallest and largest allele varied from 1 (RM333) to as high as 82 (RM206). Multiple alleles were observed at 13 loci. Polymorphism information content (PIC) values ranged between 0.0 (RM167) to 0.78 (RM170), with an average of 0.62 per marker. At 15 of the SSR loci, traditional and cross-bred Basmati rice varieties amplified different alleles than those in the indica andlor japonica rice varieties. A number of SSRs have been identified, which can be used to differentiate among the traditional Basmati varieties and between traditional Basmati and other cross-bred Basmati or long grain, non-Basmati rice varieties. Genetic relationships among rice genotypes as determined by UPGMA cluster analysis and three-dimensional scaling basedon Principal Component Analysis showed that the three traditional Basmati rice varieties are closely related and have varying degree of similarity with other cross-bred Basmati rice varieties. Further implications of these results in genotype identification, monitoring purity and adulteration, and plant variety protection are discussed.  相似文献   

2.
Global dissemination of a single mutation conferring white pericarp in rice   总被引:3,自引:0,他引:3  
Here we report that the change from the red seeds of wild rice to the white seeds of cultivated rice (Oryza sativa) resulted from the strong selective sweep of a single mutation, a frame-shift deletion within the Rc gene that is found in 97.9% of white rice varieties today. A second mutation, also within Rc, is present in less than 3% of white accessions surveyed. Haplotype analysis revealed that the predominant mutation originated in the japonica subspecies and crossed both geographic and sterility barriers to move into the indica subspecies. A little less than one Mb of japonica DNA hitchhiked with the rc allele into most indica varieties, suggesting that other linked domestication alleles may have been transferred from japonica to indica along with white pericarp color. Our finding provides evidence of active cultural exchange among ancient farmers over the course of rice domestication coupled with very strong, positive selection for a single white allele in both subspecies of O. sativa.  相似文献   

3.
China is the largest rice-producing country, but the genomic landscape of rice diversity has not yet been clarified. In this study, we re-sequence 1070 rice varieties collected from China(400) and other regions in Asia(670). Among the six major rice groups(aus, indica-I, indica-II, aromatic, temperate japonica, and tropical japonica), almost all Chinese varieties belong to the indica-II or temperate japonica group. Most Chinese indica varieties belong to indica-II, which consists of two subgroup...  相似文献   

4.
Aromatic rice is an important commodity for international trade, which has encouraged the interest of rice breeders to identify the genetic control of rice aroma. The recessive Os2AP gene, which is located on chromosome 8, has been reported to be associated with rice aroma. The 8-bp deletion in exon 7 is an aromatic allele that is present in most aromatic accessions, including the most popular aromatic rice varieties, Jasmine and Basmati. However, other mutations associated with aroma have been detected, but the other mutations are less frequent. In this study, we report an aromatic allele, a 3-bp insertion in exon 13 of Os2AP, as a major allele found in aromatic rice varieties from Myanmar. The insertion is in frame and causes an additional tyrosine (Y) in the amino acid sequence. However, the mutation does not affect the expression of the Os2AP gene. A functional marker for detecting this allele was developed and tested in an aroma-segregating F(2) population. The aroma phenotypes and genotypes showed perfect co-segregation of this population. The marker was also used for screening a collection of aromatic rice varieties collected from different geographical sites of Myanmar. Twice as many aromatic Myanmar rice varieties containing the 3-bp insertion allele were found as the varieties containing the 8-bp deletion allele, which suggested that the 3-bp insertion allele originated in regions of Myanmar.  相似文献   

5.
Chromosomal regions associated with marker segregation distortion in rice were compared based on six molecular linkage maps. Mapping populations were derived from one interspecific backcross and five intersubspecific (indica?/?japonica) crosses, including two F2 populations, two doubled haploid (DH) populations, and one recombinant inbred (RI) population. Mapping data for each population consisted of 129–629 markers. Segregation distortion was determined based on chi-square analysis (P?<?0.01) and was observed at 6.8–31.8% of the mapped marker loci. Marker loci associated with skewed allele frequencies were distributed on all 12 chromosomes. Distortion in eight chromosomal regions bracketed previously identified gametophyte (ga) or sterility genes (S). Distortion in three other chromosomal regions was found only in DH populations, where japonica alleles were over-represented, suggesting that loci in these regions may be associated with preferential regeneration of japonica genotypes during anther culture. Three additional clusters of skewed markers were observed in more than one population in regions where no gametophytic or sterility loci have previously been reported. A total of 17 segregation distortion loci may be postulated based on this study and their locations in the rice genome were estimated.  相似文献   

6.
Photoperiod- and thermo-sensitive genic male sterility (PGMS and TGMS) are the core components for hybrid breeding in crops. Hybrid rice based on the two-line system using PGMS and TGMS lines has been successfully developed and applied widely in agriculture. However, the molecular mechanism underlying the control of PGMS and TGMS remains obscure. In this study, we mapped and cloned a major locus, p/tms12-1 (photo- or thermo-sensitive genic male sterility locus on chromosome 12), which confers PGMS in the japonica rice line Nongken 58S (NK58S) and TGMS in the indica rice line Peiai 64S (PA64S, derived from NK58S). A 2.4-kb DNA fragment containing the wild-type allele P/TMS12-1 was able to restore the pollen fertility of NK58S and PA64S plants in genetic complementation. P/TMS12-1 encodes a unique noncoding RNA, which produces a 21-nucleotide small RNA that we named osa-smR5864w. A substitution of C-to-G in p/tms12-1, the only polymorphism relative to P/TMS12-1, is present in the mutant small RNA, namely osa-smR5864m. Furthermore, overexpression of a 375-bp sequence of P/TMS12-1 in transgenic NK58S and PA64S plants also produced osa-smR5864w and restored pollen fertility. The small RNA was expressed preferentially in young panicles, but its expression was not markedly affected by different day lengths or temperatures. Our results reveal that the point mutation in p/tms12-1, which probably leads to a loss-of-function for osa-smR5864m, constitutes a common cause for PGMS and TGMS in the japonica and indica lines, respectively. Our findings thus suggest that this noncoding small RNA gene is an important regulator of male development controlled by cross-talk between the genetic networks and environmental conditions.  相似文献   

7.
Asian cultivated rice(Oryza sativa L.),an important cereal crop worldwide,was domesticated from its wild ancestor 8000 years ago.During its long-term cultivation and evolution under diverse agroecological conditions, Asian cultivated rice has differentiated into indica and japonica subspecies.An effective method is required to identify rice germplasm for its indica and japonica features,which is essential in rice genetic improvements.We developed a protocol that combined DNA extraction from a single rice seed and the insertion/deletion(InDel) molecular fingerprint to determine the indica and japonica features of rice germplasm.We analyzed a set of rice germplasm,including 166 Asian rice varieties,two African rice varieties,30 accessions of wild rice species,and 42 weedy rice accessions,using the single-seeded InDel fingerprints(SSIF).The results show that the SSIF method can efficiently determine the indica and japonica features of the rice germplasm.Further analyses revealed significant indica and japonica differentiation in most Asian rice varieties and weedy rice accessions.In contrast,African rice varieties and nearly all the wild rice accessions did not exhibit such differentiation.The pattern of cultivated and wild rice samples illustrated by the SSIF supports our previous hypothesis that indica and japonica differentiation occurred after rice domestication under different agroecological conditions.In addition,the divergent pattern of rice cultivars and weedy rice accessions suggests the possibility of an endoferal origin(from crop)of the weedy rice included in the present study.  相似文献   

8.
Zhao ZG  Jiang L  Zhang WW  Yu CY  Zhu SS  Xie K  Tian H  Liu LL  Ikehashi H  Wan JM 《Planta》2007,226(5):1087-1096
Partial abortion of female gametes and the resulting semi-sterility of indica × japonica inter-subspecific rice hybrids have been ascribed to an allelic interaction, which can be avoided by the use of wide compatibility varieties. To further understand the genetic mechanism of hybrid sterility, we have constructed two sets of hybrids, using as male parent either the typical japonica variety Asominori, or the wide compatibility variety 02428; and as female, a set of 66 chromosome segment substitution lines in which various chromosomal segments from the indica variety IR24 have been introduced into a common genetic background of Asominori. Spikelet semi-sterility was observed in hybrid between CSSL34 and Asominori, which is known to carry the sterility gene S31 (Zhao et al. in Euphytica 151:331–337, 2006). Cytological analysis revealed that the semi-sterility of the CSSL34 × Asominori hybrid was caused primarily by partial abortion of the embryo sac at the stage of the mitosis of the functional megaspore. A population of 1,630 progeny of the three-way cross (CSSL34 × 02428) × Asominori was developed to map S31. Based on the physical location of linked molecular markers, S31 was thereby delimited to a 54-kb region on rice chromsome 5. This fragment contains eight predicted open reading frames, four of which encode known proteins and four putative proteins. These results are relevant to the map-based cloning of S31, and the development of marker-assisted transfer of non-sterility allele inducing alleles to breeding germplasm, to allow for a more efficient exploitation of heterosis in hybrid rice.  相似文献   

9.
Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 F7 recombinant in-bred lines (RILs) from a cross of japonica rice line ‘SNUSG1’ and indica rice line ‘Milyang23’. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.  相似文献   

10.
The incomplete fertility of japonica × indica rice hybrids has inhibited breeders’ access to the substantial heterotic potential of these hybrids. As hybrid sterility is caused by an allelic interaction at a small number of loci, it is possible to overcome it by simple introgression at the major sterility loci. Here we report the use of marker-assisted backcrossing to transfer into the elite japonica cv. Zhendao88 a photoperiod-sensitive male sterility gene from cv. Lunhui422S (indica) and the yellow leaf gene from line Yellow249 (indica). The microsatellite markers RM276, RM455, RM141 and RM185 were used to tag the fertility genes S5, S8, S7 and S9, respectively. Line 509S is a true-breeding photoperiod-sensitive male sterile plant, which morphologically closely resembles the japonica type. Genotypic analysis showed that the genome of line 509S comprises about 92% japonica DNA. Nevertheless, hybrids between line 509S and japonica varieties suffer from a level of hybrid sterility, although the line is highly cross-compatible with indica types, with the resulting hybrids expressing a significant degree of heterosis. Together, these results suggest that segment substitution on fertility loci based on known information and marker-assisted selection are an effective approach for utilizing the heterosis of rice inter-subspecies.  相似文献   

11.
Asian rice, Oryza sativa L., is one of the most important crop species. Genetic analysis has established that rice consists of several genetically differentiated variety groups, with two main groups, namely, O. sativa ssp. japonica kata and ssp. indica kata. To determine the genetic diversity of indica and japonica rice, 45 rice varieties, including domesticated rice and Asia common wild rice (O. rufipogon Griff.), were analyzed using sequence-related amplified polymorphism, target region amplified polymorphism, simple sequence repeat, and intersimple sequence repeat marker systems. A total of 90 indica- and japonica-specific bands between typical indica and japonica subspecies were identified, which greatly helped in determining whether domesticated rice is of the indica or japonica type, and in analyzing the consanguinity of hybrid rice with japonica, which were bred from indica and japonica crossed offspring. These specific bands were both located in the coding and non-encoding region, and usually connected with quantitative trait loci. Utilizing the indica-japonica-specific markers, japonica consanguinity was detected in sterile hybrid rice lines. Many indica-japonica-specific bands were found in O. rufipogon. This result supports the multiple-origin model for domesticated rice. Javanica exhibited a greater number of indica-japonica-specific bands, which indicates that it is a subspecies of O. sativa L.  相似文献   

12.
Indica and japonica are two main subspecies of Asian cultivated rice (Oryza sativa L.) that differ clearly in morphological and agronomic traits, in physiological and biochemical characteristics and in their genomic structure. However, the proteins and genes responsible for these differences remain poorly characterized. In this study, proteomic tools, including two-dimensional electrophoresis and mass spectrometry, were used to globally identify proteins that differed between two sequenced rice varieties (93–11 and Nipponbare). In all, 47 proteins that differed significantly between 93–11 and Nipponbare were identified using mass spectrometry and database searches. Interestingly, seven proteins were expressed only in Nipponbare and one protein was expressed specifically in 93–11; these differences were confirmed by quantitative real-time PCR and proteomic analysis of other indica and japonica rice varieties. This is the first report to successfully demonstrate differences in the protein composition of indica and japonica rice varieties and to identify candidate proteins and genes for future investigation of their roles in the differentiation of indica and japonica rice.  相似文献   

13.
Subspecific classification of Asian rice (Oryza sativa L) into indica and japonica has always been a subject of interest althrough for rice breeders and geneticists. The present study aims at identifying subspecies specific microsatellite markers in six genotypes, each of indica and japonica using 372 microsatellite primers covering the entire genome. Only 36 primers gave clear polymorphism on 3% agarose gel and these can be used as diagnostic markers for routine and easy identification of the subspecies.  相似文献   

14.
Breeding for salt tolerance using traditional screening and selection methods have been limited by the complex and polygenic nature of salt tolerance trait. This study was designed to evaluate some of the premium Basmati rice varieties for salt tolerance and to characterize genetic diversity among the rice varieties with different adaptations to saline soils using microsatellite (SSR) and ISSR markers. Plants of nine rice varieties including salt tolerant, salt sensitive and traditional Basmati, were grown in hydroponics using Yoshida solution containing 0 (control, pH 5.0) and 30 mM NaCl (Electrical conductivity 4.8 d/S, pH 5.0) and assessed for salinity tolerance on 1–9 scale as per IRRI standard evaluation system using seedling growth parameters, visual salt injuries and Na-K ratio. Physio-morphological studies showed that traditional Basmati rice varieties (Basmati 370 and HBC19) were more sensitive than the salt sensitive control variety, MI-48. SSR as well as ISSR marker systems generated higher levels of polymorphism and could distinguish between all the 9 rice cultivars. A total of 299 (225 polymorphic) and 437 (430 polymorphic) bands were detected using 28 UBC ISSR primers and 100 welldistributed mapped SSR markers, respectively. ISSR and SSR marker data-sets showed moderate levels of positive correlation (Mantel test, r = 0.43). The ISSR and SSR marker data analyzed using clustering algorithms showed two distinct clusters separating the Basmati (Basmati 370, HBC19 and CSR-30) from other non-aromatic indica (IR36, Pokkali, CSR10 and MI-48) rice varieties indicating greater divergence between Basmati and non-aromatic indica rice genotypes. Marker analysis showed a close relationship among the two traditional (Basmati 370 and HBC19) and cross-bred (CSR30) Basmati rice varieties and greater diversity between the two salt-tolerant genotypes, Pokkali and BR4-10.  相似文献   

15.
Heading date 1 (Hd1) is an important gene for the regulation of flowering in rice, but its variation in major cultivated rice varieties, and the effect of this variation on yield and quality, remains unknown. In this study, we selected 123 major rice varieties cultivated in China from 1936 to 2009 to analyse the relationship between the Hd1 alleles and yield‐related traits. Among these varieties, 19 haplotypes were detected in Hd1, including two major haplotypes (H8 and H13) in the japonica group and three major haplotypes (H14, H15 and H16) in the indica group. Analysis of allele frequencies showed that the secondary branch number was the major aimed for Chinese indica breeding. In the five major haplotypes, SNP316(C‐T) was the only difference between the two major japonica haplotypes, and SNP495(C‐G) and SNP614(G‐A) are the major SNPs in the three indica haplotypes. Association analysis showed that H16 is the most preponderant allele in modern cultivated Chinese indica varieties. Backcrossing this allele into the japonica variety Chunjiang06 improved yield without decreasing grain quality. Therefore, our analysis offers a new strategy for utilizing these preponderant alleles to improve yield and quality of japonica varieties for cultivation in the southern areas of China.  相似文献   

16.
The genetic transformation efficiency of a rice variety is largely determined by its tissue culturability. Establishment of a highly efficient tissue-culture system has greatly accelerated the wide spread application of transgenic japonica varieties. However, such process for indica rice was hampered because this type of variety is recalcitrant to in vitro culture. This study aimed to map the quantitative trait loci (QTLs) for mature seed culturability using a chromosomal segment substitution lines (CSSL) population derived from a cross between an indica variety “Zhenshan 97B” and a japonica variety “Nipponbare”. The CSSLs consist of 139 lines each containing a single or a few introgression segments, and together covering the whole “Nipponbare” genome. Every CSSL was tested by culturing on the two medium systems developed for the respective indica and japonica parental varieties. The performance of culturability was evaluated by four indices: frequency of callus induction (CIF), callus subculture capability (CSC), frequency of plant regeneration (PRF) and the mean plantlet number per regenerated callus (MNR). All four traits displayed continuous variation among the CSSLs. With the culture system for japonica rice, three CIF QTLs, three CSC QTLs, three PRF QTLs and three MNR QTLs were detected. With the culture system for indica variety, six CIF QTLs, two CSC QTLs, three PRF QTLs and six MNR QTLs were identified, and these QTLs distributed on nine rice chromosomes. Two QTLs of CIF and two QTLs of MNR were detected in both the japonica and indica rice culture system. The correlation coefficients of all the four traits varied depending on the culture systems. These results provide the possibilities of enhancing the culturability of indica rice by marker-assisted breeding with those desirable alleles from the japonica. Lina Zhao and Hongju Zhou have contributed equally to this work.  相似文献   

17.
Comparative sequencing of GS3, the most important grain length (GL) QTL, has shown that differentiation of rice GL might be principally due to a single nucleotide polymorphism (SNP) between C and A in the second exon. A total of 180 varieties representing a wide range of rice germplasm were used for association analysis between C–A mutation and GL in order to confirm the potential causal mutation. A cleaved amplified polymorphic sequence (CAPS) marker, SF28, was developed based on the C–A polymorphism in the GS3 gene. A total of 142 varieties carried allele C with GL from 6.4 to 8.8 mm, while the remaining 38 varieties carried allele A with GL from 8.8 to 10.7 mm. Twenty-four unlinked SSR markers were selected to genotype 180 varieties for population structure analysis. Population structure was observed when the population was classified to three subpopulations. Average GL of either genotype A or genotype C within japonica among the three subpopulations had no significant difference from that in indica, respectively, although indica rice had longer grains on average than japonica in the 180 varieties. However, genotype C always had longer grain length on average than genotype A among three subpopulations. The mutation could explain 79.1, 66.4 and 34.7% of GL variation in the three subpopulations, respectively. These results clearly confirmed the mutation between C and A was highly associated with GL. The SF28 could be a functional marker for improvement of rice grain length.  相似文献   

18.
通过分析籼稻93-11和粳稻培矮64S的叶绿体全基因组,优化和构建了籼粳分化的叶绿体分子标记ORF100和ORF29-TrnCGCA的多重PCR。应用这个多重PCR对200余份世界各地杂草稻和其它水稻材料进行分析。结果表明:杂草稻中有明显的叶绿体籼粳分化,表现出明显的地域性,且与传统的中国栽培稻的南籼北粳能较好的对应。推测粳型杂草稻可能是栽培稻突变或粳型水稻(作母本)与其它类型水稻材料杂交而形成的。  相似文献   

19.
Genetic variation of Japanese rice cultivars were examined. Five of 450 lowland cultivars and another five of 200 upland cultivars were determined as the indica type by using isozyme genotypes and the remainder were of the japonica type. The major characteristics of these indica cultivars, revealed a slender shape of grains, a short apiculus hair length, a positive allele for Ph reaction, and allele-3 for the Pgd1 locus. Three of these indica cultivars showed a non-deletion ORF100, which is essential to the japonica-type plastid. The plastid subtype identity (PS-ID) sequences of these plastids is 6C7A, which is also a japonica-specific repeat unit. Thus, these cultivars were concluded to be naturally generated cytoplasm substituted lines. These plastids were introduced into a indica genetic background from japonica cultivars grown elsewhere. The rest of the indica cultivars revealed a deletion-type ORF100 and plastid subtype 8C8A, both of which are indica-specific. These cultivars carried indica-type allelic constitutions for diagnostic isozyme loci. However, other characters were identical to the cytoplasm-substituted cultivars in Japan. In East and Southeast Asia, cultivars carrying a indica-type nuclear genotype with a japonica-type plastid are restricted to Aus cultivars in the Bengal region. Genetic and historical records suggest that Japanese indica cultivars and the Aus cultivars are closely related. The Aus cultivars acquire necessary genetic constitutions from both indica and japonica cultivars through naturally occurring out-crossing to adapt to a particular cultivation condition in the region. The wide adaptability enabled them to be introduced into a northern region like Japan.  相似文献   

20.
Genetic relationships among Indian aromatic and quality rice (Oryza sativa) germplasm were assessed using 30 fluorescently labeled rice microsatellite markers. The 69 rice genotypes used in this study included 52 Basmati and other scented/quality rice varieties from different parts of India and 17 indica and japonica varieties that served as controls. A total of 235 alleles were detected at the 30 simple sequence repeat (SSR) loci, 62 (26.4%) of which were present only in Basmati and other scented/quality rice germplasm accessions. The number of alleles per locus ranged from 3 to 22, with an average of 7.8, polymorphism information content (PIC) values ranged from 0.2 to 0.9, with an average of 0.6, and the size range between the smallest and the largest allele for a given microsatellite locus varied between 3 bp and 68 bp. Of the 30 SSR markers, 20 could distinguish traditional Basmati rice varieties, and a single panel of eight markers could be used to differentiate the premium traditional Basmati, cross-bred Basmati, and non-Basmati rice varieties having different commercial value in the marketplace. When estimates of inferred ancestry or similarity coefficients were used to cluster varieties, the high-quality Indian aromatic and quality rice genotypes could be distinguished from both indica and japonica cultivars, and crossbred varieties could be distinguished from traditional Basmati rices. The results indicate that Indian aromatic and quality germplasm is genetically distinct from other groups within O. sativa and is the product of a long, independent pattern of evolution. The data also suggest that there is scope for exploiting the genetic diversity of aromatic/quality rice germplasm available in India for national Basmati rice breeding programs.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号