首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
As important quantitative traits, the growth rate and backfat thickness are controlled by multiple genes. The aim of this investigation was to evaluate the effect of the single and multiple SNPs of four candidate genes (IGF2, JHDM1A, COPB1 and TEF-1) on growth rate and backfat thickness. The four candidate genes were mapped on the p arm of SSC 2, and there are several QTLs, such as average daily gain, backfat thickness, an imprinted QTLs affecting muscle mass and fat deposition have been reported in this region. The polymorphisms of these genes were detected using PCR–RFLP methods, mixed procedure was used to analyze the single marker association with the growth and backfat thickness traits, and the gene–gene combination was investigated using multiple-markers analysis. The single marker association analysis indicated that the IGF2 intron-3 g.3072G > A and the substitution g.93G > A of TEF-1 gene were significantly associated with the age at 100 kg (P < 0.05). The JHDM1A 3′UTR g.224C > G, the c.3096C > T polymorphism of COPB1 gene and the substitution g.93G > A of TEF-1 gene were all significantly associated with the backfat at the shoulder (P < 0.05), backfat at the last rib, backfat at the lumbar, and the average backfat thickness, respectively. The multiple-markers analysis indicated that IGF2 and TEF-1 integrated gene networks for the age at 100 kg. Therefore, we can suggest that the polymorphism of IGF2 and TEF-1 gene could be used in marker-assisted selection for the age at 100 kg in Large White pigs.  相似文献   

2.
GSK-3 plays an important role on numerous cellular processes involved in the regulation of embryonic development, protein synthesis, glycogen metabolism, inflammatory, mitosis and apoptosis. In this study, we obtained the cDNA and promoter sequences of the porcine GSK-3α gene, analyzed its genomic organization and mapped it to SSC6q12 through comparative mapping method. Moreover, the qRT-PCR analysis revealed that porcine GSK-3α gene was widely expressed in many tissues, and a high expression level was observed in the brain and spleen. In addition, seven single-nucleotide polymorphisms were detected in the promoter region of porcine GSK-3α gene. Association analysis revealed that the GSK-3α Hin1I and MspI polymorphisms both had significant associations (p < 0.05) with loin muscle area, average backfat thickness, thorax–waist fat thickness, and buttock fat thickness. These results provide useful information for further investigation on the function of porcine GSK-3α gene.  相似文献   

3.
Porcine chromosome 6 (SSC6) has been reported to have QTL affecting intramuscular fat content (IMF) in multiple populations. The objective of this study was to investigate the effect of FABP3 and LEPR genetic variations as well as their mRNA expression on the IMF trait in a three-generation of Korean native pig and Yorkshire crossed animals. Several polymorphisms of the FABP3 (HinfI, HaeIII and HinfI*) were significantly associated with moisture, tenderness and flavor score (P < 0.05), and were used to construct haploytpes: haplotype 1 (-TCT-) increased the marbling and intramuscular fat content, however, haplotype 2 (-CCT-) decreased tenderness. The LEPR AvaII polymorphism showed significant association with moisture, intramuscular fat, cholesterol and flavor score (P < 0.05). The linkage analyses with six microsatellites mapped FABP3 gene in the interval between the markers Sw1129 and S0228 (Sw1129—11.7 cM—FABP3—9.1 cM—S0228), and the LEPR gene between the markers S0121 and Sw322 (S0121—7.5 cM—LEPR—28.5 cM—Sw322). QTL mapping suggested a significant QTL affecting Moisture (83 cM) and IMF (84 cM) located close to marker S0228. The gene expression results showed that in the loin muscle, both of the FABP3 and LEPR genes showed significantly higher expression in pigs with higher IMF%, however, in the backfat, only FABP3 showed differential expression between these two groups of pigs (significantly higher expression in pigs with lower IMF%) (P < 0.05). In the liver, both of these two genes did not show any difference between the high and low IMF% groups.  相似文献   

4.
Carrot (Daucus carota L.) is a cool-season vegetable normally classified as a biennial species, requiring vernalization to induce flowering. Nevertheless, some cultivars adapted to warmer climates require less vernalization and can be classified as annual. Most modern carrot cultivars are hybrids which rely upon cytoplasmic male-sterility for commercial production. One major gene controlling floral initiation and several genes restoring male fertility have been reported but none have been mapped. The objective of the present work was to develop the first linkage map of carrot locating the genomic regions that control vernalization response and fertility restoration. Using an F2 progeny, derived from the intercross between the annual cultivar ‘Criolla INTA’ and a petaloid male sterile biennial carrot evaluated over 2 years, both early flowering habit, which we name Vrn1, and restoration of petaloid cytoplasmic male sterility, which we name Rf1, were found to be dominant traits conditioned by single genes. On a map of 355 markers covering all 9 chromosomes with a total map length of 669 cM and an average marker-to-marker distance of 1.88 cM, Vrn1 mapped to chromosome 2 with flanking markers at 0.70 and 0.46 cM, and Rf1 mapped to chromosome 9 with flanking markers at 4.38 and 1.12 cM. These are the first two reproductive traits mapped in the carrot genome, and their map location and flanking markers provide valuable tools for studying traits important for carrot domestication and reproductive biology, as well as facilitating carrot breeding.  相似文献   

5.
An F2 population was developed from a cross between a mur-cytoplasmic male sterile broccoli line and a restorer Chinese kale line. Phenotypic analysis of F2 plants indicated that the pollen fertility is controlled by two genes and segregated in a duplicate gene interaction mode with a ratio of 15:1. A total of 236 single nucleotide polymorphism (SNP) markers were developed utilizing 1,448 primers designed for production of expressed sequence tag (EST)-SNP markers of Raphanus sativus and analyzed by the dot-blot technique in 205 F2 individuals. A linkage map was constructed with a total of 142 markers and these markers were assigned to nine linkage groups together with simple sequence repeat markers mapped previously on the published linkage maps of Brassica oleracea. The linkage map spanned 909 cM with an average marker distance of 6.4 cM. A fertility restorer locus (Rfm1) was mapped on LG1, corresponding to chromosome 3, along with a flower color locus at a distance of 25 cM. SNP markers flanking the Rfm1 locus were BoCL2642s at a distance of 2.5 cM on one side and BoCL2901s at a distance of 7.5 cM on the other side. All the SNP markers showed homology with Arabidopsis thaliana and Brassica rapa genome sequences. Three pentatricopeptide repeat genes of the P-subfamily, particularly expressed in buds of the restorer line, were identified and these genes could be potential candidate fertility restorer genes.  相似文献   

6.
Previous studies have confirmed that insulin growth factor-1 (IGF1) plays important roles in growth and body size in humans and animals. However, whether single nucleotide polymorphisms (SNPs) within the IGF1 gene affects body size and growth in pigs has been unclear. We identified IGF1 SNPs among 5 pig breeds (Berkshire, Duroc, Landrace, Yorkshire and Korea Native Pig) and found that the G allele of SNP (c.G189A) was associated with higher body weight and was more predominant in western pig breeds, while the Korean Native Pig is the breed with the highest frequency of the A allele. Four haplotypes (–GA–, –GG–, –AG–, and –AA–) were constructed using the 2 identified SNPs. The GA haplotype was most frequently observed, except in the Berkshire breed. In addition, these SNPs and haplotypes were significantly associated with body size (final weight), average daily gain, and backfat thickness (P < 0.05) in 2 intercrossed F2 pig populations (KNP × YS F2 and KNP × LR F2). Furthermore, the major GA haplotype had a significant additive effect on body size and average daily gain. In conclusion, specific SNPs within the porcine IGF1 gene may contribute to the smaller body size and lower growth rate of Korea Native Pigs.  相似文献   

7.
Pig chromosome 6 (SSC6) has been reported to have QTL affecting backfat thickness (BFT) and intramuscular fat (IMF). A human-pig comparative map covering 18 autosomes with the highest resolution has been constructed and based on this map SSC6 has conserved syntenicgroups with human chromosome (HSA) 16, 19, 1, and 18. In this study, the pig Affy elements mapped to the SSC6 were analyzed, and the differentially expressed genes in three tissues (liver, backfat and loin muscle) between Yorkshire and Korean Native Pigs (KNP) were collected, in particular those genes located in the internal between markers SW1355 and SW1823 where a quantitative trait loci (QTL) affecting the intramuscular fat content (IMF) have been detected in multiple pig populations. The genes listed here may offer information for further study the candidate genes affecting these QTL on the expression level.  相似文献   

8.
Interval mapping (IM) implemented in QTL Express or GridQTL is widely used, but presents some limitations, such as restriction to a fixed model, risk of mapping two QTL when there may be only one and no discrimination of two or more QTL using both cofactors located on the same and other chromosomes. These limitations were overcome with composite interval mapping (CIM). We reported QTL associated with performance and carcass traits on chicken chromosomes 1, 3, and 4 through implementation of CIM and analysis of phenotypic data using mixed models. Thirty-four microsatellite markers were used to genotype 360 F2 chickens from crosses between males from a layer line and females from a broiler line. Sixteen QTL were mapped using CIM and 14 QTL with IM. Furthermore, of those 30 QTL, six were mapped only when CIM was used: for body weight at 35 days (first and third peaks on GGA4), body weight at 41 days (GGA1B and second peak on GGA4), and weights of back and legs (both on GGA4). Three new regions had evidence for QTL presence: one on GGA1B associated with feed intake 35–41 d at 404 cM (LEI0107-ADL0183) and two on GGA4 associated with weight of back at 163 cM (LEI0076-MCW0240) and weight gain 35–41 d, feed efficiency 35–41 d and weight of legs at 241 cM (LEI0085-MCW0174). We dissected one more linked QTL on GGA4, where three QTL for BW35 and two QTL for BW41 were mapped. Therefore, these new regions mapped here need further investigations using high-density SNP to confirm these QTL and identify candidate genes associated with those traits.  相似文献   

9.
Phytophthora root and stem rot (PRR), caused by the soil-borne oomycete pathogen Phytophthora sojae, is one of the most destructive diseases of soybean. PRR can be effectively controlled by race-specific genes conferring resistance to P. sojae (Rps). However, the Rps genes are usually non-durable, as populations of P. sojae are highly diverse and quick to adapt, and can be overcome 8–15 years after deployment. Thus, it is important to identify novel Rps genes for development of resistant soybean cultivars. PI 567139B is a soybean landrace carrying excellent resistance to nearly all predominant P. sojae races in Indiana. A mapping population consisting of 245 F2 individuals and 403 F2:3 families was developed from a cross between PI 567139B and the susceptible cultivar ‘Williams’, and used to dissect the resistance carried by PI 567139B. We found that the resistance in PI 567139B was conferred by two independent Rps genes, designated RpsUN1 and RpsUN2. The former was mapped to a 6.5 cM region between SSR markers Satt159 and BARCSOYSSR_03_0250 that spans the Rps1 locus on chromosome 3, while the latter was mapped to a 3.0 cM region between BARCSOYSSR_16_1275 and Sat_144, approximately 3.0–3.4 cM upstream of Rps2 on chromosome 16. According to the ‘Williams 82’ reference genome sequence, both regions are highly enriched with NBS-LRR genes. Marker assisted resistance spectrum analyses of these genes with 16 isolates of P. sojae, in combination with the mapping results, suggested that RpsUN1 was likely to be a novel allele at the Rps1 locus, while RpsUN2 was more likely to be a novel Rps gene.  相似文献   

10.
Body weight and length are economical important traits in aquaculture species influenced by quantitative trait loci (QTL) and environmental factors. In this study, a backcross (BC1) common carp family, with 86 progeny, was utilized to construct genetic map for preliminary QTL mapping. The genetic map was constructed with 366 markers, including 191 SNP from gene, coverage 50 linkage groups with an average marker distance of 18.5 cM. A total of fourteen QTLs associated with body weight (BW), body length (BL) and condition factor (K) were detected on ten linkage groups (LGs). Among these QTLs detected, three (qBW8, qBL8 and qK8) were associated with BW, BL and K respectively, were mapped on LG8. qBW8 and qK8 were identified on similar interval neared locus HLJ2394 explained 14.9 and 20.9 % of the phenotype variance, while qBL8 was identified on separate nearby locus HLJ571 with 30.8 % of phenotype variance. Two QTLs, qBW13 and qK13, related with BW and K separately, were found on LG13 at different locus with phenotype variance of 25.3 and 20.9 %. Other two QTLs, qBW19 and qBL19, associated to BW and BL were mapped on same region near SNP0626 on LG19, and explained 10.3 and 15.6 % of phenotype variance. While other seven QTLs related with BW and BL were located on different LGs. Confidential interval was ranged from 1.1 to 10 cM in the present study. These markers, with lower QTL interval, have great influence on the body weight and length. Therefore, these QTLs will be helpful to find out the genes related with specific trait.  相似文献   

11.
Increasing seed oil content has become one of the most important breeding criteria in rapeseed (Brassica napus). However, oil content is a complex quantitative trait. QTL mapping in a double haploid population (SG population) emerging from a cross between a German (Sollux) and Chinese (Gaoyou) cultivars revealed one QTL for oil content on linkage group A1 (OilA1), which was mapped to a 17 cM genetic interval. To further validate and characterize the OilA1, we constructed a high-resolution map using B. rapa sequence resources and developed a set of near-isogenic lines (NILs) by employing a DH line SG-DH267 as donor and Chinese parent Gaoyou as recurrent background. The results showed highly conserved synteny order between B. rapa and B. napus within the linkage group A1 and revealed a possible centromere region between two markers ZAASA1-38 and NTP3 (2.5 cM). OilA1 was firstly validated by 250 BC5F2 plants and was confirmed in a 10.6 cM interval between the markers ZAASA1-47 and ZAASA1-77. Further substitution mapping was conducted by using two generations of QTL-NILs, 283 lines from eight BC5F3:4 families and 428 plants from six BC5F4 sub-NILs and thus narrowed the OilA1 interval to 6.9 cM and 4.3 cM (1.4 Mb), respectively. Field investigations with two replications using homozygous BC5F3:4 sister sub-NILs indicated that NILs, which carry a Sollux chromosome segment across the target region showed significant higher oil content (1.26 %, p < 0.001) than their sister NILs containing Gaoyou chromosome. The OilA1 locus is of particular interest for breeding purpose in China because 80 % of Chinese cultivars do not carry this desirable allele.  相似文献   

12.
Meat quality traits are the most economically important traits affecting the beef industry in Korea. We performed a whole genome quantitative trait locus (QTL) mapping study of carcass data in Hanwoo Korean cattle. Two hundred sixty-six Hanwoo steers from 65 sires were genotyped using a 10K Affymetrix SNP chip. The average SNP interval across the bovine genome was 1.5Mb. Associations between each individual SNP and four carcass traits [carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling (MAR)] were assessed using a linear mixed model of each trait. Combined linkage and linkage disequilibrium analysis (LDLA) detected six potential QTL on BTA04, 06, 13, 16, 17, and 23 at the chromosome-wise level (P<0.05). Two MAR QTL were detected at 52.2 cM of BTA06 and 46.04 cM of BTA17. We identified three genes (ARAP2, LOC539460, and LOC511424) in the QTL region of BTA06 and seven genes (RPS14, SCARB1, LOC782103, BRI3BP, AACS, DHX37, and UBC) in the QTL region of BTA17. One significant QTL for CWT was detected at 100 cM on BTA04 and the corresponding QTL region spanned 1.7 cM from 99.7 to 101.4 cM. For EMA QTL, one significant QTL was detected at 3.9 cM of BTA23 and the most likely QTL interval was 1.4 cM, placing 15 candidate genes in the marker bracket. Finally, two QTL for BFT were identified at 68 cM on BTA13 and 24 cM on BTA16. The LPIN3 gene, which is functionally associated with lipodystrophy in humans, is located in the BFT QTL on BTA13. Thus, two potential candidate genes, acetoacetyl-CoA synthetase (AACS) and lipin (LPIN), were detected in QTL regions on BTA17 for MAR and BTA13 for BFT, respectively. In conclusion, LDLA analysis can be used to detect chromosome regions harboring QTL and candidate genes with a low density SNP panel, yielding relatively narrow confidence intervals regarding location.  相似文献   

13.
A previous study allowed the identification of two QTL regions at positions 11–34 cM (QTL1) and 68–76 cM (QTL2) on porcine chromosome SSC12 affecting several backfat fatty acids in an Iberian x Landrace F2 intercross. In the current study, different approaches were performed in order to better delimit the quoted QTL regions and analyze candidate genes. A new chromosome scan, using 81 SNPs selected from the Porcine 60KBeadChip and six previously genotyped microsatellites have refined the QTL positions. Three new functional candidate genes (ACOX1, ACLY, and SREBF1) have been characterized. Moreover, two putative promoters of porcine ACACA gene have also been investigated. New isoforms and 24 SNPs were detected in the four candidate genes, 19 of which were genotyped in the population. ACOX1 and ACLY SNPs failed to explain the effects of QTL1 on palmitic and gadoleic fatty acids. QTL2, affecting palmitoleic, stearic, and vaccenic fatty acids, maps close to the ACACA gene location. The most significant associations have been detected between one intronic (g.53840T > C) and one synonymous (c.5634T > C) ACACA SNPs and these fatty acids. Complementary analyses including ACACA gene expression quantification and association studies in other porcine genetic types do not support the expected causal effect of ACACA SNPs.  相似文献   

14.
15.
Starch paste viscosity properties are widely used as important indicators for quality estimation in waxy maize. To elucidate the genetic basis of paste viscosity characteristics of waxy maize, seven parameters from the rapid visco analyzer (RVA) profile were analyzed for quantitative trait loci (QTLs) in this study, using a recombinant inbred line population derived from a cross between the inbred lines Tongxi5 and Hengbai522. A high-density linkage map was constructed using 2703 bin markers, covering 1876.20 cM of the whole genome with an average genetic distance of 0.73 cM between adjacent bin markers. Seventy-two QTLs were detected for RVA parameters across 3 years, of which 17 could be identified in 2 years, and 6 identified in all 3 years. Eight QTL clusters were observed to be co-associated with two or more RVA parameters. Three major QTLs, qPV4-1, qTV4-1, and qFV5-2, which explained over 10% of the phenotypic variation, were stably mapped to the chromosomes 4 or 5 in all years. Based on functional annotations, two genes were considered as potential candidate genes for the identified major QTLs. The QTLs and candidate genes identified in this study will be useful for further understanding of the genetic architecture of starch paste viscosity characteristics in waxy maize, and may facilitate molecular breeding for grain quality improvement in breeding programs, and simultaneously provide a basis for cloning of the genes underlying these QTLs.  相似文献   

16.
Imprinted genes play important roles in mammalian growth, development and behavior. In this study, we obtained 1568 bp mRNA sequence of porcine DIO3 (deiodinase, iodothyronine, type III), and also identified its imprinting status during porcine fetal development. The complete open reading frame (ORF) encoding 278 amino acids. The porcine DIO3 mRNA was expressed predominantly in backfat, mildly in liver, uterus, kidney, heart, small intestine, muscle and stomach, and almost absent in spleen and lung. A single nucleotide polymorphism in exon (A/C 687) was used to investigate the allele frequencies in different pig breeds and the imprinting status in porcine embryonic tissues. The results indicate that DIO3 was imprinted in all the tested tissues. Statistical analysis showed the DIO3 gene polymorphism was significantly associated with almost all the fat deposition and carcass traits, including lean meat percentage (LMP), fat meat percentage (FMP), ratio of lean to fat (RLF), shoulder fat thickness (SFT), sixth–seventh rib fat thickness (RFT), buttock fat thickness (BFT), loin eye area (LEA), and intramuscular fat (IMF).  相似文献   

17.
Carbonic anhydrase III (CA3) is an abundant muscle protein characteristic of adult type-1, slow-twitch, muscle fibres. In order to further understand the functions of the porcine CA3 protein in muscle, the temporal and spatial distributions of its gene product were analysed and the association between the presence of specific polymorphisms and carcass traits in the pig was also examined. Real-time PCR revealed that the CA3 mRNA expression showed no differences with age in skeletal muscles from Yorkshire pigs at postnatal day-1, month-2, and month-4. We provide the first evidence that CA3 is differentially expressed in the skeletal muscle of Yorkshire and Meishan pig breeds. In addition, the whole pig genomic DNA sequence of CA3 was investigated and shown to contain seven exons and six introns. Comparative sequencing of the gene from three pig breeds revealed the existence of microsatellite SJ160 in intron 5 and microsatellite SJ158 and a novel microsatellite marker that includes a tandem repeat of (TC)n in intron 4. We also determined the allele number and frequencies of the three loci in seven pig breeds and found that they are low polymorphic microsatellite markers. Statistical analysis showed that the CA3 microsatellite polymorphism was associated with dressing percentage, internal fat rate, carcass length, rib number and backfat thickness in the pig.  相似文献   

18.
19.
Shoot fresh weight (SFW) is one of the parameters, used to estimate the total plant biomass yield in soybean. In the present study, a total of 188 F5:8 recombinant inbred lines (RIL) derived from an interspecific cross of PI 483463 (Glycine soja) and Hutcheson (Glycine max) were investigated for SFW variation in the field for three consecutive years. The parental lines and RILs were phenotyped in the field at the R6 stage by measuring total biomass in kg/plot to identify the QTLs for SFW. Three QTLs qSFW6_1, qSFW15_1, and qSFW19_1 influencing SFW were identified on chromosome 6, 15, and 19, respectively. The QTL qSFW19_1 flanked between the markers BARC-044913-08839 and BARC-029975-06765 was the stable QTL expressed in all the three environments. The phenotypic variation explained by the QTLs across all environments ranged from 6.56 to 21.32 %. The additive effects indicated contribution of alleles from both the parents and additive × environment interaction effects affected the expression of SFW QTL. Screening of the RIL population with additional SSRs from the qSFW19_1 region delimited the QTL between the markers SSR19-1329 and BARC-29975-06765. QTL mapping using bin map detected two QTLs, qSFW19_1A and qSFW19_1B. The QTL qSFW19_1A mapped close to the Dt1 gene locus, which affects stem termination, plant height, and floral initiation in soybean. Potential candidate genes for SFW were pinpointed, and sequence variations within their sequences were detected using high-quality whole-genome resequencing data. The findings in this study could be useful for understanding genetic basis of SFW in soybean.  相似文献   

20.
The availability of genomic resources such as expressed sequence tag-derived simple sequence repeat (EST-SSR) markers in adaptive genes with high transferability across related species allows the construction of genetic maps and the comparison of genome structure and quantitative trait loci (QTL) positions. In the present study, genetic linkage maps were constructed for both parents of a Quercus robur × Q. robur ssp. slavonica full-sib pedigree. A total of 182 markers (61 AFLPs, 23 nuclear SSRs, 98 EST-SSRs) and 172 markers (49 AFLPs, 21 nSSRs, 101 EST-SSRs, 1 isozyme) were mapped on the female and male linkage maps, respectively. The total map length and average marker spacing were 1,038 and 5.7 cM for the female map and 998.5 and 5.8 cM for the male map. A total of 68 nuclear SSRs and EST-SSRs segregating in both parents allowed to define homologous linkage groups (LG) between both parental maps. QTL for leaf morphological traits were mapped on all 12 LG at a chromosome-wide level and on 6 LG at a genome-wide level. The phenotypic effects explained by each single QTL ranged from 4.0 % for leaf area to 15.8 % for the number of intercalary veins. QTL clusters for leaf characters that discriminate between Q. robur and Quercus petraea were mapped reproducibly on three LG, and some putative candidate genes among potentially many others were identified on LG3 and LG5. Genetic linkage maps based on EST-SSRs can be valuable tools for the identification of genes involved in adaptive trait variation and for comparative mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号