首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
L Wan  Q Hu  D Hong  G Yang 《Gene》2012,507(1):9-19
In Brassica napus, male fertility depends on proper cell differentiation in the anther. However, relatively little is known about the genes regulating anther cell differentiation and function. Here, we report two floral organ specific genes, BnC15 and BnATA20, derived from a B. napus two-line Rs1046A/B floral subtractive library. Although BnC15 and BnATA20 genes have a different expression pattern in anthers demonstrated by in situ hybridization and real-time PCR analysis, silencing of both genes in B. napus by antisense suppression resulted in pollen abortion after microspore release. Light and electron microscopy observation revealed the lack of plastoglobuli, lipid bodies and sporopollenin secreted from the tapetum leading to aberrations in exine sculpturing and the formation of a pollen coat. In addition, the microspores were squeezed to the irregular shape in the locule in the end. As shown by gene expression analysis in transgenic plants and the comparison of anther development between bnc15 or bnata20 mutants and Rs1046A, BnC15 and BnATA20 were positively regulated downstream of Rf gene controlling the fertility of Rs1046B in the same pathway. The results support the hypothesis that BnC15 and BnATA20 are crucial components of a genetic network that controls tapetum development and exine sculpturing.  相似文献   

3.
Rs1046AB is a dominant genic male sterile (DGMS) Brassica napus line derived from Yi-3A. Until now the molecular mechanism of its male sterility is still unknown. In this paper, cytological observations demonstrated that all cells in sterile plants contained condensed nuclei at the beginning stage of meiosis; this implied that meiotic cells were degenerating. Although 31% (93/300) cells escaped from the state of nuclei condensation in buds about 3 mm in length (in such length, normal plants are at tetrade stage), no cells could pass the pachytene stage. Then pachytene-or zygotene-like chromatin/chromosomes sometimes congregated into two or more groups with different size, which resulted in the formation of micronuclei. A nucleoplasmic bridge could also be found in some meiotic cells. Even when the “microspore’s analogue” appeared in sterile buds about 4 mm in length (in such length, mature pollens could be detected in normal buds), the nuclei condensation and escaped cells with a pachytene-like chromosome still could be found in the sterile anthers. So it could be concluded that male sterility was caused by meiotic abnormality. According to our previous research, four genes related to cell cycle/DNA processing were identified in fertile plants. RT-PCR further confirmed that three DNA repair genes were partially or completely repressed in the sterile plants and were only expressed in the early stage fertile flower buds, i.e., the buds <3 mm in length. Therefore, DGMS of rapeseed was probably caused by the abnormality in the DNA damage repair system during meiosis. According to these results, some possible mechanisms of fertility control were discussed.  相似文献   

4.
5.
The reproductive development of oilseed rape (Brassica napusL. cv. Bienvenu) was studied using light and scanning electronmicroscopy. By using the two techniques on comparable samples,internal events such as microspore development were relatedto the morphology of the developing floral parts, and this inturn was linked to the growth stage of the plant. Reproductive development, oilseed rape, Brassica napus, growth stage  相似文献   

6.
BrAGL20 (SOC1) containing MADS box, a floral integrator gene, was introduced into Brassica napus cv. “Youngsan” by Agrobacterium-mediated transformation. Constitutively overexpressed BrAGL20 under the CaMV 35S promoter induced early flowering time compared to the wild-type. These phenotypes were stably inherited through generations T2 and T3, regardless of planting season. The expression of the floral meristem identity genes LFY and AP1 seemed to appear rapidly in the shoot apex region of transgenic plants showing the early flowering time phenotype. These results suggest that overexpression of BrAGL20 can significantly affect the flowering time of B. napus, and regulation of floral integrator gene expression could be applied for adaptation of crops to local environments and climate changes.  相似文献   

7.
To study gene regulation during the transition from late embryogeny to germination, we have analyzed the expression of a gene encoding the glyoxylate cycle enzyme malate synthase in transgenic tomato (Lycopersicon esculentum) plants. We have shown that although there are at least four classes of malate synthase genes in Brassica napus L., one gene is expressed at a high level during both late embryogeny and postgermination. Analyses of transgenic tomato plants containing the expressed B. napus gene along with 4.7 and 1.0 kilobase pairs of 5′ and 3′ flanking sequences, respectively, confirmed that a single gene is expressed at both stages of development. Furthermore, localization studies have shown that mRNA encoded by the B. napus gene is distributed throughout the tissues of a mature embryo but is not detected in the vascular cylinder of a seedling. We conclude that the sequences required to qualitatively regulate the gene correctly over the plant life cycle are present within the transferred gene and/or flanking regions. Moreover, the malate synthase gene is regulated differently during late embryogeny and postgermination in the developing vascular cylinder.  相似文献   

8.
We have analyzed the structure of genes encoding the glyoxylate cycle enzyme isocitrate lyase from Brassica napus L. and their expression during embryogeny and postgermination. Restriction mapping, nucleotide sequence, and DNA gel blot hybridization analyses of cDNA and genomic clones indicated that there are approximately six isocitrate lyase genes in the B. napus genome that can be divided into at least two subfamilies based upon their divergence in 5′ and 3′ untranslated regions. We showed previously that isocitrate lyase mRNA accumulates during late embryogeny and postgermination. Here, we present results which indicate that several isocitrate lyase genes are expressed at both stages of development. First, gene-specific probes were used to show that mRNAs encoded by representatives of both gene subfamilies accumulated in both late maturation stage embryos and in seedlings of B. napus. Second, a single B. napus isocitrate lyase gene, together with 3.5 kb and 1.4 kb of 5′ and 3′ flanking regions, respectively, was expressed in both embryos and seedlings of transgenic tobacco plants. The results indicated that accumulation of isocitrate lyase in late embryogeny and postgermination does not result from the alternate expression of distinct members of the gene family.  相似文献   

9.
Morphological and cytological studies are complementary approaches to understand the molecular mechanisms that regulate floral developmental pathways. To better understand abnormal mutant phenotypes in floral development, we conducted detailed observations and investigations of the morphology, cytology, and cell ultrastructure of wild-type Chinese cabbage (Brassica campestris L. ssp. chinensis Makino and syn. B. rapa ssp. chinensis) flowers when they developed from primordia to anthesis. First, we measured bud and organ length with a stereo microscope and observed the developmental status and characteristics of the floral organs using a scanning electron microscope; then we made thin slices of anthers to observe the developmental stage and characteristics of pollen using an optical microscope; and finally, we made super-thin slices of anthers to observe the ultrastructure of pollen during its development with the aid of a transmission electron microscope. In this study, the floral developmental continuum was divided into 17 stages based on significant changes in the shape of floral primordia, and the pollen developmental continuum was divided into 14 stages based on the developmental characteristics. The results could provide the morphological basis for further research on the molecular mechanisms that regulate development of the floral organs and/or pollen of Chinese cabbage and their allied species.  相似文献   

10.
The role of pollen odour in resource location by the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), a pollen-feeding insect regarded as a pest of oilseed rape, Brassica napus L., (Brassicaceae) crops, was investigated in a linear track olfactometer. Both male and female beetles were attracted to the odour of whole oilseed rape flowers, indicating that these insects can locate their host plants using floral odours as cues. The attractive odour of flowers was found to emanate from all floral parts tested: the petals/sepals, the anthers, and from pollen itself. Therefore, at least part of the attractive odour of oilseed rape flowers emanates from pollen. Beetles were more attracted to floral samples containing anthers than those without anthers when these odours were directly compared in a choice-test, and this indicates that there were detectable differences between them. Anthers and pollen may therefore release distinctive odours that are quantitatively and/or qualitatively different from the odour of the rest of the flower. These experiments support the hypothesis that pollen-seeking insects use pollen odour cues to locate this food source.  相似文献   

11.
G protein plays an important role in signal pathways and involved in various signal transduction systems in plant. A full-length cDNA encoding a putative G protein α subunit (Gα), designated as BnGA1, was isolated from Brassica napus. The expression of BnGA1 in different B. napus tissues and developmental stags was analyzed using real-time PCR. The results showed that BnGA1 expressed was high in root, cotyledon and shoot apex. Stage expression pattern analysis revealed that BnGA1 expressed strongly at the 7th day, the bolting stage and fruiting stage. In addition, the expression of BnGA1 was analyzed under different concentrations of four plant hormones. The expression of BnGA1 was significantly induced by the high concentrations of abscisic acid (ABA) and brassinosteroid (BR). The expression of BnGA1 was also induced by low gibberellins acid 3 (GA3) concentrations and higher GA3 concentrations inhibit the expression of BnGA1. However, the expression of BnGA1 did not significantly regulated by exogenous indole-3-acetic acid (IAA). Moreover, the expression of BnGA1 under different abiotic stresses was analyzed at different time points. The BnGA1 was up-regulated in salt and drought stress and down-regulated in heat and cold stress. These expression results suggested that BnGA1 play an important role in plant hormones signal pathways and BnGA1 may be involved in plant defense system against environmental stresses in B. napus.  相似文献   

12.
The metabolism of [3H]dihydrozeatin (DZ) in floral buds of threedevelopmental stages, and endogenous cytokinin (CK) levels inmature stamens were investigated in wild-type (WT) and a geniemale sterile (GMS) line of rapeseed (Brassica napus L.). Floralbuds were fed [3H]DZ and subsequently different metabolites,namely nucleotides, ribosides and glucosides, were analysedby 2DTLC and HPLC. The GMS buds exhibited a higher initial uptakeof [3]DZ than wild-type buds, but the total uptake after 12h was either similar or less in GMS buds. [3]Dihydrozeatin wasmetabolized more efficiently in WT than in GMS buds, as moreof [3]DZ was retained in the latter. This was especially thecase in stage 2 buds, when in GMS anthers microspores fail toseparate from tetrads, thereby causing sterility. [3H]Dihydrozeatinwas converted to dihydrozeatin nucleotide (DZNT), dihydrozeatinriboside and O-glucosides by both WT and GMS buds. However,all these metabolites were relatively low in GMS buds. The majordifference was in the reduced formation of DZNT by stage 2 GMSbuds. The GMS stamens also contained low levels of various cytokinins,including the nucleotides. These observations, along with earlierreports, suggest that low levels of endogenous CKs, and, inparticular, the reduced formation of CK nucleotides are partlyresponsible for the breakdown of microsporogenesis in GMS anthers. Key words: Cytokinin, metabolism, male sterility, rapeseed, Brassica napus  相似文献   

13.
14.
Summary Under an intermediate temperature regime (23° C/18° C; day/night), microsporogenesis in stamens of the ogu cytoplasmic male-sterile (CMS) line of Brassica napus terminated by the tetrad stage, although in some cases degeneration of the sporogenous tissue occurred prior to meiosis. In most cases the tetrads were collapsed and bounded by a sparse exine, but contained many organelles. Also, the tapetum in CMS anthers was abnormal and often highly vacuolated by the tetrad stage. Under low temperature conditions (18° C/15° C; day/night), neither microsporogenous nor tapetal tissues were observed. In the normal stamens, no differences were observed under different temperature regimes. In conjunction with the adjoining paper, this study demonstrates that temperature conditions strongly affect the cytological processes associated with microsporogenesis in the CMS anthers.  相似文献   

15.
16.
An efficient and largely genotype-independent transformation method for Brassica napus and Brassica oleracea was established based on neo or bar as selectable marker genes. Hypocotyl explants of Brassica napus and Brassica oleracea cultivars were infected with Agrobacterium strains containing chimeric neo and bar genes. The use of AgNO3 was a prerequisite for efficient shoot regeneration under selective conditions. Vitrification was avoided by decreasing the water potential of the medium, by decreasing the relative humidity in the tissue culture vessel, and by lowering the cytokinin concentration. In this way, rooted transformed shoots were obtained with a 30% efficiency in 9 to 12 weeks. Southern blottings and genetic analysis of S1-progeny showed that the transformants contained on average between one and three copies of the chimeric genes. A wide range of expression levels of the chimeric genes was observed among independent transformants. Up to 25% of the transformants showed no detectable phosphinotricin acetyltransferase or neomycin phosphotransferase II enzyme activities although Southern blottings demonstrated that these plants were indeed transformed.  相似文献   

17.
Tissue-specific promoters can drive genes specifically expressed in the target organs and have been widely used in plant molecular breeding. In this study, a 1.2-kb promoter region of an anther-specific gene PhLRR from Petunia hybrida “Fantasy” was isolated and fused to the β-glucuronidase (GUS) gene. The pPhLRR::GUS vector was heterogeneously transformed into tobacco in which the GUS staining was only detected in the early development stage of anthers and no GUS expression in any other three floral whirls or vegetative organs was observed. It is very different from other well-studied anther-specific promoters which drive genes specifically expressed in the later development stage of anthers or only in the pollens. Furthermore, the pPhLRR::Barnase was introduced into petunia and induced complete male sterility without influencing the ornamental characteristics or the female fertility in transformed plants. These results indicate that PhLRR promoter is a new kind of petunia anther-specific promoter and could be taken as a valuable tool in ornamental plant breeding.  相似文献   

18.
19.
20.

Aims

The cell wall is the main binding site of boron (B) in plants, and the differences in B requirements among different plant species are determined by pectic polysaccharide contents in the cell walls. The aim of this research was to illustrate the relationship between cell wall properties and allocation of B to cell wall and the differential sensitivity of Brassica napus cultivars to B deficiency.

Methods

Two cultivars with opposite B efficiency were used to analyse the relationship among cell wall pectin contents and glycosyl composition, B uptake and allocation, gene expression and cell wall ultrastructure.

Results

The Brassica napus B-efficient cultivar Qingyou 10 was more tolerant to B deficiency, exhibiting a higher biomass production, milder B deficiency symptoms and less cell wall thickening compared to the Brassica napus B-inefficient cultivar Westar 10. These differences were attributed to two factors; the first was that Qingyou 10 accumulated more B and distributed significantly higher proportion of it to the cell wall pectins than did Westar 10 under low B supply. Also, the cell walls of Qingyou 10 exhibited relatively less B-binding sites than those of Westar 10, which was indicated by the lower cell wall extraction rates, less pectin and glycosyl residue contents under the B-deficient and B-sufficient conditions. A comparison of the KDOPS gene expression levels in the two conditions suggests that Westar 10 had a higher potential for biosynthesizing B-binding substances than did Qingyou 10, regardless of B levels.

Conclusions

These results suggest that both higher cell wall pectin polysaccharide content, and limited accumulation and allocation of B to the cell walls contribute to the greater sensitivity of Westar 10 to B deficiency. These two physiological aspects may determine the differences in B deficiency tolerance between Brassica napus cultivars Qingyou 10 and Westar 10. Comparably, the difference in accumulation and allocation of B to cell wall plays a much more important role than cell wall components to sensitivity difference of Brassica napus cultivars to B deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号