首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gold nanoparticles (GNPs) conjugated with monosaccharide-modified peptides have been developed as optical probes for lectin detection. Mannose-modified peptides were designed and conjugated with GNPs. The GNPs with mannose-modified peptide showed remarkable red shift of absorption maximum due to the aggregation with concanavalin A (ConA), a mannose-binding lectin. The aggregation activity of glycopeptide-modified GNPs with ConA depended on the amino acid sequence around the mannose unit of glycopeptides.  相似文献   

2.
A library system was developed for the discovery of bioactive peptides. Library synthesis and peptide sequencing was performed on a solid support while the screening for bioactivity was done with peptides in solution. The peptides were synthesized by split and mix, one-bead–one-peptide library synthesis, using a Tentagel S-NH2 solid support with a loading of approximately 100 pmol/bead. The major part of the peptide was connected to the support by a single acid-labile linker and a minor part of the peptide was acid-stabile attached to the polymer. The percentage of acid-stabile attached peptides could easily be controlled during modification of the amino functionalities of the resin at the start of the process. The cleavage rate of the acid-labile attached peptide from the resin depends on the composition of the cleavage mixture. When cleavage conditions were carefully controlled, a three-step partial cleavage protocol allowed for convergent bioactivity screening on peptide libraries using only one type of acid-labile linker. The partial cleavage and convergent screening procedure was repeated three times, after which the bead containing the bioactive peptide was sequenced. As such a bead still contained acid-stabile attached peptide, the Edman sequencing was straightforward and repetitive yields were excellent because the immobilized peptide was not washed out. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The mechanisms of colorimetric assays based on aggregation of gold nanoparticles (GNPs) have been separated into two categories, crosslinking, and noncrosslinking aggregation. The noncrosslinking aggregation has recently been emerging as a simple and rapid mechanism and has been applied to enzymatic activity assays and DNA detection. We report here the detailed study of an enzymatic activity assay for protein kinases based on noncrosslinking aggregation. The principle of the assay is to detect kinase activity by utilizing the difference of coagulating ability of a cationic substrate peptide and its phosphorylated form toward GNPs with anionic surface charge. The critical coagulation concentrations (CCCs) of the peptides were about 10(3) times lower than those of the metal cations with the same cationic charges. The multivalent coordination bonds of the functional groups of the peptides with the GNP surface will strongly support the adsorption of the peptide on the GNP surface. The effect of the GNP size (10, 20, 40, 60 nm) on the dynamic range of OD before and after aggregation was studied. The dynamic range became a maximum for 20 nm GNP among those studied. The difference of CCC between the phosphorylated and nonphosphorylated peptides was governed by (1) the ratio between the peptide concentration and the surface area concentration of GNP and (2) the net charge of the peptides. When the assay system was applied to the activity assessment of protein kinase A, the dynamic range of OD was largest for 20 nm GNPs. However, when the peptide concentration was lowered, the largest 60 nm GNP was advantageous because of its smaller specific surface area.  相似文献   

4.
Seminal amyloids are well known for their role in enhancing HIV infection. Among all the amyloidogenic peptides identified in human semen, PAP248‐286 was found to be the most active and was termed as semen‐derived enhancer of viral infection (SEVI). Although amyloidogenic nature of the peptide is mainly linked with enhancement of the viral infection, the most active physiological conformation of the aggregated peptide remains inconclusive. Lipids are known to modulate aggregation pathway of a variety of proteins and peptides and constitute one of the most abundant biomolecules in human semen. PAP248‐286 significantly differs from the other known amyloidogenic peptides, including Aβ and IAPP, in terms of critical concentration, surface charge, fibril morphology, and structural transition during aggregation. Hence, in the present study, we aimed to assess the effect of a lipid, 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC), on PAP248‐286 aggregation and the consequent conformational outcomes. Our initial observation suggested that the presence of the lipid considerably influenced the aggregation of PAP248‐286. Further, ZDOCK and MD simulation studies of peptide multimerization have suggested that the hydrophobic residues at C‐terminus are crucial for PAP248‐286 aggregation and are anticipated to be major DOPC‐interacting partners. Therefore, we further assessed the aggregation behaviour of C‐terminal (PAP273‐286) fragment of PAP248‐286 and observed that DOPC possesses the ability to interfere with the aggregation behaviour of both the peptides used in the current study. Mechanistically, we propose that the presence of DOPC causes considerable inhibition of the peptide aggregation by interfering with the peptide's disordered state to β‐sheet transition.  相似文献   

5.
The peptides Boc-(l-Ala-Aib-l-Ala-Aib-l-Ala)n-OMe, with n=2 (P10) and n=4 (P20), have been synthesized as purely hydrophobic models of the antibiotic alamethicin, which is known to be a voltage-dependent pore former in membranes and is apparently -helical in lipophilic media. These peptides were investigated in 1-octanol, a solvent which resembles the membrane environment. From dielectric dispersion studies quantitative information on the molecular shape and dipole moments could be derived. Further independent data concerning conformation and extent of aggregation of the peptides were obtained by circular dichroism and ultracentrifuge measurements. The results suggest that the peptides assume the form of elongated particles having a significant amount of ordered secondary structure and carrying a dipole parallel to the long axis. Apparently the monomeric peptide molecules undergo, to some extent, a head-to-tail aggregation which is slightly enhanced at lower temperatures. Based on the high-frequency parts of the dielectric dispersion curves the lengths, diameters, and dipole moments of the monomer particles have been determined as 22.5 Å, 10 Å, 36 D (P10) and 28.5 Å, 12 Å, 64 D (P20).  相似文献   

6.
Aggregated LDL is the first ligand reported to interact with the cluster II CR9 domain of low-density lipoprotein receptor-related protein 1 (LRP1). In particular, the C-terminal half of domain CR9, comprising the region Gly1127-Cys1140 exclusively recognizes aggregated LDL and it is crucial for aggregated LDL binding. Our aim was to study the effect of the sequence Gly1127-Cys1140 (named peptide LP3 and its retro-enantio version, named peptide DP3) on the structural characteristics of sphingomyelinase- (SMase) and phospholipase 2 (PLA2)-modified LDL particles. Turbidimetry, gel filtration chromatography (GFC) and transmission electronic microscopy (TEM) analysis showed that LP3 and DP3 peptides strongly inhibited SMase- and PLA2-induced LDL aggregation. Nondenaturing polyacrylamide gradient gel electrophoresis (GGE), agarose gel electrophoresis and high-performance thin-layer chromatography (HPTLC) indicated that LP3 and DP3 prevented SMase-induced alterations in LDL particle size, electric charge and phospholipid content, respectively, but not those induced by PLA2. Western blot analysis showed that LP3 and DP3 counteracted changes in ApoB-100 conformation induced by the two enzymes. LDL proteomics (LDL trypsin digestion followed by mass spectroscopy) and computational modeling methods evidenced that peptides preserve ApoB-100 conformation due to their electrostatic interactions with a basic region of ApoB-100. These results demonstrate that LRP1-derived peptides are protective against LDL aggregation, even in conditions of extreme lipolysis, through their capacity to bind to ApoB-100 regions critical for ApoB-100 conformational preservation. These results suggests that these LRP1(CR9) derived peptides could be promising tools to prevent LDL aggregation induced by the main proteolytic enzymes acting in the arterial intima.  相似文献   

7.
Recombinant protein expression and purification remains a central need for biotechnology. Herein, the authors report a streamlined protein and peptide purification strategy using short self‐assembling peptides and a C‐terminal cleavage intein. In this strategy, the fusion protein is first expressed as an aggregate induced by the self‐assembling peptide. Upon simple separation, the target protein or peptide with an authentic N‐terminus is then released in the solution by intein‐mediated cleavage. Different combinations of four self‐assembling peptides (ELK16, L6KD, FK and FR) with three inteins (Sce VMA, Mtu ΔI‐CM and Ssp DnaB) were explored. One protein and two peptides were used as model polypeptides to test the strategy. The intein Mtu ΔI‐CM, which has pH‐shift inducible cleavage, was found to work well with three self‐assembling peptides (L6KD, FR, FK). Using this intein gave a yield of protein or peptide comparable with that from other more established strategies, such as the Trx‐strategy, but in a simpler and more economical way. This strategy provides a simple and efficient method by which to prepare proteins and peptides with an authentic N‐terminus, which is especially effective for peptides of 30‐100 amino acids in length that are typically unstable and susceptible to degradation in Escherichia coli.  相似文献   

8.
D Rapaport  R Peled  S Nir    Y Shai 《Biophysical journal》1996,70(6):2502-2512
The mechanism of leakage induced by surface active peptides is not yet fully understood. To gain insight into the molecular events underlying this process, the leakage induced by the peptide pardaxin from phosphatidylcholine/ phosphatidylserine/cholesterol large unilamellar vesicles was studied by monitoring the rate and extent of dye release and by theoretical modeling. The leakage occurred by an all-or-none mechanism: vesicles either leaked or retained all of their contents. We further developed a mathematical model that includes the assumption that certain peptides become incorporated into the vesicle bilayer and aggregate to form a pore. The current experimental results can be explained by the model only if the surface aggregation of the peptide is reversible. Considering this reversibility, the model can explain the final extents of calcein leakage for lipid/peptide ratios of > 2000:1 to 25:1 by assuming that only a fraction of the bound peptide forms pores consisting of M = 6 +/- 3 peptides. Interestingly, less leakage occurred at 43 degrees C, than at 30 degrees C, although peptide partitioning into the bilayer was enhanced upon elevation of the temperature. We deduced that the increased leakage at 30 degrees C was due to an increase in the extent of reversible surface aggregation at the lower temperature. Experiments employing fluorescein-labeled pardaxin demonstrated reversible aggregation of the peptide in suspension and within the membrane, and exchange of the peptide between liposomes. In summary, our experimental and theoretical results support reversible surface aggregation as the mechanism of pore formation by pardaxin.  相似文献   

9.
Defined and tunable peptide-lipid membrane interactions that trigger the release of liposome encapsulated drugs may offer a route to improving the efficiency and specificity of liposome-based drug delivery systems, but this require means to tailor the performance of the membrane active peptides. In this paper, the membrane activity of a de novo designed coiled coil peptide has been optimized with respect to sequence and size to improve release efficiency of liposome encapsulated cargo. The peptides were only membrane active when covalently conjugated to the liposomes. Two amino acid substitutions were made to enhance the amphipathic characteristics of the peptide, which increased the release by a factor of five at 1?μM. Moreover, the effect of peptide length was investigated by varying the number of heptad repeats from 2 to 5, yielding the peptides KVC2-KVC5. The shortest peptide (KVC2) showed the least interaction with the membrane and proved less efficient than the longer peptides in releasing the liposomal cargo. The peptide with three heptads (KVC3) caused liposome aggregation whereas KVC4 proved to effectively release the liposomal cargo without causing aggregation. The longest peptide (KVC5) demonstrated the most defined α-helical secondary structure and the highest liposome surface concentration but showed slower release kinetics than KVC4. The four heptad peptide KVC4 consequently displayed optimal properties for triggering the release and is an interesting candidate for further development of bioresponsive and tunable liposomal drug delivery systems.  相似文献   

10.
Huntington's and eight other neurodegenerative diseases occur because of CAG repeat expansion mutation culminating into an expanded polyglutamine tract in respective protein. In Huntington's disease (HD), a number of CAG repeats beyond normal repeat length (>36) lead to the formation of mutant protein, the proteolytic cleavage of which induces aggregation in polyglutamine length‐dependent manner. The neurodegeneration in this disease is linked to aggregation, and its inhibition is a potential approach for therapeutic development. Although peptides and other molecules have been developed for inhibiting aggregation, peptides in general are susceptible to degradation in vivo conditions. To understand their clinical significance, they also need to be delivered through blood–brain barrier. Here, for the first time, we have synthesized poly‐d ,l ‐lactide‐co‐glycolide nanoparticles containing a polyglutamine aggregation inhibitor peptide PGQ9[P2], by nanoprecipitation method. This process yielded less than 200 nm spherical nanoparticles with uniform distribution. Characterization studies by infrared spectroscopy‐based and HPLC‐based assays show the presence of PGQ9[P2] in nanoparticles. In vitro release kinetics demonstrates that nanoparticles release PGQ9[P2] by erosion and diffusion processes. When the PGQ9[P2]‐loaded nanoparticles are incubated with aggregation‐prone Q35P10 peptide, representing N‐terminal part of Huntingtin protein, it arrests the elongation phase of Q35P10 aggregation. These findings propose the first step toward delivery of a peptide inhibitor against polyglutamine aggregation in HD. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Proteolytic truncation of microtubule associated human (h) Tau protein by caspase-3 at the carboxy (C) terminus has been linked to the pathogenesis of Alzheimer’s Disease (AD). This cleavage likely occurs between Asp421↓Ser422 leading to the formation of 421-mer truncated Tau protein which has been found to be present as aggregate in high level after phosphorylation in mortal AD brain tissue compared to normal. At least 50 phosphorylation sites involving Ser, Thr and Tyr residues have been identified or proposed in hTau and a selected number of them have been implicated in hTau aggregation following latter’s proteolytic truncation. Interestingly, it is further noted that Ser422 residue present in the P1′ position of hTau caspase-3 cleavage region is a potential phosphorylation site. So we became interested to examine in vitro the effect of phospho-Ser422 residue on hTau cleavage by caspase-3 which is a crucial upstream event associated with hTau self-assembly leading to AD pathogenesis. The goal of this project is to study in vitro the caspase-3 cleavage site of hTau protein and to examine the kinetics of this cleavage following Ser422 phosphorylation and treatment with caspase-3 inhibitors. This is achieved by designing peptides from the sequence of hTau protein containing the proposed caspase-3 cleavage region. Peptides were designed from 441-mer major human Tau protein sequence that encompasses the proposed caspase-3 cleavage site [Asp421↓Ser422]. Corresponding phospho-, dextro-Ser422 and dextro-Asp421 analogs were also designed. Peptides were synthesized by solid phase chemistry, purified and fully characterized by mass spectrometry. These were then incubated with recombinant caspase-3 enzyme under identical condition for digestion and analyzed for cleavage by mass spectrometry and RP-HPLC chromatograms. Our results indicated that while the control peptide is efficiently cleaved by caspase-3 at Asp421↓Ser422 site producing the expected N- and C-terminal fragment peptides, the corresponding phospho-Ser422 peptide remained completely resistant to the cleavage. Substitution of Asp421 by its dextro isoform also blocks peptide cleavage by caspase-3. However substitution of Ser422 by its dextro isoform in the peptide did not affect the cleavage significantly. The above results were further confirmed by caspase-3 digestion experiment in the presence of varying amounts of caspase-3 inhibitor (Ac-DQVD-aldehyde) which was found to block this cleavage in a highly effective manner. Our results highlighted the crucial significance of Ser422 phosphorylation and suggest that the kinase associated with this Ser-phosphorylation may protect Tau from aggregation. Thus specific promoters/activators of this kinase may find useful therapeutic benefits in arresting Tau truncation by caspase-3 and the progression of AD. In addition our data demonstrated that Tau-peptides where Ser422 or Asp421 are substituted by their respective dextro isomers, exhibit different cleavage kinetics by caspase-3 and this may have important implications in therapeutic intervention of Tau aggregation and associated AD.  相似文献   

12.
We find that the catalytic activity of gold nanoparticles (GNPs) on luminol-H2O2 chemiluminescence (CL) system is greatly enhanced after it is aggregated by 0.5 M NaCl. We use this observation to design a CL detection of DNA hybridization. It is based on that the single- and double-stranded oligonucleotides have different propensities to adsorb on GNPs in colloidal solution, and the hybridization occurred between the probe DNA and target DNA can result in aggregation of the GNPs, producing strong CL emission. In the assay, no covalent functionalization of the GNPs, the probe, or the target DNA is required. The assay, including hybridization and detection, occurs in homogenous solution. The detection limit of target DNA (3σ) was estimated to be as low as 1.1 fM. The sensitivity was increased more than 6 orders of magnitude over that of GNPs-based colorimetric method. The present CL method for DNA hybridization detection offers the advantages of being simple, cheap, rapid and sensitive.  相似文献   

13.
P A Raj  P Balaram 《Biopolymers》1985,24(7):1131-1146
The aggregation behavior of the chemotactic peptide analogs, Formyl-Met-Leu-Phe-OMe ( 1 ) and Formyl-Met-Aib-Phe-OMe ( 2 ), has been studied in chloroform and dimethylsulfoxide over the concentration range of 0.2–110 mM by 1H-nmr spectroscopy. Both peptides associate in CDCl3 at concentrations ≥ 2 mM, while there is no evidence for aggregation in (CD3)2SO. Analog 1 adopts an extended conformation in both solvents favoring association to form β-sheet structures. A folded, γ-turn conformation involving a 3 → 1 hydrogen bond between Met CO and Phe NH is supported by 1H-, 13C-nmr, and ir studies of analog 2 . The influence of backbone conformation on the ease of peptide aggregation is demonstrated by ir studies in CHCl3 and CD studies in dioxane.  相似文献   

14.
Aggregation of Aβ peptides is a seminal event in Alzheimer's disease. Detailed understanding of the Aβ assembly process would facilitate the targeting and design of fibrillogenesis inhibitors. Here, conformational studies using FTIR spectroscopy are presented. As a model peptide, the 11–28 fragment of Aβ was used. This model peptide is known to contain the core region responsible for Aβ aggregation. The structural behavior of the peptide during aggregation provoked by the addition of water to Aβ(11–28) solution in hexafluoroisopropanol was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21–23 (A21G, E22K, E22G, E22Q and D23N). The results showed that the aggregation of the peptides proceeds via a helical intermediate, and it is possible that the formation of α‐helical structures is preceded by creation of 310‐helix/310‐turn structures. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Peptide‐based hydrogels are of interest for their potential use in regenerative medicine. Combining these hydrogels with materials that may enhance their physical and biological properties, such as glycosaminoglycans, has the potential to extend their range of biomedical applications, for example in the repair of early cartilage degeneration. The aim of this study was to combine three self‐assembling peptides (P11‐4, P11‐8, and P11‐12) with chondroitin sulphate at two molar ratios of 1:16 and 1:64 in 130 and 230 mM Na+ salt concentrations. The study investigates the effects of mixing self‐assembling peptide and glycosaminoglycan on the physical and mechanical properties at 37°C. Peptide alone, chondroitin sulphate alone, and peptide in combination with chondroitin sulphate were analysed using Fourier transform infrared spectroscopy to determine the β‐sheet percentage, transmission electron microscopy to determine the fibril morphology, and rheology to determine the elastic and viscous modulus of the materials. All of the variables (peptide, salt concentration, and chondroitin sulphate molar ratio) had an effect on the mechanical properties, β‐sheet formation, and fibril morphology of the hydrogels. P11‐4 and P11‐8‐chondroitin sulphate mixtures, at both molar ratios, were shown to have a high β‐sheet percentage, dense entangled fibrillar networks, as well as high mechanical stiffness in both (130 and 230 mM) Na+ salt solutions when compared with the P11‐12/chondroitin sulphate mixtures. These peptide/chondroitin sulphate hydrogels show promise for biomedical applications in glycosaminoglycan depleted tissues.  相似文献   

16.

Background

The eye lens is composed of fiber cells that are filled with α-, β- and γ-crystallins. The primary function of crystallins is to maintain the clarity of the lens through ordered interactions as well as through the chaperone-like function of α-crystallin. With aging, the chaperone function of α-crystallin decreases, with the concomitant accumulation of water-insoluble, light-scattering oligomers and crystallin-derived peptides. The role of crystallin-derived peptides in age-related lens protein aggregation and insolubilization is not understood.

Methodology/Principal Findings

We found that αA-crystallin-derived peptide, 66 SDRDKFVIFLDVKHF 80, which accumulates in the aging lens, can inhibit the chaperone activity of α-crystallin and cause aggregation and precipitation of lens crystallins. Age-related change in the concentration of αA-(66-80) peptide was estimated by mass spectrometry. The interaction of the peptide with native crystallin was studied by multi-angle light scattering and fluorescence methods. High molar ratios of peptide-to-crystallin were favourable for aggregation and precipitation. Time-lapse recordings showed that, in the presence of αA-(66-80) peptide, α-crystallin aggregates and functions as a nucleus for protein aggregation, attracting aggregation of additional α-, β- and γ-crystallins. Additionally, the αA-(66-80) peptide shares the principal properties of amyloid peptides, such as β-sheet structure and fibril formation.

Conclusions/Significance

These results suggest that crystallin-derived peptides such as αA-(66-80), generated in vivo, can induce age-related lens changes by disrupting the structure and organization of crystallins, leading to their insolubilization. The accumulation of such peptides in aging lenses may explain a novel mechanism for age-related crystallin aggregation and cataractogenesis.  相似文献   

17.
Nudaurelia capensis ω virus is a T = 4, icosahedral virus with a bipartite, positive-sense RNA genome. Expression of the coat protein gene in a baculovirus system was previously shown to result in the formation of procapsids when purified at pH 7.6. Procapsids are round, porous particles (480 Å diameter) and have T = 4 quasi-symmetry. Reduction of pH from 7.6 to 5.0 resulted in virus-like particles (VLP5.0) that are morphologically identical with authentic virions, with an icosahedral-shaped capsid and a maximum dimension of 410 Å. VLP5.0 undergoes a maturation cleavage between residues N570 and F571, creating the covalently independent γ peptide (residues 571-641) that remains associated with the particle. This cleavage also occurs in authentic virions, and in each case, it renders the morphological change irreversible (i.e., capsids do not expand when the pH is raised back to 7.6). However, a non-cleavable mutant, N570T, undergoes the transition reversibly (NT7.6 ↔ NT5.0). We used electron cryo-microscopy and three-dimensional image reconstruction to study the icosahedral structures of NT7.6, NT5.0, and VLP5.0 at about 8, 6, and 6 Å resolution, respectively. We employed the 2. 8-Å X-ray model of the mature virus, determined at pH 7.0 (XR7.0), to establish (1) how and why procapsid and capsid structures differ, (2) why lowering pH drives the transition, and (3) why the non-cleaving NT5.0 is reversible. We show that procapsid assembly minimizes the differences in quaternary interactions in the particle. The two classes of 2-fold contacts in the T = 4 surface lattice are virtually identical, both mediated by similarly positioned but dynamic γ peptides. Furthermore, quasi and icosahedral 3-fold interactions are indistinguishable. Maturation results from neutralizing the repulsive negative charge at subunit interfaces with significant differentiation of quaternary interactions (one 2-fold becomes flat, mediated by a γ peptide, while the other is bent with the γ peptide disordered) and dramatic stabilization of the particle. The γ peptide at the flat contact remains dynamic when cleavage cannot occur (NT5.0) but becomes totally immobilized by noncovalent interactions after cleavage (VLP5.0).  相似文献   

18.
Four dodecapeptides of general formula Tyr-Gly-Gly-Phe-Met-X-X-Tyr-Gly-Gly-Phe-Met-NH2 (Enk-X-X-Enk-NH2) possessing X = Arg or Lys have been synthesized and subjected to cleavage by trypsin. The peptide with the sequence containing -Lys-Arg-, depicted as BI-NH2, represents the 100–111 segment of proenkephalin. The time course of the degradation was followed by high performance liquid chromatography. This method allows one to observe the formation of not only the final but also intermediate peptides. Among the peptides studied, the most susceptible to the cleavage was BI-NH2. The primary hydrolysis proceeded rapidly at the arginine residue, followed by slow release of arginine. The other peptides (with -Arg-Arg-, -Lys-Lys- and -Arg-Lys-) were cleaved at both possible positions, but the resulting mixture contained Enk-X as a major product, which was the result of both primary and secondary cleavage.  相似文献   

19.
Summary Four dodecapeptides of general formula Tyr-Gly-Gly-Phe-Met-X-X-Tyr-Gly-Gly-Phe-Met-NH2 (Enk-X-X-Enk-NH2) possessing X-Arg or Lys have been synthesized and subjected to cleavage by trypsin. The peptide with the sequence containing-Lys-Arg-, depicted as BI-NH2, represents the 100–111 segment of proenkephalin. The time course of the degradation was followed by high performance liquid chromatography. This method allows one to observe the formation of not only the final but also intermediate peptides. Among the peptides studied, the most susceptible to the cleavage was BI-NH2. The primary hydrolysis proceeded rapidly at the arginine residue, followed by slow release of arginine. The other peptides (with-Arg-Arg-,-Lys-Lys-and-Arg-Lys-) were cleaved at both possible positions, but the resulting mixture contained Enk-X as a major product, which was the result of both primary and secondary cleavage.  相似文献   

20.
Abstract

Class I major histocompatibility complex (MHC) molecules bind peptides derived from intra-cellular proteins and present them to cytotoxic T cells. Certain human immunological diseases are associated with errors in this process. Here we describe an approach to the design of non-natural peptides that could potentially interfere with peptide presentation associated with autoimmune diseases. We have shown previously that the interaction of the peptide GILGFVFTL with the MHC molecule HLA-A2 is mediated by a network of water molecules. In principle, the addition of hydroxyl groups to the peptide could allow for an enhanced interaction of the modified peptide with this water network. Here we illustrate this approach using a peptide having the non-natural amino acid homoserine at position 3, GIhSGFVFTL, and also peptides in which the Cα(F5)—CO—NH1—Cα(V6) peptide bond is replaced by an ether. Cα(F5)—CH(X)—O—Cα(V6), to give the non-natural peptide GILGF—CH(X)—O—VFTL, where X = CH2OH or CH3. In a 200 ps solvated molecular dynamics simulation of the HLA-A2 complexes of each peptide for GIhSGFVFTL and GILGF—CH(CH2OH)—O—VFTL the peptide conformation remained essentially unchanged from that of GILGFVFTL in the X-ray structure of its complex with HLA-A2. In contrast, for GILGF—CH(CH3)—O—VFTL the peptide conformation deviated from the X-ray conformation, indicating the importance of the hydroxyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号