首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible synergistic cytotoxic and apoptotic effects of gossypol with zoledronic acid on DU-145 cells were explored, along with the rationale behind any observed synergism due to the different apoptotic proteins involved. XTT cell proliferation assay was used to assess the cytotoxicity, and DNA fragmentation and caspase 3/7 activity were measured to verify apoptosis. Human Apoptosis Array was used to evaluate apoptotic proteins. The synergistic cytotoxic combination treatment had a versatile effect on apoptotic proteins, through inhibition of anti-apoptotic proteins (including cIAP-1, cIAP-2, survivin, livin, claspin, p53, p21, PON-2 and heat shock proteins) and concurrently the induction of pro-apoptotic proteins (Bad, Bax, Fas, FADD, cleaved caspase-3 and p27). Both drugs had a minimal toxicity profile comparing to cytotoxic agents. Combination treatments targeting many pivotal apoptosis-related proteins may be a rationale option for treatment of prostate cancer.  相似文献   

2.
During the progression of prostate cancer from androgen-dependence or sensitivity to androgen-independence, the overall expression of prostate specific membrane antigen (PSMA) increases with its appearance in plasma membrane. However, surprisingly some androgen-independent metastatic prostate cancer cell lines do not express this protein. Estradiol (E2) and basic fibroblast growth factor (bFGF) due to their recognized and strong involvement in prostate growth, development, and pathology were selected with the aim of restoring the expression of PSMA in markedly dedifferentiated prostate cancer PC-3 cells and in Du 145. E2 (10(-7)-10(-11)M) and bFGF (10ng/ml) stimulated the expression of mRNAs for PSMA (2- to 4-fold increase) that apparently were further translated and processed to its membrane form in LNCaP, PC-3, and Du 145 cells. The values of interaction force between the same anti-PSMA antibodies and all studied cells were almost identical (45-64pN), indicating antigenic similarity of the membrane form of PSMA expressed in LNCaP, PC-3, and Du 145 cells.  相似文献   

3.
Sandvig K  Llorente A 《Molecular & cellular proteomics : MCP》2012,11(7):M111.012914-M111.012914-11
Cancer biomarkers are invaluable tools for cancer detection, prognosis, and treatment. Recently, microvesicles have appeared as a novel source for cancer biomarkers. We present here the results from a proteomic analysis of microvesicles released to the extracellular environment by the metastatic prostate cancer cell line PC-3. Using nanocapillary liquid chromatography-tandem mass spectrometry 266 proteins were identified with two or more peptide sequences. Further analysis showed that 16% of the proteins were classified as extracellular and that intracellular proteins were annotated in a variety of locations. Concerning biological processes, the proteins found in PC-3 cell-released microvesicles are mainly involved in transport, cell organization and biogenesis, metabolic process, response to stimulus, and regulation of biological processes. Several of the proteins identified (tetraspanins, annexins, Rab proteins, integrins, heat shock proteins, cytoskeletal proteins, 14-3-3 proteins) have previously been found in microvesicles isolated from other sources. However, some of the proteins seem to be more specific to the vesicular population released by the metastatic prostate cancer PC-3 cell line. Among these proteins are the tetraspanin protein CD151 and the glycoprotein CUB domain-containing protein 1. Interestingly, our results show these proteins are promising biomarkers for prostate cancer and therefore candidates for clinical validation studies in biological fluids.  相似文献   

4.
《Cell》2023,186(8):1515-1516
  相似文献   

5.
6.
Docetaxel and sodium selenite are well known for their anticancer properties. While resistance to docetaxel remains an obstacle in prostate cancer chemotherapy, sodium selenite, has been exploited as a new therapeutic approach. Currently, development of therapies affecting a multitude of cell targets, have been proposed as a strategy to overcome drug resistance. This association may reduce systemic toxicity counteracting a wide range of side effects.Here we report the effect of docetaxel and sodium selenite combination on the PC3 prostate cancer cell line, derived from bone metastasis. Therefore we evaluate cell growth, cell cycle progression, viability, mitochondria membrane potential, cytochrome C, Bax/Bcl2 ratio, caspase-3 expression and reactive oxygen species production.Our results suggest that sodium selenite and docetaxel combination have a synergistic effect on cell growth inhibition (67%) compared with docetaxel (22%) and sodium selenite (24%) alone. This combination also significantly induced cell death, mainly by late apoptosis vs necrosis, which is correlated with mitochondria membrane potential depletion. On the other hand, cytochrome C, Bax/Bcl2 ratio and caspase-3, known as proapoptotic factors, significantly increased in the presence of sodium selenite alone, but not in the presence of docetaxel in monotherapy or in combination with sodium selenite.These findings suggest that docetaxel and sodium selenite combination may be more effective on prostate cancer treatment than docetaxel alone warranting further evaluation of this combination in prostate cancer therapeutic approach.  相似文献   

7.
PTX1 is a gene identified by subtractive hybridization on the basis that it is expressed in normal prostate and not in prostate carcinoma. It encodes a nuclear protein that is downregulated in prostate carcinoma. Expression constructs containing PTX1 cDNA in both sense and antisense orientations were transfected into prostate tumor cell line, PC-3 cells. The effects of the expression of PTX1 and antisense PTX1 on PC-3 cells were examined using cell growth, proliferation, soft agar, invasion chamber, senescence-associated beta-galactosidase, and nude mice assays. Cells transfected with PTX1 construct in the sense orientation were growth-arrested. These cells displayed multiple morphological changes consistent with cellular senescence, including the expression of a senescence-associated beta-galactosidase. On the other hand, expression of antisense PTX1 RNA in PC-3 cells resulted in uncontrolled cell growth and increase of invasive potential. In nude mice, cells expressing antisense PTX1 grew sixfold faster than the control. These results suggest that PTX1 may play an important role in the growth and tumorigenicity of PC-3 cells.  相似文献   

8.
Urokinase-type plasminogen activator (uPA) is a serine protease that is involved in cancer progression, especially invasion and metastasis including prostate cancer. uPA activation is mediated by transactivation of uPAR and epidermal growth factor receptor (EGF-R) in prostate cancer progression. Prostate cancer (PC-3) cells have highly invasive capacity and they express uPA and uPAR gene. PC-3 cells are treated with quercetin, which inhibits invasion and migration of PC-3 cells. Quercetin downregulates uPA, uPAR and EGF, EGF-R mRNA expressions. Quercetin inhibits cell survival factor β-catenin, NF-κB and also proliferative signalling molecules such as p-EGF-R, N-Ras, Raf-1, c.Fos c.Jun and p-c.Jun protein expressions. But quercetin increased p38 mitogen-activated protein kinase protein expression. Our results suggest that quercetin inhibit migration and invasion of prostate cancer cells. It shows the value for treatment of invasive and metastasis type of prostate cancer.  相似文献   

9.
Recent studies have indicated that Toll-like receptors (TLRs) are implicated in the development of chemoresistance in cancer cells. TLR4 has been shown to be highly expressed in prostate cancer cells and contributes to tumor cell survival and invasion. In this study, we aimed to investigate the role of TLR4 signaling in the chemoresistance of prostate cancer cells. We showed that ligation of TLR4 with lipopolysaccharide (LPS) abrogated docetaxel-induced growth suppression in PC-3 prostate cancer cells, with an increase in the half-maximal inhibitory concentration. Downregulation of TLR4 using small-interference RNA sensitized PC-3 cells to docetaxel-induced apoptosis as determined by annexin V staining and poly (ADP-ribose) polymerase cleavage, which was coupled with increased Bax expression and decreased Bcl-2. TLR4 ligation resulted in a marked increase in the phosphorylation of phosphatidylinositol 3-kinase (PI3-K) and Akt. The pretreatment with a PI3-K inhibitor LY294002 reduced LPS-mediated resistance to docetaxel, significantly decreasing the viability of PC-3 cells. Our data show that TLR4 ligation contributes to the chemosensitivity of prostate cancer cells, which at least partially involves the activation of the PI3-K/Akt pathway. Therefore, TLR4 signaling may represent a promising target for the improvement of chemotherapeutic efficacy in prostate cancer.  相似文献   

10.
人质膜型唾液酸酶(hmSD)在前列腺癌细胞系(PC-3)中的表达   总被引:2,自引:0,他引:2  
Xu L  Li Y  Di Q 《中国应用生理学杂志》2005,21(3):299-300,304
目的:构建高表达hmSD的前列腺癌PC-3细胞系.方法:从人睾丸组织钓取hmSD基因并克隆至含绿色荧光蛋白(GFP)报告基因的表达载体,转染前列腺癌PC-3细胞系后利用荧光显微镜观察并测定hmSD活性.结果:获得高表达hmSD的前列腺癌PC-3细胞系.结论:该实验为进一步研究hmSD与前列腺癌的关系奠定基础.  相似文献   

11.
PTX1 is a gene identified by subtractive hybridization on the basis that it is expressed in normal prostate and not in prostate carcinoma. It is unrelated to the pituitary homeobox protein (Ptx1 or Pitx1), which regulates pituitary hormone gene expression, and its function is currently unknown. Recently, it was found to be a homolog of the yeast Erv41p, an endoplasmic reticulum (ER) resident protein involved in protein trafficking between ER and Golgi, and was renamed as ERGIC2. Ectopic expression of a partial sequence of PTX1 (Met84 - Leu225) as a VP22-fusion protein in prostate cancer cell line, PC-3, induced cellular senescence. Gene expression microarray analyses showed that interferon-beta (IFN-beta) and a number of IFN-inducible genes, among other genes, were upregulated by the PTX1-VP22 fusion protein. Upregulation of IFN-beta was confirmed by RTPCR and promoter-reporter assay. However, the upregulation of IFN-beta by the PTX1-VP22 fusion protein was not due to nuclear translocation of the PTX1 luminal domain.  相似文献   

12.
13.
There have been no therapeutic agents that provide a survival advantage in hormone-refractory prostate cancer. Recently, the Food and Drug Administration approved docetaxel combined with prednisone for the treatment of patients with advanced metastatic prostate cancer, and it does show a survival benefit. Hence, anti-microtubule drugs might be of benefit in chemotherapy of hormone-refractory prostate cancer. We used metastatic hormone-refractory prostate cancer PC-3 cells to investigate potential molecular mechanisms for CIL-102, a semisynthetic alkaloid derivative. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide and sulforhodamine B assays indicated that CIL-102 inhibits cell growth dose-dependently. Immunofluorescence microscopy and in vitro tubulin assembly assays indicated that CIL-102 binds to tubulin and disrupts microtubule organization. Flow cytometry showed that CIL-102 causes cells to accumulate in G(2)/M phase and sub-G(0)/G(1) phase. CIL-102-induced apoptosis was also characterized by immunofluorescence microscopy. Western blotting and kinase assays showed that CIL-102 exposure induced up-regulation of cyclin B1 and p34(cdc2) kinase activity and olomoucine, a p34(cdc2) inhibitor, profoundly reduced the number of cells accumulated in mitotic phase. Moreover, Bcl-2 phosphorylation, Cdc25C phosphorylation, and survivin expression were increased. CIL-102-induced apoptosis was associated with activation of caspase-3, but a noncaspase pathway may also be involved, since benzyloxycarbonyl-VAD-fluoromethyl ketone, a pancaspase inhibitor, only partially inhibited the apoptosis, and apoptosis-inducing factor was translocated from mitochondria to cytosol. We conclude that CIL-102 induces mitotic arrest and apoptosis by binding to tubulin and inhibiting tubulin polymerization. CIL-102 causes mitotic arrest, at least partly, by modulating cyclin-dependent kinases and then apoptosis executed by caspase and noncaspase pathways.  相似文献   

14.
The differential antiproliferative effects of vanadate, tungstate, and molybdate on human prostate cancer cell line PC-3 were compared and the underlying mechanisms were investigated. The results demonstrate that all of the three oxoanions can cause G2/M cell cycle arrest, which is evidenced by the increase in the level of phosphorylated Cdc2 at its inactive Tyr-15 site. Moreover, even if the difference in cellular uptake among the three oxoanions is excluded from the possible factors affecting their antiproliferative activity, vanadate exerted a much more potent effect in PC-3 cells than the other two oxoanions. Our results also reveal that reactive oxygen species (ROS)-mediated degradation of Cdc25C rather than Cdc25A or Cdc25B is responsible for vanadate-induced G2/M cell cycle arrest. We propose a possible mechanism to clarify the differential effect of the three oxoanions in biological systems beyond just considering that they are structural analogs of phosphate. We suggest that ROS formation is unlikely to be involved in the biological function of tungstate and molybdate, whereas the redox properties of vanadium may be important factors for it to exert pharmacological effects. Further, given the evidence from epidemiology studies of the association between diabetes and prostate cancer, the possibility of vanadate as a good candidate as both an antidiabetic and an anticancer agent or a chemopreventive agent is indicated.  相似文献   

15.
16.
The molecular lipid composition of exosomes is largely unknown. In this study, sophisticated shotgun and targeted molecular lipidomic assays were performed for in-depth analysis of the lipidomes of the metastatic prostate cancer cell line, PC-3, and their released exosomes. This study, based in the quantification of approximately 280 molecular lipid species, provides the most extensive lipid analysis of cells and exosomes to date. Interestingly, major differences were found in the lipid composition of exosomes compared to parent cells. Exosomes show a remarkable enrichment of distinct lipids, demonstrating an extraordinary discrimination of lipids sorted into these microvesicles. In particular, exosomes are highly enriched in glycosphingolipids, sphingomyelin, cholesterol, and phosphatidylserine (mol% of total lipids). Furthermore, lipid species, even of classes not enriched in exosomes, were selectively included in exosomes. Finally, it was found that there is an 8.4-fold enrichment of lipids per mg of protein in exosomes. The detailed lipid composition provided in this study may be useful to understand the mechanism of exosome formation, release and function. Several of the lipids enriched in exosomes could potentially be used as cancer biomarkers.  相似文献   

17.
Zhang M  Liu H  Tian Z  Griffith BN  Ji M  Li QQ 《Life sciences》2007,80(8):767-774
The rate of gossypol-induced apoptosis does not correlate very well with the same dose of gossypol-induced cell growth inhibition, indicating an anti-proliferative effect of gossypol. Using a co-immunoprecipitation assay, it was observed that the level of Bcl-X(L) protein bound to Bax was clearly lower than that of Bcl-2 protein at 5 micro M of gossypol treatment, and the level of Bim protein bound to Bcl-X(L) was lowered at 20 micro M of gossypol treatment for 24 h, implicating that gossypol inhibits the heterodimerization of Bcl-X(L) with Bax and Bim. Gossypol-induced apoptosis is partly suppressed by as low as 0.5 micro M, but not abolished by as high as 50 micro M of a broad range caspase inhibitor, Z-VAD-FMK, suggesting that gossypol-induced apoptosis is both caspase-dependent and -independent. Furthermore, the release of apoptosis inducing factor (AIF), which triggers caspase-independent apoptosis, from mitochondria to cytosol was observed in PC-3 cells exposed to gossypol treatment. In conclusion, gossypol inhibits the proliferation and induces apoptosis in PC-3 cells. Gossypol-induced apoptosis is, at least, through inhibiting the heterodimerization of Bcl-X(L)/Bcl-2 with pro-apoptosis molecules, followed by a caspase-dependent and -independent process which involves the release of AIF from the mitochondria to cytosol.  相似文献   

18.
Apoptosis comprises a critical intracellular defense mechanism against tumourigenic growth. We have been interested in the relationship between morphological changes and intracellular concentration of several cations after etoposide-induced apoptosis in androgen-independent prostate cancer cells. SEM and X-ray microanalysis were performed on freeze-dried PC3 cells after etoposide treatment, and correlated with the morphological features observed after examination by light and fluorescence microscopy. Cell viability assays were also performed. A significant decrease in intracellular Cl(-) and K(+)and a progressive increase in Mg(2+) and Na(+) were observed, with parallel changes in cellular volume as cells passed through three morphological stages of apoptosis. The use of EPXRMA made it possible to evaluate alterations in element composition in prostate cancer cell apoptosis and may be a helpful tool for further studies on apoptosis in prostate cancer.  相似文献   

19.
Phospholipase D (PLD) is activated in mammalian cells in response to a variety of growth factors and may play a role in cell proliferation. Lysophosphatidic acid (LPA) is a bioactive metabolite potentially generated as a result of PLD activation. Two human prostate cancer cell lines, PC-3 and LNCaP, express membrane PLD activity. The effects of LPA on PLD activity and proliferation were examined in PC-3 cells, which express hPLD1a/1b. Phorbol 12-myristate 13-acetate (PMA) induced a prolonged activation of PLD, as detected in both intact cells and membranes. LPA induced a transient activation of PLD that was maximal by 10 minutes. The EC50 for LPA-induced PLD activation was approximately 1 μM. Pertussis toxin did not inhibit activation of PLD by LPA or PMA. Ro-31-8220 and bisindolylmaleimide I, inhibitors of protein kinase C, blocked activation by PLD by both PMA and LPA. PMA-induced activation of PLD did not appear to require translocation of PLDs from cytosol to membrane. LPA stimulated proliferation of PC-3 cells with an EC50 of approximately 0.2 μM; this response was not inhibited by pertussis toxin. Perillyl alcohol, an anti-cancer drug, reversibly inhibited proliferation in response to either serum or LPA but did not inhibit activation of PLD by PMA or LPA. These data establish that LPA activates PLD and stimulates proliferation via Gi-independent pathways in a human prostate cancer cell line. J. Cell. Physiol. 174:261–272, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Paeonol (Pae) is the main active ingredient from the root bark of Paeonia moutan and the grass of Radix Cynanchi Paniculati. Numerous reports indicate that Pae effectively inhibits several types of cancer lines. In this study, we report that Pae hinders prostate cancer growth both in vivo and in vitro. Human prostate cancer lines DU145 and PC-3 were cultured in the presence of Pae. The xenograft tumor in mice was established by subcutaneous injection of DU145 cells. Cell growth was measured by MTT, and the apoptosis was detected by the flow cytometry. Expression of Bcl-2, Bax, Akt, and mTOR were tested by western blotting assay. DU145 and PC-3 showed remarkable sensitivity to Pae, and exposure to Pae induced dose-and time-dependent growth inhibitory responses. Moreover, treatment of Pae promoted apoptosis and enhanced activities of caspase-3, caspase-8, and caspase-9 in DU145. Further work demonstrated Pae reduced expression of Bcl-2 and increased expression of Bax in DU145. Interestingly, we observed that Pae significantly decreased phosphorylated status of Akt and mTOR, and inhibitory effects of Pae and PI3K/Akt inhibitor on DU145 proliferation were synergistic. Finally, we confirmed that oral administration of Pae to the DU145 tumor-bearing mice significantly lowered tumor cell proliferation and led to tumor regression. Pae possesses inhibitory effects on prostate cancer cell growth both in vitro and in vivo, and the anti-proliferative effect may be closely related to its activation of extrinsic and intrinsic apoptotic pathway and inhibition of the PI3K/Akt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号