共查询到20条相似文献,搜索用时 0 毫秒
1.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2017,1862(2):246-254
Mansonic schistosomiasis is a disease caused by the trematode Schistosoma mansoni, endemic to tropical countries. S. mansoni infection induces the formation of granulomas and potent polarization of Th2-type immune response. There is great interest in understanding the mechanisms used by this parasite that causes a modulation of the immune system. Recent studies from our group demonstrated that lipids of S. mansoni, including lysophosphatidylcholine (LPC) have immunomodulatory activity. In the present study, our aim was to investigate the role of lipids derived from S. mansoni in the activation and polarization of macrophages and to characterize the mechanisms involved in this process. Peritoneal macrophages obtained from wild type C57BL/6mice or bone marrow derived macrophages were stimulated in vitro with lipids extracted from adult worms of S. mansoni. We demonstrated that total schistosomal-derived lipids as well as purified LPC induced alternatively activated macrophages/M2 profile observed by increased expression of arginase-1, mannose receptor, Chi3l3, TGFβ and production of IL-10 and PGE2 24 h after stimulation. The involvement of the nuclear receptor PPARγ in macrophage response against LPC was investigated. Through Western blot and immunofluorescence confocal microscopy we demonstrated that schistosomal-derived LPC induces increased expression of PPARγ in macrophages. The LPC-induced increased expression of arginase-1 were significantly inhibited by the PPAR-γ antagonist GW9662. Together, these results demonstrate an immunomodulatory role of schistosomal-derived LPC in activating macrophages to a profile of the type M2 through PPARγ-dependent mechanisms, indicating a novel pathway for macrophage polarization triggered by parasite-derived LPC with potential implications to disease pathogenesis. 相似文献
2.
Huntington's disease (HD) is associated with expansion of polyglutamine tract in a protein named huntingtin (htt) that is expressed in virtually all body tissues. Thus mutated htt (HD-htt) might affect all organs, although clinical manifestations of HD are associated with selective loss of corticostriatal neurons of the brain. In this work we studied how HD-htt affects mitochondria in human peripheral blood cells. We compared various functions of mitochondria isolated from cultured lymphoblastoid cells derived from three HD patients with juvenile onset of the disease (HD-LBM) and three age-matched control (C-LBM) individuals. Respiratory parameters in different metabolic states, with succinate and glutamate plus malate were the same for all control and HD cell lines. State 4 membrane potential in HD-LBM was slightly lower than in C-LBM. The calcium retention capacity (CRC) of mitochondria was estimated using simultaneously several methods to register permeability transition (PT). We found that LBM do not undergo swelling upon Ca2+-induced PT, and do not increase CRC in the presence of ADP + oligomycin. Although each cell line had different CRC values, qualitatively PT was different in C-LBM and HD-LBM. With C-LBM cyclosporin A (CsA) increased CRC significantly, while with HD-LBM CsA was ineffective. In C-LBM depolarization of mitochondria and a large pore opening (PT) always occurred simultaneously. In HD-LBM depolarization occurred at 20-50% lower Ca2+ loads than PT. We suggest that HD-htt promotes low H+ conductance of the mitochondria by interacting with proteins at the contacts sites without directly promoting PT or hampering mitochondrial oxidative phosphorylation. 相似文献
3.
4.
Background
PPARγ plays a key role in adipocyte biology, and Rosiglitazone (Rosi), a thiazolidinedione (TZD)/PPARγ agonist, is a potent insulin-sensitizing agent. Recent evidences demonstrate that adipose tissue inflammation links obesity with insulin resistance and that the insulin-sensitizing effects of TZDs result, in part, from their anti-inflammatory properties. However the underlying mechanisms are unclear.Methodology and Principal Findings
In this study, we establish a link between free fatty acids (FFAs) and PPARγ in the context of obesity-associated inflammation. We show that treatment of adipocytes with FFAs, in particular Arachidonic Acid (ARA), downregulates PPARγ protein and mRNA levels. Furthermore, we demonstrate that the downregulation of PPARγ by ARA requires the activation the of Endoplamsic Reticulum (ER) stress by the TLR4 pathway. Knockdown of adipocyte PPARγ resulted in upregulation of MCP1 gene expression and secretion, leading to enhanced macrophage chemotaxis. Rosi inhibited these effects. In a high fat feeding mouse model, we show that Rosi treatment decreases recruitment of proinflammatory macrophages to epididymal fat. This correlates with decreased chemokine and decreased chemokine receptor expression in adipocytes and macrophages, respectively.Conclusions and Significance
In summary, we describe a novel link between FAs, the TLR4/ER stress pathway and PPARγ, and adipocyte-driven recruitment of macrophages. We thus both describe an additional potential mechanism for the anti-inflammatory and insulin-sensitizing actions of TZDs and an additional detrimental property associated with the activation of the TLR4 pathway by FA. 相似文献5.
6.
We detected the expression of IL-12 p40/p35 mRNA by semi-quantitative RT-PCR and silver staining, and studied the molecular interaction between the IL-12 expression and the NF-κB activation induced by LPS and IFN-γ/LPS in murine peritoneal suppressor macrophages (MPSMs). It was found that IFN-γ strongly enhanced the LPS-induced IL-12 p40 and p35 mRNA expression. Both p40 and p35 mRNA levels were approximately equal. IFN-γ also greatly promoted the LPS-induced secretion of IL-12 p70 in MPSMs. The Proteasome Inhibitor I (PSI) could block the expression of IL-12 p40 and p35 mRNA, and the degradation of κBα induced by LPS or LPS/IFN-γ. EMSA showed that LPS could augment the NF-κB binding activity to p40 promoter DNA. However, IFN-γ could neither enhance the LPS-induced NF-κB activity nor promote the degradation of kBa. Taken together, the data suggest: (i) IFN-γ/LPS could strongly induce the expression of IL-12 p40 and p35 mRNA; both the expression levels were equal; this phenomenon coincided wit 相似文献
7.
Jie Qi Jinsong Zhang Weiguo Feng Xiangdong Luo Changlin Li Zongliang Zhang 《中国科学:生命科学英文版》2000,43(6):578-588
We detected the expression of IL-12 p40/p35 mRNA by semi-quantitative RT-PCR and silver staining, and studied the molecular
interaction between the IL-12 expression and the NF-eB activation induced by LPS and IFN-γ/LPS in murine peritoneal suppressor
macrophages (MPSMs). It was found that IFN-γ strongly enhanced the LPS-induced IL-12 p40 and p35 mRNA expression. Both p40
and p35 mRNA levels were approximately equal. IFN-a also greatly promoted the LPS-induced secretion of IL-12 p70 in MPSMs.
The Proteasome Inhibitor I (PSI) could block the expression of IL-12 p40 and p35 mRNA, and the degradation of IκBα induced
by LPS or LPS/IFN-γ. EMSA showed that LPS could augment the NF-κB binding activity to p40 promoter DNA. However, IFN-γ could
neither enhance the LPS-induced NF-κB activity nor promote the degradation of IκBα. Taken together, the data suggest: (i)
IFN-γ/LPS could strongly induce the expression of IL-12 p40 and p35 mRNA; both the expression levels were equal; this phenomenon
coincided with the high-level secretion of IL-12 p70 induced by IFN-γ/LPS; (ii) NF-κB signal pathway is essential for IFN-γ/LPS
to induce IL-12 mRNA expression; (iii) by blocking the degradation of IκB, the PSI suppresses the IL-12 p40/p35 mRNA expression
induced by LPS and IFN-γ/LPS; (iv) NF-κB signal may not be involved in the mechanism by which IFN-γ enhanced the expression
of the LPS-induced IL-12 p40/p35 mRNA.
The first two authors contributed equally to this work. 相似文献
8.
Neil A. Turner Philip Warburton David J. O'Regan Stephen G. Ball Karen E. Porter 《Matrix biology》2010,29(7):613-620
The proinflammatory cytokine interleukin-1 (IL-1) elicits catabolic effects on the myocardial extracellular matrix (ECM) early after myocardial infarction but there is little understanding of its direct effects on cardiac myofibroblasts (CMF), or the role of p38 mitogen-activated protein kinase (MAPK). We used a focused RT-PCR microarray to investigate the effects of IL-1α on expression of 41 ECM genes in CMF cultured from different patients, and explored regulation by p38 MAPK.IL-1α (10 ng/ml, 6 h) had minimal effect on mRNA expression of structural ECM proteins, including collagens, laminins, fibronectin and vitronectin. However, it induced marked increases in expression of specific ECM proteases, including matrix metalloproteinases MMP-1 (collagenase-1), MMP-3 (stromelysin-1), MMP-9 (gelatinase-B) and MMP-10 (stromelysin-2). Conversely, IL-1α reduced mRNA and protein expression of ADAMTS1, a metalloproteinase that suppresses neovascularization. IL-1α increased expression of TIMP-1 slightly, but not TIMP-2. Data for MMP-1, MMP-2, MMP-3, MMP-9, MMP-10 and ADAMTS1 were confirmed by quantitative real-time RT-PCR. Tumor necrosis factor-alpha (TNFα), another important myocardial proinflammatory cytokine, did not alter expression of these metalloproteinases. IL-1α strongly activated the p38 MAPK pathway in human CMF. Pharmacological inhibitors of p38-α/β (SB203580) or p38-α/β/γ/δ (BIRB-0796) reduced MMP-3 and ADAMTS1 mRNA expression, but neither inhibitor affected MMP-9 levels. MMP-1 and MMP-10 expression were inhibited by BIRB-0796 but not SB203580, suggesting roles for p38-γ/δ.In summary, IL-1α induces a distinct pattern of ECM protein and protease expression in human CMF, in part regulated by distinct p38 MAPK subtypes, affirming the key role of IL-1α and CMF in post-infarction cardiac remodeling. 相似文献
9.
10.
Peroxisome proliferator-activated receptor gamma (PPARγ) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPARγ protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPARγ ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPARγ ligands may have applications for the treatment of ovarian cancer. 相似文献
11.
Nasser Ghaly Yousif Fadhil G. Al-amran Najah Hadi Jillen Lee Jonthan Adrienne 《Cytokine》2013,61(1):223-227
BackgroundEsophageal cancer is the seventh leading cause of cancer death in males in USA, and there is a strong link has been demonstrated between inflammation and esophageal cancer, interleukin (IL)-32 is a recently described pro-inflammatory cytokine characterized by the induction of nuclear factor NF-κB activation, the p38MAPK also plays an important role in key cellular processes related to inflammation and cancer. We investigated whether the IL-32 expression may be involved in esophageal carcinogenesis through modulates the activity of NF-κB and p-p38 MAPK.MethodMalignant esophageal tissue and blood samples were obtained from 65 operated untreated patients, normal samples was obtained from 35 patients operated for other reasons as control. IL-32 expression visualized by immunohistochemistry, Real time RT–PCR for IL-32 mRNA expression, NF-κB phosphorylation and phosphorylated p38mapk were analyzed by immunoblotting, ELISA for further detection IL-32 and cytokines (TNF-α, IL-1β, IL-6 and IL-8) concentration in the patient’s sera.ResultsIL-32 expression was increased in immunohistochemical staining for malignant esophageal tissue and it’s correlated with the relative expression level of IL-32 mRNA P = 0.007, the P-NF-κB level elevated in tumor tissue compared with control and no difference in the total NF-κB level P = 0.003 while the IL-32 up-regulated the P-pNF-κB in the esophageal tumor P = 0.005. There is increase in p-p38MAPK activation underlying IL-32 expression in tumor P = 0.004, but no change in total p38 MAPK in malignant esophagus. The plasma level of IL-32 expression was increased in malignant esophageal patients P = 0.01, with increased in the levels of the cytokines TNF-α, IL-6, and IL-1β P<0.05.ConclusionsUnderstanding the pathway of IL-32 expression to stimulate the secretion cytokines via the activation of NF-κB and up-regulation of p-p38MAPK may or may not prove to be a therapeutic target, or a biomarker, and future studies will finally answer this hypothesis generated. 相似文献
12.
13.
Akella R Min X Wu Q Gardner KH Goldsmith EJ 《Structure (London, England : 1993)》2010,18(12):1571-1578
MAPKs engage substrates, MAP2Ks, and phosphatases via a docking groove in the C-terminal domain of the kinase. Prior crystallographic studies on the unphosphorylated MAPKs p38α and ERK2 defined the docking groove and revealed long-range conformational changes affecting the activation loop and active site of the kinase induced by peptide. Solution NMR data presented here for unphosphorylated p38α with a MEK3b-derived peptide (p38α/pepMEK3b) validate these findings. Crystallograhic data from doubly phosphorylated active p38α (p38α/T?GY?/pepMEK3b) reveal a structure similar to unphosphorylated p38α/MEK3b, and distinct from phosphorylated p38γ (p38γ/T?GY?) and ERK2 (ERK2/T?EY?). The structure supports the idea that MAP kinases adopt three distinct conformations: unphosphorylated, phosphorylated, and a docking peptide-induced form. 相似文献
14.
Ornella Pellerito Antonietta Notaro Selenia Sabella Anna De Blasio Renza Vento Giuseppe Calvaruso Michela Giuliano 《Apoptosis : an international journal on programmed cell death》2014,19(6):1029-1042
Cannabinoids have been reported to possess anti-tumorigenic activity in cancer models although their mechanism of action is not well understood. Here, we show that the synthetic cannabinoid WIN55,212-2 (WIN)-induced apoptosis in colon cancer cell lines is accompanied by endoplasmic reticulum stress induction. The formation of acidic vacuoles and the increase in LC3-II protein indicated the involvement of autophagic process which seemed to play a pro-survival role against the cytotoxic effects of the drug. However, the enhanced lysosomal membrane permeabilization (LMP) blocked the autophagic flux after the formation of autophagosomes as demonstrated by the accumulation of p62 and LC3, two markers of autophagic degradation. Data also provided evidence for a role for nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in cannabinoid signalling. PPARγ expression, at both protein and mRNA levels, was significantly down-regulated after WIN treatment and its inhibition, either by specific antagonists or by down-regulation via gene silencing, induced effects on cell viability as well as on ER stress and autophagic markers similar to those obtained in the presence of WIN. Moreover, the observation that the increase in p62 level and the induction of LMP were also modified by PPARγ antagonists seemed to indicate that PPARγ down-regulation was crucial to determinate the block of autophagic flux, thus confirming the critical role of PPARγ in WIN action. In conclusion, at our knowledge, our results are the first to show that the reduction of PPARγ levels contributes to WIN-induced colon carcinoma cell death by blocking the pro-survival autophagic response of cells. 相似文献
15.
16.
Lei Li Guang Gao Jay Shankar Bharat Joshi Leonard J. Foster Ivan R. Nabi 《Molecular biology of the cell》2015,26(21):3828-3840
Gp78 is an ERAD-associated E3 ubiquitin ligase that induces degradation of the mitofusin mitochondrial fusion proteins and mitochondrial fission. Gp78 is localized throughout the ER; however, the anti-Gp78 3F3A monoclonal antibody (mAb) recognizes Gp78 selectively in mitochondria-associated ER domains. Epitope mapping localized the epitope of 3F3A and a commercial anti-Gp78 mAb to an 8–amino acid motif (533–541) in mouse Gp78 isoform 2 that forms part of a highly conserved 41–amino acid region containing 14-3-3– and WW-binding domains and a p38 MAP kinase (p38 MAPK) consensus site on Ser-538 (S538). 3F3A binds selectively to nonphosphorylated S538 Gp78. Using 3F3A as a reporter, we induced Gp78 S538 phosphorylation by serum starvation and showed it to be mediated by p38 MAPK. Mass spectroscopy analysis of Gp78 phosphopeptides confirmed S538 as a major p38 MAPK phosphorylation site on Gp78. Gp78 S538 phosphorylation limited its ability to induce mitochondrial fission and degrade MFN1 and MFN2 but did not affect in vitro Gp78 ubiquitin E3 ligase activity. Phosphomimetic Gp78 S538D mutation prevented Gp78 promotion of ER–mitochondria interaction, and SB203580 inhibition of p38 MAPK increased ER–mitochondria association. p38 MAPK phosphorylation of Gp78 S538 therefore regulates Gp78-dependent ER–mitochondria association and mitochondria motility. 相似文献
17.
Shigeyuki Ozawa Shin Ito Yasumasa Kato Eiro Kubota Ryu-Ichiro Hata 《Biochemical and biophysical research communications》2010,396(4):1060-1064
The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38α, β, γ and δ. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38α and β, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38γ and/or δ was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38δ attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38δ with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38δ isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38α and/or β isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14. 相似文献
18.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(2):282-289
Eighteen substituted thiophene and benzothiophene derivatives were studied for their effects on peroxisome proliferator-activated receptor γ (PPARγ) in HepG2 cells. Three derivatives (compounds 5, 120.97%; 15, 102.14%; and 17, 113.82%) were found to transactivate PPARγ in vitro. By comparison, the positive control rosiglitazone (Ros) transactivated PPARγ by 311.53%. The three compounds were studied for their effects on glucose metabolism in vivo in KK/Ay diabetic mice. In vivo, the 2-(β-carbonyl/sulfonyl) butyryl-thiophene compounds 5 and 15 significantly decreased blood glucose levels (compounds 5, to?<?15.6?mmol/L; 15, to?<?10?mmol/L), improved glucose tolerance, improved impaired pancreatic islet β-cells, and lowered serum insulin levels. 相似文献
19.
Background
Toll-like receptor 4 (TLR4) plays an important role in innate immunity. The role of TLR4 in stretched cardiomyocytes is not known. We sought to investigate whether mechanical stretch could regulate TLR4 expression, as well as the possible molecular mechanisms and signal pathways mediating the expression of TLR4 by cyclic mechanical stretch in cardiomyocytes. 相似文献20.
Xuefei Tan Richland W. Tester Gregory R. Luedtke Sarvajit Chakravarty Babu J. Mavunkel John J. Perumattam Qing Lu Imad Nashashibi Joon Jung Jie Hu Albert Liclican Ramona Almirez Jocelyn Tabora Vinh Tran Maureen Laney Daniel E. Levy Sundeep Dugar 《Bioorganic & medicinal chemistry letters》2010,20(3):828-831
Derivatives of the 4-fluorobenzyl dimethylpiperazine-indole class of p38α MAP kinase inhibitors are described. Biological evaluation of these compounds focused on maintaining activity while improving pharmacokinetic (PK) properties. Improved properties were observed for structures bearing substitutions on the benzylic methylene. 相似文献