首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock protein 27 (Hsp27) can regulate actin cytoskeleton dynamics and contractile protein activation. This study investigates whether Hsp27 expression is related to bladder contractile dysfunction after acute urinary retention (AUR). Female rats were randomized either to AUR by urethral ligation or to normal control group. Bladder and smooth muscle strip contraction at time points from 0 h to 7 days after AUR were estimated by cystometric and organ bath studies. Hsp27 expression in bladder tissue at each time point was detected with immunofluorescence, Western blots, and real-time PCR. Expression of the three phosphorylated forms of Hsp27 was detected by Western blots. Smooth muscle ultrastructure was observed by transmission electron microscopy. Data suggest that maximum detrusor pressure and both carbachol-induced and spontaneous detrusor strip contraction amplitude decreased gradually for the duration from 0 to 6 h, and then increased gradually to near-normal values at 24 h. Treatment of muscle strips with the p38MAK inhibitor, SB203580, inhibited carbachol-induced contractions. Smooth muscle ultrastructure damage was the highest at 6 h after AUR, and then lessened gradually during next 7 days, and ultrastructure was close to normal. Expressions of Hsp27 mRNA and protein and the proteins of the three phosphorylated forms were higher at 0 h, decreased to lower levels up to 6 h, and then gradually increased. Therefore, we conclude that rat bladder contractile function after AUR worsens during 0–6 h, and then gradually recovers. The findings of the current study suggest that Hsp27 modulates bladder smooth muscle contraction after AUR, and that phosphorylation of Hsp27 may be an important pathway modulating actin cytoskeleton dynamics in bladder smooth muscle contraction and reconstruction after injury.  相似文献   

2.
In this study, we investigated the preventive effect of n-hexacosanol on diabetes-induced bladder dysfunction in the rat. Diabetes was induced in 8-week-old male Sprague-Dawley rats by administering an injection of streptozotocin (50 mg/kg, i.p.). The rats were randomly divided into 4 groups (age-matched control rats, diabetic rats without treatment with n-hexacosanol, and diabetic rats treated with n-hexacosanol (2 and 8 mg/kg, i.p. every day)) and maintained for 4 weeks. The serum glucose and serum insulin levels were determined, and the functions of bladder were estimated by voiding behavior, cystometric, and functional studies to carbachol and KCl. Furthermore, we examined possible diabetic induced histological changes in these rats. Treatment with n-hexacosanol did not alter diabetic status including body mass, bladder mass, and serum glucose and serum insulin levels, but significantly improved the maximum contraction pressure of the detrusor and residual urine volume in cystometric studies and Emax values to carbachol in functional studies in a dose-dependent manner. Diabetes induced bladder smooth muscle hypertrophy, which tended to be ameliorated by treatment with n-hexacosanol in a dose-dependent manner. Treatment with n-hexacosanol did not alter the diabetic status, but significantly improved diabetic cystopathy in a dose-dependent manner.  相似文献   

3.
Hyperosmolar factors induce the neurogenic inflammatory response, leading to bladder overactivity (OAB). The aim of the study was to compare the bladder motor activity in a hyperosmolar and acute cyclophosphamide (CYP)-induced model of OAB. Furthermore, we set our sights on defining the most physiological model of OAB in experimental practice. Forty-two female rats were divided randomly into 5 groups. All animals underwent cystometry with the usage of isotonic saline or saline of increasing concentration. Acute chemical cystitis was induced by CYP to elicit OAB. The following cystometric parameters were analyzed: basal pressure, threshold pressure, micturition voiding pressure, intercontraction interval, compliance, functional bladder capacity, motility index, and detrusor overactivity index. CYP and hypertonic saline solutions induced OAB. Having been compared with CYP OAB, none of the rats infused with hypertonic solution exhibited macroscopic signs of bladder inflammation. The comparison of CYP and hyperosmolar models of OAB revealed that the greatest similarity existed between the 2080 mOsm/L OAB model and the acute CYP-induced model. We postulate that the 2080 mOsm/L model of OAB can be established as being a less invasive and more physiological model when compared with the CYP-induced OAB model. Additionally, it may also be a more reliable experimental tool for evaluating novel therapeutics for OAB as compared with CYP-induced models.  相似文献   

4.
The ankyrin-repeat transient receptor potential 1 (TRPA1) has been implicated in pathological conditions of the bladder, but its role in overactive bladder (OAB) following spinal cord injury (SCI) remains unknown. In this study, using a rat SCI model, we assessed the relevance of TRPA1 in OAB induced by SCI. SCI resulted in tissue damage, inflammation, and changes in bladder contractility and in voiding behavior. Moreover, SCI caused upregulation of TRPA1 protein and mRNA levels, in bladder and in dorsal root ganglion (DRG; L6-S1), but not in corresponding segment of spinal cord. Alteration in bladder contractility following SCI was evidenced by enhancement in cinnamaldehyde-, capsaicin-, or carbachol-induced bladder contraction as well as in its spontaneous phasic activity. Of relevance to voiding behavior, SCI induced increase in the number of nonvoiding contractions (NVCs), an important parameter associated with the OAB etiology, besides alterations in other urodynamic parameters. HC-030031 (TRPA1 antagonist) treatment decreased the number and the amplitude of NVCs while the TRPA1 antisense oligodeoxynucleotide (AS-ODN) treatment normalized the spontaneous phasic activity, decreased the cinnamaldehyde-induced bladder contraction and the number of NVCs in SCI rats. In addition, the cinnamaldehyde-induced bladder contraction was reduced by exposure of the bladder preparations to HC-030031. The efficacy of TRPA1 AS-ODN treatment was confirmed by means of the reduction of TRPA1 expression in the DRG, in the corresponding segment of the spinal cord and in the bladder, specifically in detrusor muscle. The present data show that the TRPA1 activation and upregulation seem to exert an important role in OAB following SCI.  相似文献   

5.
We investigated the effect of preconditioning on ischemia-reperfusion injury in the rat bladder. Rat abdominal aorta was clamped with a small clip to induce ischemia-reperfusion injury in the bladder. Twelve-week-old male SD rats were divided into three groups; sham-operated control (Cont), 30 min ischemia-60 min reperfusion (IR) and three times of 5 min ischemia and then 30 min ischemia-60 min reperfusion (PC) groups. The bladder functions were estimated by cystometric and functional studies. Contractile response curves to increasing concentrations of carbachol were constructed in the absence and presence of various concentrations of subtype selective muscarinic antagonists, i.e. atropine (non-selective), pirenzepine (M1 selective), methoctramine (M2 selective), and 4-DAMP (M1/M3 selective). We also measured tissue levels of malonaldehyde (MDA) and examined possible histological changes in these rats' bladders. Preconditioning partially prevented the reduction of bladder dysfunction induced by ischemia-reperfusion. Estimation of the pA2 values for atropine, pirenzepine, methoctramine, and 4-DAMP indicates that the carbachol-induced contractile response in bladder dome is mediated through the M3 receptor subtype in all groups. The MDA concentration in the IR group was significantly larger than that of the control group, and preconditioning significantly reduced MDA production in the bladder. In histological studies, the ischemia-reperfusion with or without preconditioning caused infiltration of leukocytes and rupture of microcirculation in the regions of submucosa and smooth muscle without a corresponding sloughing of mucosal cells. Our data indicate that preconditioning has a beneficial effect on ischemia-reperfusion injury in the rat bladder.  相似文献   

6.

Aims

Bombesin receptors (BB receptors) and bombesin related peptides are expressed in the lower urinary tract of rodents. Here we investigated whether in vivo activation of BB receptors can contract the urinary bladder and facilitate micturition in sham rats and in a diabetic rat model of voiding dysfunction.

Material and methods

In vivo cystometry experiments were performed in adult female Sprague–Dawley rats under urethane anesthesia. Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.) injection. Experiments were performed 9 and 20 weeks post STZ-treatment. Drugs included neuromedin B (NMB; BB1 receptor preferring agonist), and gastrin-releasing peptide (GRP; BB2 receptor preferring agonist).

Key findings

NMB and GRP (0.01–100 μg/kg in sham rats; 0.1–300 μg/kg in STZ-treated rats, i.v.) increased micturition frequency, bladder contraction amplitude and area under the curve dose dependently in both sham and STZ-treated rats. In addition, NMB (3, 10 μg/kg i.v.) triggered voiding in > 80% of STZ-treated rats when the bladder was filled to a sub-threshold voiding volume. NMB and GRP increased mean arterial pressure and heart rate at the highest doses, 100 and 300 μg/kg.

Significance

Activation of bombesin receptors facilitated neurogenic bladder contractions in vivo. Single applications of agonists enhanced or triggered voiding in sham rats as well as in the STZ-treated rat model of diabetic voiding dysfunction. These results suggest that BB receptors may be targeted for drug development for conditions associated with poor detrusor contraction such as an underactive bladder condition.  相似文献   

7.

Purpose

To investigate the relationship between distal symmetric peripheral neuropathy and early stages of autonomic bladder dysfunction in type 2 diabetic women.

Materials and Methods

A total of 137 diabetic women with minimal coexisting confounders of voiding dysfunction followed at a diabetes clinic were subject to the following evaluations: current perception threshold (CPT) tests on myelinated and unmyelinated nerves at the big toe for peroneal nerve and middle finger for median nerve, uroflowmetry, post-void residual urine volume, and overactive bladder (OAB) symptom score questionnaire. Patients presenting with voiding difficulty also underwent urodynamic studies and intravesical CPT tests.

Results

Based on the OAB symptom score and urodynamic studies, 19% of diabetic women had the OAB syndrome while 24.8% had unrecognized urodynamic bladder dysfunction (UBD). The OAB group had a significantly greater mean 5 Hz CPT test value at the big toe by comparison to those without OAB. When compared to diabetic women without UBD, those with UBD showed greater mean 5 Hz CPT test values at the middle finger and big toe. The diabetic women categorized as C-fiber hyposensitivity at the middle finger or big toe by using CPT test also had higher odds ratios of UBD. Among diabetic women with UBD, the 5 Hz CPT test values at the big toe and middle finger were significantly associated with intravesical 5 Hz CPT test values.

Conclusions

Using electrophysiological evidence, our study revealed that hyposensitivity of unmyelinated C fiber afferents at the distal extremities is an indicator of early stages diabetic bladder dysfunction in type 2 diabetic women. The C fiber dysfunction at the distal extremities seems concurrent with vesical C-fiber neuropathy and may be a sentinel for developing early diabetic bladder dysfunction among female patients.  相似文献   

8.
Previous studies have demonstrated that experimental type 1 diabetes induced by streptozotocin causes alterations in the biochemical and functional properties of several receptor systems in the rat bladder. However, the exact mechanism involved in the pathophysiology of voiding dysfunction in type 2 diabetic patients is unknown. Because the GK rat is a widely accepted genetically determined rodent model for human type 2 diabetes, we investigated diabetes-induced changes in the bladder smooth muscle of the GK rats at several time points. Male GK rats and age-matched Wistar rats, as controls, were maintained for 4, 8, 16, and 32 weeks. Contractile responses to KCl, carbachol, ATP, and electrical field stimulation (EFS) were measured by using the isolated muscle bath techniques. Acetylcholine (ACh) release induced by EFS from bladder muscle strips was measured by using high-performance liquid chromatography coupled with a microdialysis procedure. Maximum contractile responses to carbachol and ATP, the release of ACh, and tissue sorbitol levels were similar in bladders from GK and control rats until 8 weeks of age. At 16 weeks of age, however, the contractile responses to carbachol and ATP, and tissue sorbitol levels were increased, and the EFS-induced ACh release was decreased in GK rats compared with controls. Although the maximum contractile responses to EFS were unchanged until 16 weeks of age, they were decreased in 32-week-old GK rats, compared with controls. Our data indicate the presence of age-related alterations in the biochemical and functional properties of the bladder in type 2 diabetic GK rats.  相似文献   

9.
Previous studies have demonstrated that experimental type 1 diabetes induced by streptozotocin causes alterations in the biochemical and functional properties of several receptor systems in the rat bladder. However, the exact mechanism involved in the pathophysiology of voiding dysfunction in type 2 diabetic patients is unknown. Because the GK rat is a widely accepted genetically determined rodent model for human type 2 diabetes, we investigated diabetes-induced changes in the bladder smooth muscle of the GK rats at several time points. Male GK rats and age-matched Wistar rats, as controls, were maintained for 4, 8, 16, and 32 weeks. Contractile responses to KCl, carbachol, ATP, and electrical field stimulation (EFS) were measured by using the isolated muscle bath techniques. Acetylcholine (ACh) release induced by EFS from bladder muscle strips was measured by using high-performance liquid chromatography coupled with a microdialysis procedure. Maximum contractile responses to carbachol and ATP, the release of ACh, and tissue sorbitol levels were similar in bladders from GK and control rats until 8 weeks of age. At 16 weeks of age, however, the contractile responses to carbachol and ATP, and tissue sorbitol levels were increased, and the EFS-induced ACh release was decreased in GK rats compared with controls. Although the maximum contractile responses to EFS were unchanged until 16 weeks of age, they were decreased in 32-week-old GK rats, compared with controls. Our data indicate the presence of age-related alterations in the biochemical and functional properties of the bladder in type 2 diabetic GK rats.  相似文献   

10.

Background

Tamsulosin, an α1-adrenoceptor antagonist, and sildenafil, a phosphodiesterase (PDE) inhibitor, are reported to improve lower urinary tract symptoms including overactive bladder (OAB). This study is aimed at investing the effects of tamsulosin and sildenafil and comparing the degree of the suppressive effects on the afferent pathways of micturition between them using an animal model of OAB, the spontaneously hypertensive rat (SHR).

Results

The cystometric parameters, the basal pressure and duration of bladder contraction, were significantly increased in the SHR group as compared with the Wistar-Kyoto (WKY) group. The intercontraction interval also significantly decreased in the SHR group. In the SHR-Tam 0.01 mg/kg group and the SHR-Sil 1 mg/kg group, however, the basal pressure and duration were significantly reduced and the intercontraction interval was significantly prolonged. Moreover, the degree of the expression of c-Fos and NGF was significantly higher in the SHR group as compared with the WKY group. But it was significantly reduced in the SHR-Tam 0.01 mg/kg group and the SHR-Sil 1 mg/kg group. Furthermore, tamsulosin had a higher degree of effect as compared with sildenafil.

Conclusions

In conclusion, α1-adrenergic receptor antagonists and PDE-5 inhibitors may have an effect in improving the voiding functions through an inhibition of the neuronal activity in the afferent pathways of micturition.  相似文献   

11.
Systemic inflammation is present in obesity and emerging evidence, primarily from studies using male rodents fed high-fat diets, suggests neuroimmune signaling also is involved. We investigated early changes in neuroimmune signaling during the weight gain that follows ovariectomy in rats. Ovariectomized (OVX) rats were given standard rat chow and terminated 5 days (baseline), 4 or 8 weeks after ovariectomy. Levels of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) in plasma and periuterine adipose were not affected by ovariectomy. In contrast, compared to baseline levels, IL-6 expression in the arcuate nucleus (ARC) and dorsal vagal complex (DVC) decreased by 4 weeks after OVX, but was not affected in the paraventricular nucleus (PVN). MCP-1 expression decreased by 4 weeks in the ARC and by 8 weeks in the PVN, but was not affected in the DVC. Increased glial fibrillary acidic protein (GFAP) expression in the PVN indicated astrocyte activation; decreased toll-like receptor 4 (TLR4) expression in the ARC, but not other regions, suggested early effects on innate immune factors. Importantly, in reproductively intact rats, IL-6 and MCP-1 levels in plasma, periuterine adipose, and brain regions were not affected after 8 weeks. Unlike OVX rats, GFAP expression in the DVC of intact rats was decreased at 8 weeks, and TLR4 expression in the ARC was increased at 8 weeks. Taken together, these dynamic and selective changes in neuroimmune factors co-incident with post-ovariectomy weight gain provide insight into the role of neuroimmune signaling in obesity, particularly in females.  相似文献   

12.
The lower urinary tract (LUT) functions as a dynamic reservoir that is able to store urine and to efficiently expel it at a convenient time. While storing urine, however, the bladder is exposed for prolonged periods to waste products. By acting as a tight barrier, the epithelial lining of the LUT, the urothelium, avoids re-absorption of harmful substances. Moreover, noxious chemicals stimulate the bladder''s nociceptive innervation and initiate voiding contractions that expel the bladder''s contents. Interestingly, the bladder''s sensitivity to noxious chemicals has been used successfully in clinical practice, by intravesically infusing the TRPV1 agonist capsaicin to treat neurogenic bladder overactivity1. This underscores the advantage of viewing the bladder as a chemosensory organ and prompts for further clinical research. However, ethical issues severely limit the possibilities to perform, in human subjects, the invasive measurements that are necessary to unravel the molecular bases of LUT clinical pharmacology. A way to overcome this limitation is the use of several animal models2. Here we describe the implementation of cystometry in mice and rats, a technique that allows measuring the intravesical pressure in conditions of controlled bladder perfusion.After laparotomy, a catheter is implanted in the bladder dome and tunneled subcutaneously to the interscapular region. Then the bladder can be filled at a controlled rate, while the urethra is left free for micturition. During the repetitive cycles of filling and voiding, intravesical pressure can be measured via the implanted catheter. As such, the pressure changes can be quantified and analyzed. Moreover, simultaneous measurement of the voided volume allows distinguishing voiding contractions from non-voiding contractions3.Importantly, due to the differences in micturition control between rodents and humans, cystometric measurements in these animals have only limited translational value4. Nevertheless, they are quite instrumental in the study of bladder pathophysiology and pharmacology in experimental pre-clinical settings. Recent research using this technique has revealed the key role of novel molecular players in the mechano- and chemo-sensory properties of the bladder.  相似文献   

13.
Granulocyte-colony stimulating factor (G-CSF) is widely known to have a neuroprotective effect, but its effects on function and morphology in mechanical nerve injury are not well understood. The aim of this study was to confirm the time course of the functional changes and morphological effects of G-CSF in a rat model of nerve crush injury. Twelve-eight rats were divided into three group: sham-operated control group, G-CSF-treated group, and saline treated group. 2 weeks after the nerve crush injury, G-CSF was injected for 5 days. After 4 weeks, functional tests such as motor nerve conduction velocity (MNCV), mechanical and cold allodynia tests, and morphological studies were performed. G-CSF-treated rats had significantly improved nerve function including MNCV and mechanical and cold allodynia. In addition, G-CSF-treated rats had significantly higher the density of myelinated fibers than saline-treated rats. In conclusion, we found that 100 μg/kg administration of G-CSF promoted long-term functional recovery in a rat model of nerve crush injury.  相似文献   

14.
Cystometric studies of bladder function in anesthetized neonatal rats have suggested specific changes in urodynamic parameters that coincide with the development of a mature bladder-to-bladder micturition reflex. Here, we used a conscious cystometry model that avoids the potentially confounding effects of anesthesia to characterize voiding patterns and urodynamic parameters during early postnatal development in healthy rat pups. Cystometry was performed on postnatal day (P)0, 3, 7, 14, and 21 rats with continuous intravesical instillation of NaCl via a bladder catheter. Micturition cycles were analyzed with respect to voiding pattern, nonvoiding contractions, infused volume, and basal, filling, threshold, and micturition pressures. Reproducible micturition patterns were obtained from all age groups. The time from stimulation to contraction was significantly longer (P ≤ 0.001) in ≤1-wk-old rats (~10 s) than that in older rats (~3 s). An interrupted voiding pattern was observed in ≤10-day-old subgroups. Micturition pressure progressively increased with age (from 21.77 ± 1.92 cmH(2)O at P0 to 35.47 ± 1.28 cmH(2)O at P21, P ≤ 0.001), as did bladder capacity. Nonvoiding contractions were prominent in the P3 age group (amplitude: 4.6 ± 1.3 cmH(2)O, frequency: ~4.0 events/100 s). At P7, the pattern of spontaneous contractions became altered, acquiring a volume-related character that persisted in a less prominent manner through P21. Bladder compliance increased with age, i.e., maturation. In conclusion, conscious cystometry in rat pups resulted in reproducible micturition cycles that yielded consistent data. Our results revealed immature voiding and prolonged micturition contractions during the first 10 neonatal days and provide evidence for age-related changes in urodynamic parameters.  相似文献   

15.
Long-term ketamine abuse is known to affect the lower urinary tract and produce symptoms of cystitis. However, the pathophysiology and causative mechanism of the changes in bladder function remain unclear. The present study aimed to investigate the existence of ketamine-induced cystitis in a rat model and characterize the underlining mechanisms. Rats were assigned to blank control, normal saline (NS), low-dose ketamine (LK, 5 mg/kg), and high-dose ketamine (HK, 50 mg/kg) groups. The two experimental groups received ketamine hydrochloride daily for 16 weeks. All rats were housed individually for assessment of urinary frequency and urine volume. Urinary biomarkers were measured at different time points. Rat bladders were excised for histopathology, immunohistochemistry, and western blot analysis. Ketamine-treated rats had increased urinary frequency compared to NS-treated rats at Week 16. Urinary nitric oxide and antiproliferative factor levels were increased in ketamine-treated rats within the first 30 h after administration. After long-term ketamine administration, urinary glycoprotein GP51 and potassium levels were decreased in the HK and LK groups compared to the NS group. Ketamine-treated rats showed thickened bladder epithelial layer, increased expression of inducible nitric oxide synthase and occludin, and decreased expression of zonula occludens-1 in the bladder wall. Ketamine, or its urinary metabolites, disrupted the proliferation of bladder epithelial cells, resulting in defected bladder epithelial barrier. Subsequent leakage of urinary potassium causes a stress response in the bladder and provokes cystitis.  相似文献   

16.
The primary afferent neurotransmitter triggering the spinal micturition reflex after complete spinal cord injury (SCI) in the rat is unknown. Substance P detected immunohistochemically in the sacral parasympathetic nucleus was significantly higher in 12 SCI rats than in 12 spinally intact rats (P = 0.008), suggesting substance P as a plausible candidate for the primary afferent neurotransmitter. The effects of the tachykinin NK1 receptor antagonist L-733060 on the spinal micturition reflex were then determined by performing conscious cystometry in an additional 14 intact rats and 14 SCI rats with L-733060 (0.1-100 microg) administered intrathecally at L6-S1. L-733060 was without effect in intact rats, but blocked the spinal micturition reflex in 10 of 14 SCI rats and increased the intermicturition interval in 2 of 4 others at doses ranging from 10 to 100 microg. Both phasic and nonphasic voiding contractions, differentiated according to the presence of phasic external urethral sphincter (EUS) activity, were present in most SCI rats. Both types of contractions were blocked by high doses of L-733060. Interestingly, there was a relative decline in phasic voiding contractions at high doses as well as a decline in contraction amplitude in nonphasic voiding contractions. In other respects, cystometric variables were largely unaffected in either spinally intact or SCI rats. L-733060 did not affect tonic EUS activity at any dose except when the spinal micturition reflex was blocked and tonic activity was consequently lost. These experiments show that tachykinin action at spinal NK1 receptors plays a major role in the spinal micturition reflex in SCI rats.  相似文献   

17.
A rat model of ovariectomy-induced voiding dysfunction was established and the effects of ovariectomy and subsequent estrogen replacement on the affinity of muscarinic receptors in the rat bladder were determined. Voiding frequency and spatial distribution patterns were documented in sham-operated (control), and ovariectomized (placebo- or estrogen-treated) rats. The ovariectomized rats had a significantly different urinating pattern, i.e. higher voiding frequency and less peripheral voiding than the sham-operated group, suggestive of urge incontinence. Using this model of voiding dysfunction, negative logs of dissociation constants of carbachol of the rat detrusor muscarinic receptors were then determined indirectly using the Furchgott's double-reciprocal method. Receptor affinities were not significantly different in all groups compared to control females. In conclusion, a model of ovariectomy-induced voiding dysfunction in ovariectomized rats was established, where bladder dysfunction occurred with no significant changes in the affinity of muscarinic receptors.  相似文献   

18.
BACKGROUNDDiabetes mellitus (DM) is a serious and growing global health burden. It is estimated that 80% of diabetic patients have micturition problems such as poor emptying, urinary incontinence, urgency, and urgency incontinence. Patients with diabetic bladder dysfunction are often resistant to currently available therapies. It is necessary to develop new and effective treatment methods.AIMTo examine the therapeutic effect of human amniotic fluid stem cells (hAFSCs) therapy on bladder dysfunction in a type 2 diabetic rat model.METHODSSixty female Sprague-Dawley rats were divided into five groups: Group 1, normal-diet control (control); group 2, high-fat diet (HFD); group 3, HFD plus streptozotocin-induced DM (DM); group 4, DM plus insulin treatment (DM + insulin); group 5, DM plus hAFSCs injection via tail vein (DM + hAFSCs). Conscious cystometric studies were done at 4 and 12 wk after insulin or hAFSCs treatment to measure peak voiding pressure, voided volume, intercontraction interval, bladder capacity, and residual volume. Immunoreactivities and/or mRNA expression of muscarinic receptors, nerve growth factor (NGF), and sensory nerve markers in the bladder and insulin, MafA, and pancreatic-duodenal homeobox-1 (PDX-1) in pancreatic beta cells were studied.RESULTSCompared with DM rats, insulin but not hAFSCs treatment could reduce the bladder weight and improve the voided volume, intercontraction interval, bladder capacity, and residual volume (P < 0.05). However, both insulin and hAFSCs treatment could help to regain the blood glucose and bladder functions to the levels near controls (P > 0.05). The immunoreactivities and mRNA expression of M2- and M3-muscarinic receptors (M2 and M3) were increased mainly at 4 wk (P < 0.05), while the number of beta cells in islets and the immunoreactivities and/or mRNA of NGF, calcitonin gene-related peptide (CGRP), substance P, insulin, MafA, and PDX-1 were decreased in DM rats (P < 0.05). However, insulin and hAFSCs treatment could help to regain the expression of M2, M3, NGF, CGRP, substance P, MafA, and PDX-1 to near the levels of controls at 4 and/or 12 wk (P > 0.05).CONCLUSIONInsulin but not hAFSCs therapy can recover the bladder dysfunction caused by DM; however, hAFSCs and insulin therapy can help to regain bladder function to near the levels of control.  相似文献   

19.
目的 通过采用耻骨后膀胱颈和会阴途径球部尿道部分结扎两种方法,建立雄性大鼠膀胱出口部分梗阻(paritial bladder outlet obstraction,pBOO)模型,并对所建模型进行鉴定和比较,为pBOO后膀胱重构(bladder reconstruction)的深入研究提供一种成活率高,复制性和稳定性较好的动物模型.方法 80只健康雄性Wistar大鼠随机分为三组:I组为假手术组(对照组),20只;II组为耻骨后途径膀胱颈部分结扎组,30只;III组为会阴途径球部尿道部分结扎组,30只.依据梗阻时间分别将I组、II组、III组大鼠随机分为2周组和4周组,于术后2周和4周对大鼠行尿动力学检测后,完整切除膀胱测其重量,将精囊腺组织和部分膀胱用4%甲醛固定,HE染色观察组织学变化.结果 II组和III组成活率分别为73.3%和80.0%,二者无统计学意义;I组、II组、III组建模手术时间分别为(9.75±2.29)、(17.33±3.54)、(10.77±2.44)min,II组与I组和III组比较差异均有统计学意义;I组、II组、III组的2周组和4周组逼尿肌漏尿点压(detrusor leak point pressure,DLPP)分别为(26.31±2.32)、(27.34±3.93)、(24.68±2.39)mmHg和(26..42±2.41)、(34.23±3.01)、(32.63±3.20)mmHg,I组与II组和III组的4周组比较差异有统计学意义,II组和III组的2周组和4周组比较差异均有统计学意义.结论 耻骨后途经膀胱颈部分结扎和会阴途径球部尿道部分结扎两种方法都能成功建立雄性大鼠pBOO模型,与耻骨后途径相比,会阴途径成活率高,手术操作时间短,复制性和稳定性好.  相似文献   

20.
Neurogenic detrusor overactivity and the associated loss of bladder control are among the most challenging complications of spinal cord injury (SCI). Anticholinergic agents are the mainstay for medical treatment of detrusor overactivity. However, their use is limited by significant side effects such that a search for new treatments is warranted. Inosine is a naturally occurring purine nucleoside with neuroprotective, neurotrophic and antioxidant effects that is known to improve motor function in preclinical models of SCI. However, its effect on lower urinary tract function has not been determined. The objectives of this study were to determine the effect of systemic administration of inosine on voiding function following SCI and to delineate potential mechanisms of action. Sprague−Dawley rats underwent complete spinal cord transection, or cord compression by application of an aneurysm clip at T8 for 30 sec. Inosine (225 mg/kg) or vehicle was administered daily via intraperitoneal injection either immediately after injury or after a delay of 8 wk. At the end of treatment, voiding behavior was assessed by cystometry. Levels of synaptophysin (SYP), neurofilament 200 (NF200) and TRPV1 in bladder tissues were measured by immunofluorescence imaging. Inosine administration decreased overactivity in both SCI models, with a significant decrease in the frequency of spontaneous non−voiding contractions during filling, compared to vehicle−treated SCI rats (p<0.05), including under conditions of delayed treatment. Immunofluorescence staining demonstrated increased levels of the pan-neuronal marker SYP and the Adelta fiber marker NF200, but decreased staining for the C-fiber marker, TRPV1 in bladder tissues from inosine-treated rats compared to those from vehicle-treated animals, including after delayed treatment. These findings demonstrate that inosine prevents the development of detrusor overactivity and attenuates existing overactivity following SCI, and may achieve its effects through modulation of sensory neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号