首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of intracerebroventricular administrations of three natural angiotensins, angiotensin I (ANG I 3.8 X 10-11-9.4 X10-10 mol/kg body weight), II (9.6 X 10-12-2.4 X 10-10 mol/kg body weight) and III (2.7 X 10-10 2.5 X 10-9 mol/kg body weight) on systemic blood pressure were investigated in conscious rats. Angiotensin II (ANG II), ANG I and angiotensin III (ANG III), increased blood pressure in a dose-related manner. The order of potency of angiotensins was ANG II greater than ANG I greater than ANG III. The intraventricular administration of a converting enzyme inhibitor (SQ 14225, 6.9 X10-8 mol/kg) abolished the central effect of ANG I, while an angiotensin II analogue ([Sar1-Ala8]ANG II, 1.1 X 10-8 mol/kg) administered intraventricularly inhibited the central pressor effects of these three angiotensins. These results suggest that ANG II is a main mediator of the renin-angiotensin system in the central nervous system.  相似文献   

2.
In the brains of teleosts, angiotensin II (ANG II), one of the main effector peptides of the renin-angiotensin system, is implicated in various physiological functions notably body fluid and electrolyte homeostasis and cardiovascular regulation, but nothing is known regarding the potential action of ANG II and other angiotensin derivatives on ventilation. Consequently, the goal of the present study was to determine possible ventilatory and cardiovascular effects of intracerebroventricular injection of picomole doses (5-100 pmol) of trout [Asn(1)]-ANG II, [Asp(1)]-ANG II, ANG III, ANG IV, and ANG 1-7 into the third ventricle of unanesthetized trout. The central actions of these peptides were also compared with their ventilatory and cardiovascular actions when injected peripherally. Finally, we examined the presence of [Asn(1)]-ANG II, [Asp(1)]-ANG II, ANG III, and ANG IV in the brain and plasma using radioimmunoassay coupled with high-performance liquid chromatography. After intracerebroventricular injection, [Asn(1)]-ANG II and [Asp(1)]-ANG II two ANG IIs, elevated the total ventilation through a selective stimulatory action on the ventilation amplitude. However, the hyperventilatory effect of [Asn(1)]-ANG II was threefold higher than the effect of [Asp(1)]-ANG II at the 50-pmol dose. ANG III, ANG IV, and ANG 1-7 were without effect. In addition, ANG IIs and ANG III increased dorsal aortic blood pressure (P(DA)) and heart rate (HR). After intra-arterial injections, none of the ANG II peptides affected the ventilation but [Asn(1)]-ANG II, [Asp(1)]-ANG II, and ANG III elevated P(DA) (50 pmol: +80%, +58% and +48%, respectively) without significant decrease in HR. In brain tissue, comparable amounts of [Asn(1)]-ANG II and [Asp(1)]-ANG II were detected (ca. 40 fmol/mg brain tissue), but ANG III was not detected, and the amount of ANG IV was about eightfold lower than the content of the ANG IIs. In plasma, ANG IIs were also the major angiotensins (ca. 110 fmol/ml plasma), while significant but lower amounts of ANG III and ANG IV were present in plasma. In conclusion, our study suggests that the two ANG II isoforms produced within the brain may act as a neurotransmitter and/or neuromodulator to regulate the cardioventilatory functions in trout. In the periphery, two ANG IIs and their COOH-terminal peptides may act as a circulating hormone preferentially involved in cardiovascular regulations.  相似文献   

3.
Studies were designed to examine the hypothesis that the renal medulla of Dahl salt-sensitive (Dahl S) rats has a reduced capacity to generate nitric oxide (NO), which diminishes the ability to buffer against the chronic hypertensive effects of small elevations of circulating ANG II. NO synthase (NOS) activity in the outer medulla of Dahl S rats (arginine-citrulline conversion assay) was significantly reduced. This decrease in NOS activity was associated with the downregulation of protein expression of NOS I, NOS II, and NOS III isoforms in this region as determined by Western blot analysis. In anesthetized Dahl S rats, we observed that a low subpressor intravenous infusion of ANG II (5 ng. kg(-1). min(-1)) did not increase the concentration of NO in the renal medulla as measured by a microdialysis with oxyhemoglobin trapping technique. In contrast, ANG II produced a 38% increase in the concentration of NO (87 +/- 8 to 117 +/- 8 nmol/l) in the outer medulla of Brown-Norway (BN) rats. The same intravenous dose of ANG II reduced renal medullary blood flow as determined by laser-Doppler flowmetry in Dahl S, but not in BN rats. A 7-day intravenous ANG II infusion at a dose of 3 ng. kg(-1). min(-1) did not change mean arterial pressure (MAP) in the BN rats but increased MAP in Dahl S rats from 120 +/- 2 to 138 +/- 2 mmHg (P < 0.05). ANG II failed to increase MAP after NO substrate was provided by infusion of L-arginine (300 microg. kg(-1). min(-1)) into the renal medulla of Dahl S rats. Intravenous infusion of L-arginine at the same dose had no effect on the ANG II-induced hypertension. These results indicate that an impaired NO counterregulatory system in the outer medulla of Dahl S rats makes them more susceptible to the hypertensive actions of small elevations of ANG II.  相似文献   

4.
Angiotensin II (ANG II) acts peripherally as a hormone, with actions on the vasculature, adrenals, and kidney. In addition, certain actions of ANG II in the central nervous system are directed toward cardiovascular control and fluid volume homeostasis. Dense binding sites for ANG II are found at circumventricular organs, which apparently have the ability to relay information to cardiovascular centers via neural circuitry. Microinjection of ANG II into the subfornical organ (SFO) or area postrema (AP) produces site-specific increases in blood pressure. In addition, electrophysiological studies demonstrate profound effects of ANG II, acting at the SFO, on activity of neurohypophysial neurons and release of oxytocin and vasopressin, which can be antagonized by ANG II blockers or attenuated by SFO lesions. Evidence from microinjection, electrophysiological, and lesion studies indicate a complex interaction between central sites involved in mechanisms of cardiovascular control: the SFO, AP, organum vasculosum of the lamina terminalis, and paraventricular and supraoptic nuclei of the hypothalamus. Not only is ANG II a humoral messenger in this central scenario, but evidence suggests it acts as a neurotransmitter or neuroendocrine substance within specific CNS pathways, suggesting multiple roles for this peptide in central cardiovascular control.  相似文献   

5.
The goal of the present study was to investigate the central action of native angiotensin II (ANG II) on the spontaneous baroreflex sensitivity (BRS) in unanesthetized trout. The animals were equipped with two subcutaneous electrocardiographic (ECG) electrodes, a dorsal aorta catheter and an intracerebroventricular (ICV) cannula which was inserted within the third ventricle of the brain. The ECG and the systolic blood pressure (SBP) signals were recorded during a pre-injection period of 5 min and during five post-injection periods of 5 min. All injections were made at the fifth minute of the test. The time-series were processed with a sequence technique in order to detect the sequences of three or more consecutive increases in the SBP pulse, or three or more decreases in the SBP pulse correlated respectively with one delay beat increase of the RR interval of the ECG signal or shortening of this interval. The slope of the average regression line between the SBP and the RR intervals for each type of sequence was taken as a measure of the spontaneous BRS. Compared with pre-injection values, the ICV injection of vehicle (0.5 microl) had no effect on heart rate (HR), SBP, the total number of positive or negative sequences or on the spontaneous BRS during the post-injection periods. By contrast, ANG II at doses of 5 and 50 pmol increased HR but only 50 pmol ANG II elevated SBP. For all doses, ANG II depressed the spontaneous BRS, but the peptide had no effect upon the number of each baroreflex sequences. Intra-arterial injections of atropine dramatically reduced the number of positive and negative baroreflex sequences and decreased the sensitivity of the few remaining sequences, suggesting that the autonomic control of the cardiac BRS was solely due to vagal parasympathetic control. In atropinized trout the ICV injection of 5 pmol ANG II had no effect upon HR, SBP and the baroreflex parameters. This study determines for the first time the spontaneous BRS in a non-mammalian species and demonstrates an inhibitory action of ICV injection of ANG II upon this variable through a probable control of the vagal parasympathetic activity.  相似文献   

6.
In renal artery stenosis severe enough to cause hypertension, angiotensin II maintains glomerular filtration rate (GFR) both in the initial high renin phase of hypertension and later when plasma levels are normal. Angiotensin II also maintains GFR in less severe stenosis, which does not cause hypertension. This homeostatic action of angiotensin II to maintain GFr has minimal effects on blood flow. In renal-wrap hypertension, plasma renin levels are elevated for longer than after renal artery stenosis, but in other respects this initial phase of the hypertension is similar to that after renal artery stenosis. GFR is reduced, the rate of development of hypertension is accelerated by angiotensin II, and angiotensin II maintains the glomerular filtration fraction. Renal resistance is markedly increased owing to both compression of the kidney by the hypertrophying renal capsule and to angiotensin II. Thus angiotensin II apparently plays a primarily homeostatic role in renovascular hypertension to maintain glomerular ultrafiltration. It is suggested that the angiotensin II may be formed intrarenally and may act on sites other than resistance blood vessels.  相似文献   

7.
The multiple actions of angiotensin II in atherosclerosis   总被引:3,自引:0,他引:3  
Angiotensin II (Ang II), the effector peptide of the renin-angiotensin system, has been implied in the pathogenesis of atherosclerosis on various levels. There is abundant experimental evidence that pharmacological antagonism of Ang II formation by angiotensin converting enzyme inhibition or blockade of the cellular effects of Ang II by angiotensin type 1 receptor blockade inhibits formation and progression of atherosclerotic lesions. Angiotensin promotes generation of oxidative stress in the vasculature, which appears to be a key mediator of Ang II-induced endothelial dysfunction, endothelial cell apoptosis, and lipoprotein peroxidation. Ang II also induces cellular adhesion molecules, chemotactic and proinflammatory cytokines, all of which participate in the induction of an inflammatory response in the vessel wall. In addition, Ang II triggers responses in vascular smooth muscle cells that lead to proliferation, migration, and a phenotypic modulation resulting in production of growth factors and extracellular matrix. While all of these effects contribute to neointima formation and development of atherosclerotic lesions, Ang II may also be involved in acute complications of atherosclerosis by promoting plaque rupture and a hyperthrombotic state. Accordingly, Ang II appears to have a central role in the pathophysiology of atherosclerosis.  相似文献   

8.
There has been increasing interest in the variety of effects induced by angiotensin and renin mediated via the central nervous system. This review is restricted to the effects of the renin-angiotensin system on central nervous system sites influencing cardiovascular activity. The first reports suggesting that angiotensin II influenced central cardiovascular control appeared in 1961 (1). These initial studies utilized the dog cross-circulation preparation in which the recipient's head was neurally intact, but vascularly isolated from the trunk. The data suggested that angiotensin II, in sufficient dosage (greater than 0.2 μg/kg) administered via the carotid inflow to the recipient's head was capable of stimulating structures within the central nervous system resulting in an increase in peripheral blood pressure.  相似文献   

9.
An earlier study showed that des-aspartate-angiotensin I (DAA-I) attenuated the pressor action of angiotensin III in aortic rings of the spontaneously hypertensive rat (SHR) but not the normotensive Wistar Kyoto (WKY) rat. The present study investigated similar properties of DAA-I in isolated perfused kidneys and mesenteric beds of WKY and SHR. In the renal vasculature, angiotensin III induced a dose-dependent pressor response, which was more marked in the SHR than WKY in terms of significant greater magnitude of response and lower threshold. DAA-I attenuated the pressor action of angiotensin III in both the WKY and SHR. The attenuation in SHR was much more marked, occurring at doses as low as 10−15 M DAA-I, while effective attenuation was only seen with 10−9 M in WKY. The effects of DAA-I was not inhibited by PD123319 and indomethacin, indicating that its action was not mediated by angiotensin AT2 receptors and prostaglandins. However, the direct pressor action of angiotensin III in the SHR but not the WKY was attenuated by indomethacin suggesting that this notable difference could be due to known decreased response of renal vasculature to vasodilator prostaglandins in the SHR. Pressor responses to angiotensin III in the mesenteric vascular bed was also dose dependent, but smaller in magnitude compared to the renal response. The responses in the SHR, though generally smaller, were not significantly different from those of the WKY. This trend is in line with the similar observations with angiotensin III and II by other investigators. In terms of the effect of DAA-I, indomethacin and PD123319 on angiotensin III action, similar patterns to those of the renal vasculature were observed. This reaffirms that in the perfused kidney and mesenteric bed, where the majority of the vessels are contractile, femtomolar concentrations of DAA-I attenuates the pressor action of angiotensin III. The attenuation is not indomethacin sensitive and does not involve the angiotensin AT2 receptor. The findings suggest that DAA-I possesses protective vascular actions and is involved in the pathophysiology of hypertension.  相似文献   

10.
Interaction between the actions of taurine and angiotensin II   总被引:1,自引:0,他引:1  
Summary. The amino acid, taurine, is an important nutrient found in very high concentration in excitable tissue. Cellular depletion of taurine has been linked to developmental defects, retinal damage, immundeficiency, impaired cellular growth and the development of a cardiomyopathy. These findings have encouraged the use of taurine in infant formula, nutritional supplements and energy promoting drinks. Nonetheless, the use of taurine as a drug to treat specific diseases has been limited. One disease that responds favorably to taurine therapy is congestive heart failure. In this review, we discuss three mechanisms that might underlie the beneficial effect of taurine in heart failure. First, taurine promotes natriuresis and diuresis, presumably through its osmoregulatory activity in the kidney, its modulation of atrial natriuretic factor secretion and its putative regulation of vasopressin release. However, it remains to be determined whether taurine treatment promotes salt and water excretion in humans with heart failure. Second, taurine mediates a modest positive inotropic effect by regulating [Na+]i and Na+/Ca2+ exchanger flux. Although this effect of taurine has not been examined in human tissue, it is significant that it bypasses the major calcium transport defects found in the failing human heart. Third, taurine attenuates the actions of angiotensin II on Ca2+ transport, protein synthesis and angiotensin II signaling. Through this mechanism taurine would be expected to minimize many of the adverse actions of angiotensin II, including the induction of cardiac hypertrophy, volume overload and myocardial remodeling. Since the ACE inhibitors are the mainstay in the treatment of congestive heart failure, this action of taurine is probably very important. Received November 10, 1998, Accepted May 19, 1999  相似文献   

11.
The importance of angiotensin as a modulator of renal function is well documented. Several lines of evidence suggest strongly that angiotensin plays an important role in the maintenance of renal vascular resistance and arterial pressure in several physiological and pathophysiological states with increased activity of the renin-angiotensin system. Angiotensin also acts as a physiological "brake" on excessive release of renin from juxtaglomerular cells. Angiotensin influences renal sodium excretion via its renal vascular actions to change the glomerular filtration rate and, thus, the filtered load of sodium; in addition, angiotensin influences tubular reabsorption of sodium by altering the filtration fraction and the balance of Starling forces in the peritubular capillaries.  相似文献   

12.
In vivo actions of angiotensin II on glomerular function   总被引:2,自引:0,他引:2  
Investigations in which a variety of experimental approaches were used, i.e., micropuncture techniques, analysis of intrarenal hormonal receptor, and electron microscopic analysis of renal morphology, have substantiated a major role for angiotensin II (AII) within the kidney in the regulation of vascular resistances, glomerular function, and even tubular reabsorption. It is also clear that AII exerts a significant influence on glomerular hemodynamics in a variety of altered physiological and pathophysiological states. Recent studies suggest a rather complex interaction between AII and hormonal and adrenergic effects at the glomerular level. AII may also play an important functional role in the pathogenesis of certain forms of acute renal failure. The specific mechanism whereby AII decreases the glomerular ultrafiltration coefficient, however, remains to be fully elucidated. Although in vitro and in vivo studies have suggested that the glomerular effects of AII may be associated with contraction of glomerular mesangial cells, recent in vivo quantitative evaluation has suggested that a uniform vasoconstriction of glomerular capillaries with proportional reductions in glomerular surface area is probably not the sole mechanism for the AII-induced reductions in glomerular ultrafiltration coefficient.  相似文献   

13.
14.
The present study investigated the action of des-aspartate-angiotensin I (DAA-I) on the pressor action of angiotensin II in the renal and mesenteric vasculature of WKY, SHR and streptozotocin (STZ)-induced diabetic rats. Angiotensin II-induced a dose-dependent pressor response in the renal vasculature. Compared to the WKY, the pressor response was enhanced in the SHR and reduced in the STZ-induced diabetic rat. DAA-I attenuated the angiotensin II pressor action in renal vasculature of WKY and SHR. The attenuation was observed for DAA-I concentration as low as 10(-18) M and was more prominent in SHR. However, the ability of DAA-I to reduce angiotensin II response was lost in the STZ-induced diabetic kidney. Instead, enhancement of angiotensin II pressor response was seen at the lower doses of the octapeptide. The effect of DAA-I was not inhibited by PD123319, an AT2 receptor antagonist, and indomethacin, a cyclo-oxygenase inhibitor in both WKY and SHR, indicating that its action was not mediated by angiotensin AT2 receptor and prostaglandins. The pressor responses to angiotensin II in mesenteric vascular bed were also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses were significantly smaller in SHR but no significant difference was observed between STZ-induced diabetic and WKY rat. Similarly, PD123319 and indomethacin had no effect on the action of DAA-I. The findings reiterate a regulatory role for DAA-I in vascular bed of the kidney and mesentery. By being active at circulating level, DAA-I subserves a physiological role. This function appears to be present in animals with diseased state of hypertension and diabetes. It is likely that DAA-I functions are modified to accommodate the ongoing vascular remodeling.  相似文献   

15.
Experiments were performed to determine if glucocorticoids potentiate central hypertensive actions of ANG II. Male Sprague-Dawley rats were treated for 3 days to 3 wk with corticosterone (Cort). Experiments were performed in conscious rats that had previously been instrumented with arterial and venous catheters and an intracerebroventricular guide cannula in a lateral ventricle. Baseline arterial pressure (AP) was greater in Cort-treated rats than in control rats (119 +/- 2 vs. 107 +/- 1 mmHg, P < 0.01). Microinjection of ANG II intracerebroventricularly produced a significantly larger increase in AP in Cort-treated rats than in control rats. For example, at 30 ng ANG II, AP increased by 23 +/- 1 and 16 +/- 2 mmHg in Cort-treated and control rats, respectively (P < 0.01). Microinjection of an angiotensin type 1 receptor antagonist significantly decreased AP (-6 +/- 2 mmHg) and heart rate (-26 +/- 7 beats/min) in Cort-treated but not control rats. Increases in AP produced by intravenous administration of ANG II were not different between control and Cort-treated rats. Intravenous injections of ANG II antagonist had no significant effects on mean AP or heart rate in control or Cort-treated rats. Therefore, a sustained increase in plasma Cort augments the central pressor effects of ANG II without altering the pressor response to peripheral administration of the hormone.  相似文献   

16.
17.
It is well known that the GABAergic and noradrenergic systems play an important role in blood pressure and heart rate regulation. Benzodiazepines and beta-carbolines, respectively, increase or decrease the probability of chloride-channel opening induced by GABA. The aim of this study was to determine, in conscious rats, the interaction existing between the central alpha2-adrenoceptor stimulation induced by clonidine and the facilitation or impairment of benzodiazepine receptor activity through the administration of either diazepam, a benzodiazepine receptor agonist, or methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), an inverse benzodiazepine agonist. Clonidine (5-10 microg, intracerebroventricularly) reduced heart rate and increased mean blood pressure by activation of central alpha2-adrenoceptors. Diazepam (2 mg/kg, intravenously (i.v.)) induced an increase in heart rate, while DMCM (0.3 mg/kg, i.v.) elicited a bradycardic effect. The bradycardic effects induced by both clonidine and DMCM were antagonized by the prior administration of methylatropine (1.5 mg/kg, i.v.). DMCM (0.3 mg/kg, i.v.) prevented the clonidine effects on heart rate and mean blood pressure, while diazepam (2 mg/kg, i.v.) failed to modify these effects. Our results suggest that the bradycardic effects of clonidine are mediated by a vagal stimulation and are related to the activation of a GABAergic pathway.  相似文献   

18.
Central neurotransmitter receptors in hypertensive rats   总被引:1,自引:0,他引:1  
Muscarinic cholinergic ([3H]QNB), α1 ? ([3H]WB-4101), and α2 ? ([3H]clonidine) adrenergic ligand binding was measured in various regions of the brains of adult normotensive, spontaneously hypertensive, and DOCA-salt hypertensive rats. There was a 66% increase in the number of α1-adrenergic receptors in hypothalamus of the spontaneously hypertensive rats as compared to normotensive controls, with no change in the Kd value. There were no other differences in the spontaneously hypertensive rats and none in the DOCA-salt model. α1-Adrenergic binding was elevated in hypothalamus of spontaneously hypertensive rats 4–20 weeks of age even though blood pressure in the 4-week old animals was not at hypertensive levels (i.e., <150 mmHg). Treatment of adult spontaneously hypertensive rats with clonidine HCl significantly reduced blood pressure but failed to alter the binding of [3H]WB-4101 in hypothalamus. Thus, it appears that the enhanced number of α1-adrenergic receptors in hypothalamus of spontaneously hypertensive rats is neither a consequence of the increased blood pressure, nor a phenomenon common to all models of hypertension.  相似文献   

19.
Arginine vasopressin (AVP) containing neurones and pathways have been localized in various cardiovascular control centers of the central nervous system in rats. AVP influences cardiovascular regulation when injected into various areas of the central nervous system. The blood pressure increases in response to central AVP injections were shown to be initiated by stimulation of central V1-AVP receptors and mediated by stimulation of sympathetic outflow to the periphery. On the other hand, AVP has also been shown to attenuate the pressor responses to electrical stimulation of the mesencephalic reticular formation when injected into the brain ventricular system. In addition, AVP can participate in cardiovascular regulation by modulating baroreceptor reflex sensitivity. We have shown that in rats peripheral (hormonal) AVP can sensitize the heart rate component of the baroreceptor reflex by acting on V2-AVP receptors accessible from the blood, while at the same time central (neuronal) AVP can attenuate the baroreceptor reflex through brain V1-AVP receptors that cannot be reached from the blood. Binding and functional studies favour the existence of V1-AVP receptors in the central nervous system, whereas evidence for central V2-AVP receptors is still scarce. The role of AVP in hypertension remains controversial, but recent evidence suggests that a discordance between the various central and peripheral cardiovascular actions of AVP, rather than its hormonal vasopressor effects, may contribute to the pathogenesis of hypertension.  相似文献   

20.
Studies were performed in 12 conscious sheep of both sexes to determine if a brain dopaminergic pathway is involved in modulating the central actions of angiotensin II (Ang II) in regulating body temperature and plasma renin activity (PRA). Previous data showed that intracerebroventricular (ICV) infusion of Ang II significantly decreased PRA and body temperature. In contrast, converting enzyme inhibitor SQ 20881 (SQ) or dopamine (DA) significantly increased PRA and body temperature of sheep. In the present study, ICV infusion of the DA antagonist metoclopramide (MCP) (20 micrograms/min) significantly decreased PRA to 68 +/- 5% of the basal level. When sheep were pretreated with ICV MCP (20 micrograms/min) for 2 hr and then infused ICV with MCP (20 micrograms/min) plus DA (20 micrograms/min), Ang II (25 ng/min), or SQ (1 microgram/min), the PRA and temperature responses to DA, Ang II, or SQ were all abolished or attenuated significantly. The converse did not hold. Sheep pretreated with SQ (1 microgram/min) still showed a significant increase in body temperature (0.43 +/- 0.05 degree C) when infused with DA (20 micrograms/min). These results support the hypothesis that a central DA pathway is involved in the modulation of the actions of centrally administered Ang II on temperature and PRA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号