首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Objective: Sympathetic nervous system abnormality in humans is still a matter of debate. The present study was designed to examine diet‐induced autonomic nervous system activity and metabolic change in obese and non‐obese young women. Research Methods and Procedures: Sixteen age‐ and height‐matched obese and non‐obese young women participated in this study. Sympathovagal activities were assessed by means of our newly developed spectral analysis procedure of heart‐rate variability during the resting condition and after mixed‐food ingestion (480 kcal). Energy expenditure was also measured under these two conditions. Results: There was no significant difference in any of the parameters of the heart‐rate variability between the obese group and control group during the resting condition. In the control group, both absolute values (221.5 ± 54.5 vs. 363.8 ± 43.7 ms2, p < 0.05) and relative values (0.23 ± 0.03 to 0.36 ± 0.02, p < 0.05) of a very‐low‐frequency component and global sympathetic nervous system index (1.46 ± 0.19 vs. 3.26 ± 0.61, p < 0.05) were significantly increased after mixed‐food ingestion compared with the values obtained after resting condition. However, no such sympathetic response was found in the obese group. Energy expenditure increased in the two groups after the meal, but the magnitude of the increase above the preprandial resting condition was significantly greater in the control group than in the obese group (11.2 ± 2.3 vs. 6.7 ± 0.8%, p < 0.05). Discussion: Our data suggest that despite identical sympathovagal activities at the resting condition, obese young women may possess a reduced sympathetic response to physiological perturbation such as mixed food intake, which might be related to lowered capacity of thermogenesis and the state of obesity.  相似文献   

2.
Objective: To investigate possible differences, between generally and abdominally obese men, in activity and regulation of the hypothalamic‐pituitary‐adrenal (HPA) axis and the sympathetic nervous system. Research Methods and Procedures: Fifty non‐diabetic, middle‐aged men were selected to obtain two groups with similar body mass index (BMI) but different waist/hip circumference ratio (WHR). Measurements were performed of the activity of the HPA axis and the sympathetic nervous system, as well as metabolic and endocrine variables. Results: Men with a high WHR, in comparisons with men with a low WHR, had higher insulin, glucose, and triglyceride values in the basal state and higher glucose and insulin after an oral glucose tolerance test. Men with high WHR had elevated diurnal adrenocorticotropic hormone (ACTH) values but similar cortisol values, except lower cortisol values in the morning. Diurnal growth hormone concentrations showed reduced peak size. Stimulation of the HPA axis with corticotropin‐releasing hormone (CRH) and laboratory stress showed no difference in ACTH values between groups, but cortisol values were lower in men with high WHR. In comparison with men with a low WHR, men with a high WHR had elevated pulse pressure and heart rate in the basal state and after challenges by CRH and laboratory stress. They also had increased urinary excretion of catecholamine metabolites. Discussion: These results suggest a mild dysregulation of the HPA axis, occurring with elevated WHR independent of the BMI. The results also indicate a central activation of the sympathetic nervous system, such as in the early phases of hypertension, correlating with insulin resistance.  相似文献   

3.
外周神经损伤可引起对神经系统的一种适应不良反应,其产生神经病理性痛的主要特点为痛觉增敏和异常疼痛。目前文献报道多种机制涉及此反应,包括离子通道改变引起的异常放电、突触易化、多种轴突水平抑制作用缺失导致的中枢敏化、神经元细胞的凋亡以及异常的突触连接等结构的改变,另外神经损伤引起的神经免疫之间的相互作用在神经病理性痛的持续性发展中发挥着不可替代的作用。了解外周神经损伤引起的神经病理性的发病机制将对我们寻找治疗靶点和治疗策略提供坚实的理论基础。  相似文献   

4.
Objective: The autonomic nervous system (ANS) plays an important role in regulating energy expenditure and body fat content; however, the extent to which the ANS contributes to pediatric obesity remains inconclusive. The aim of this study was to evaluate whether sympathetic and/or the parasympathetic nerve activities were altered in an obese pediatric population. We further examined a physiological association between the duration of obesity and the sympatho‐vagal activities to scrutinize the nature of ANS alteration as a possible etiologic factor of childhood obesity. Research Methods and Procedures: Forty‐two obese and 42 non‐obese healthy sedentary school children were carefully selected from 1080 participants initially recruited to this study. The two groups were matched in age, gender, and height. The clinical records of physical characteristics and development of the obese children were retrospectively reviewed to investigate the onset and progression of obesity. The ANS activities were assessed during a resting condition by means of heart rate variability power spectral analysis, which enables us to identify separate frequency components, i.e., total power (TP), low‐frequency (LF) power, and high‐frequency (HF) power. The spectral powers were then logarithmically transformed for statistical testing. Results: The obese children demonstrated a significantly lower TP (6.77 ± 0.12 vs. 7.11 ± 0.04 ln ms2, p < 0.05), LF power (6.16 ± 0.12 vs. 6.42 ± 0.05 ln ms2, p < 0.05), and HF power (5.84 ± 0.15 vs. 6.34 ± 0.07 ln ms2, p < 0.01) compared with the non‐obese children. A partial correlation analysis revealed that the LF and HF powers among 42 obese children were negatively associated with the duration of obesity independent of age (LF: partial r = ?0.55, p < 0.001; HF: partial r = ?0.40, p < 0.01). The obese children were further subdivided into two groups based on the length of their obesity. All three spectral powers were significantly reduced in the obese group with obesity of >3 years (n = 18) compared to the group with obesity of <3 years. Discussion: Our data indicate that obese children possess reduced sympathetic as well as parasympathetic nerve activities. Such autonomic depression, which is associated with the duration of obesity, could be a physiological factor promoting the state and development of obesity. These findings further imply that preventing and treating obesity beginning in the childhood years could be an urgent and crucial pediatric public health issue.  相似文献   

5.
Toll样受体(Toll-like receptors,TLR)是先天性免疫反应识别病原体的一个重要分子,在免疫系统中发挥关键作用.其家族各种成员的主要功能是识别入侵病原体表面的各种不同分子模式,随后启动免疫反应,达到保护机体作用.在大脑中,小胶质细胞可以作为抗原提呈细胞,参与脑内免疫反应,也可以通过分泌各种促炎症因子启动或促进免疫反应,而TLR家族在中枢神经免疫系统的作用仍存在争议,它既可以通过促进神经免疫反应枢纽因子的表达来增强免疫,也可因免疫过度而损伤神经细胞.总之,Toll信号通路对中枢神经系统疾病有一定的调控作用.  相似文献   

6.
ARONNE, LOUIS J, RONALD MACKINTOSH, MICHAEL ROSENBAUM, RUDOLPH L LEIBEL, JULES HIRSCH. Cardiac autonomic nervous system activity in obese and never-obese young men. Autonomic nervous system (ANS) activity in age-matched, weight-stable, free-living, ad libitumfed, obese (OB) and never-obese (NO) young men (body mass index means [SD], 38.5 [3.9] and 22.0 [1.7], respectively) was evaluated by sequential blockade of cardiac autonomic innervation with weight-adjusted doses of parasympathetic (atropine) and sympathetic (esmolol) blockers so as to produce maximal effects on heart rate. Change in heart period (interbeat interval) from baseline, induced by atropine, defined parasympathetic control (PC), and the subsequent change, after esmolol administration, defined sympathetic control (SC). The heart period, after PC and SC blockade, defined intrinsic heart period (I). In the OB group, baseline heart period and PC were lower, and SC and I were higher, than in the NO group. The results in the OB, relative to the NO subjects, are similar to those reported in a previous study of NO subjects who had undergone a 10% weight gain by overfeeding. These findings suggest that the ANS of individuals with obesity is chronically altered in a way that would tend to oppose their excessive adiposity, and that these autonomic changes are more likely to be responses to other forces that induce obesity, rather than being primary agents in the production of the disease.  相似文献   

7.
SNITKER, SØREN, RICHARD E PRATLEY, MARGERY NICOLSON, P ANTONIO TATARANNI, ERIC RAVUSSIN, Relationship between muscle sympathetic nerve activity and plasma leptin concentration. In humans, basal muscle sympathetic nerve activity (MSNA), a direct measure of sympathetic nervous outflow, is correlated with percentage of body fat. The underlying physiological mechanism is unknown. On the basis of the observation that leptin increases sympathetic nervous outflow in the oblob mouse, we hypothesized that leptin, a hormone secreted by the adipose tissue, may act as a peripheral signal to increase sympathetic nervous outflow from the central nervous system. We therefore tested whether basal MSNA is correlated with plasma leptin concentration. Fasting plasma samples and recordings of basal MSNA in the peroneal nerve were obtained from 37 healthy, nondiabetic men (35 whites and 2 Mexican-Americans; 29 ± 7 years, 86 ± 14 kg, 24 ± 10% body fat; mean ± SD) who were fed a weight-maintenance diet on a metabolic ward. As expected, plasma leptin concentration (geometric mean, 6.4 ng/mL; 95% confidence interval, 4.6 ng/mL to 9.0 ng/mL) correlated with % body fat (r=0.93, p<0.001). Basal MSNA was 31.6 ± 10.0 bursts/min and correlated with % body fat (r=0.53, p<0.001) and with plasma leptin concentration (r=0.44, p<0.01). In conclusion, the results demonstrate a correlation between MSNA and plasma leptin concentration of a magnitude similar to that between MSNA and % body fat. Leptin may therefore be the peripheral signal explaining the correlation between MSNA and % body fat. A full understanding of the relationship between leptin and the activity of the sympathetic nervous system requires further studies, including the administration of leptin in humans.  相似文献   

8.
Caspase与神经系统疾病   总被引:4,自引:0,他引:4  
近年来,细胞凋亡发生机制的研究已取得众多进展。研究表明,许多神经系统疾病与caspase家族有着密切联系。现将细胞凋亡的最新研究结果及其与神经系统疾病的关系,尤其是caspase家族在神经系统疾病中的主导地位作简单综述,希望由此了解神经元细胞凋亡的内在机制并达到治疗目的。  相似文献   

9.
Objective: Epidemiological studies suggest that high birth weight might be associated with an increased risk of obesity later in life. Programming of metabolic, endocrine, and/or autonomic pathways during intrauterine development has been proposed to explain this association. Research Methods and Procedures: To determine the relationship between birth weight and body composition and energy metabolism later in life, we measured fat mass and fat‐free mass (hydrodensitometry or double‐energy X‐ray absorptiometry), 24‐hour energy expenditure, sleeping metabolic rate, and 24‐hour respiratory quotient (respiratory chamber) in 272 adult nondiabetic Pima Indians (161 males/111 females, age 25 ± 5 years, mean ± SD). In these subjects, birth weight varied over a wide range (2000 to 5000 g). Individuals known to be offspring of diabetic pregnancies were excluded. In 44 of the 272 subjects, muscle sympathetic nerve activity was assessed by microneurography. Results: Birth weight was positively correlated with adult height (r = 0.20, p < 0.001) and fat‐free mass (r = 0.21, p < 0.001), but not with fat mass (r = 0.01, not significant). Sleeping metabolic rate, adjusted for age, sex, fat‐free mass, and fat mass, was negatively related to birth weight (r = ?0.13, p < 0.05), whereas adjusted 24‐hour energy expenditure (r = 0.07, not significant) and 24‐hour respiratory quotient (r = ?0.09, not significant) were not. There was no relationship between birth weight and muscle sympathetic nerve activity (r = 0.12, not significant, n = 44). Discussion: In Pima Indians who are not offspring of diabetic pregnancies, high birth weight is associated with increased height and lean body mass, but not with increased adiposity later in life. Although high birth weight may be associated with relatively low resting energy expenditure, it is not associated with major abnormalities in 24‐hour energy metabolism or with low muscle sympathetic nerve activity later in life.  相似文献   

10.
隧道纳米管(tunneling nanotubes,TNTs)是基于细胞骨架尤其是纤维状肌动蛋白形成的细胞间管道样结构,其功能主要是介导广泛的细胞间物质交换,包括各种信号分子、RNA、蛋白质、细胞器甚至病原体,在生理和病理过程中都发挥重要作用.各种细胞类型中均发现有TNTs的形成,尤其在神经元细胞和神经胶质细胞中得到广泛关注.神经元细胞间或神经元细胞与星形胶质细胞间形成的TNTs,能够介导电耦合,还参与神经退行性疾病相关致病蛋白质的转移和/或传播,进而在神经系统发育和疾病进展中发挥作用.本文简要总结了在神经系统细胞间形成TNTs的研究进展,包括调节其形成的分子机制、功能和在神经系统疾病治疗中的潜在优势.  相似文献   

11.
Flaviviruses such as tick-borne encephalitis virus, Japanese encephalitis virus, West Nile virus, and St. Louis encephalitis virus are important neurotropic human pathogens, typically causing a devastating and often fatal neuroinfection. Flaviviruses induce neuroinflammation with typical features of viral encephalitides, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. Development of safe and effective live-virus vaccines against neurotropic flavivirus infections demands a detailed knowledge of their neuropathogenesis in a primate host that is evolutionarily close to humans. Here, we used computerized morphometric analysis to quantitatively assess the cellular inflammatory responses in the central nervous system (CNS) of rhesus monkeys infected with three antigenically divergent attenuated flaviviruses. The kinetics, spatial pattern, and magnitude of microglial activation, trafficking of T and B cells, and changes in T cell subsets within the CNS define unique phenotypic signatures for each of the three viruses. Our results provide a benchmark for investigation of cellular inflammatory responses induced by attenuated flaviviruses in the CNS of primate hosts and provide insight into the neuropathogenesis of flavivirus encephalitis that might guide the development of safe and effective live-virus vaccines. (J Histochem Cytochem 57:973–989, 2009)  相似文献   

12.
峡视核——研究中枢神经系统发育及细胞凋亡的新模型   总被引:1,自引:0,他引:1  
鸟类离中系统的峡视核是近年来研究中枢神经系统发育过程中细胞凋亡的新模型.在其发育过程中,随着核团的形成、折叠及分层,伴有一些与峡视核相关的临时神经通路的形成和消失,与此同时,该核团中神经元有一半以上发生细胞凋亡.研究表明,形成正确的传入和传出联系对神经元的存活十分重要.分子水平上的机制研究揭示,细胞凋亡与一系列神经营养因子及其相应的受体相关.细胞凋亡对中枢神经系统发育过程中正确神经通路的形成有重要意义.  相似文献   

13.
14.
Objective: Body fatness is partly under hypothalamic control with effector limbs, which include the endocrine system and the autonomic nervous system (ANS). In previous studies we have shown, in both obese and never‐obese subjects, that weight increase leads to increased sympathetic and decreased parasympathetic activity, whereas weight decrease leads to decreased sympathetic and increased parasympathetic activity. We now report on the involvement of such ANS mechanisms in the action of anti‐obesity drugs, independent of change in weight. Research Methods and Procedures: Normal weight males (ages 22 to 38 years) were fed a solid food diet, carefully measured to maintain body weight, for at least 2 weeks, as inpatients at the Rockefeller University General Clinical Research Center. In a single‐blind, placebo/drug/placebo design, eight subjects received dexfenfluramine, seven phentermine (PHE), and seven sibutramine (SIB). ANS measures of parasympathetic and sympathetic activity included: determination of amount of parasympathetic control (PC) and sympathetic control (SC) of heart period (interbeat interval), using sequential pharmacological blockade by intravenous administration of atropine and esmolol. These autonomic controls of heart period are used to estimate the overall level of parasympathetic and sympathetic activities. Norepinephrine, dopamine, and epinephrine levels in 24‐hour urine collections were measured and also resting metabolic rate (RMR). Results: Sufficient food intake maintained constant body weight in all groups. PHE and SIB produced significant increases in SC but no change in PC or in RMR. In contrast, dexfenfluramine produced marked decreases in SC, PC, and RMR. For all three drugs, the effects on urine catecholamines directly paralleled changes in cardiac measures of SC. Discussion: ANS responses to PHE and SIB were anticipated. The large, and unanticipated, response to dexfenfluramine suggests further study to determine whether there could be any relation of these ANS changes to the adverse cardiovascular effects of treatment with dexfenfluramine.  相似文献   

15.
beta-Amyloid peptides (Abetas) share with lipopolysaccharide, a potent pro-inflammatory agent, the property of stimulating glial cells or macrophages to induce various inflammatory mediators. We recently reported that central administration of lipopolysaccharide induces peripheral interleukin-6 responses via both the central and peripheral norepinephrine system. In this study, the effect of intracerebroventricular injection of various synthetic Abetas on plasma interleukin-6 levels was examined in mice. Abeta(1-42) dose-dependently increased plasma interleukin-6 levels: 'aged' Abeta(1-42) was more effective than fresh, whereas Abeta(42-1) had no effect. 'Aged' Abeta(1-42) (205 pmol/mouse i.c.v.)-induced plasma interleukin-6 peaked at 2 h post injection, which is earlier than the peak time of the Abeta(1-42)-induced brain interleukin-6, tumor necrosis factor-alpha and interleukin-1beta levels, which was 4, 4 and 24 h, respectively. Among various peripheral organs, Abeta(1-42) (205 pmol/mouse i.c.v.) significantly increased interleukin-6 mRNA expression in lymph nodes and liver. Abeta(1-42) (205 pmol/mouse i.c.v.) significantly increased norepinephrine turnover in both hypothalamus and spleen. Either central or peripheral norepinephrine depletion effectively inhibited the Abeta(1-42)-induced peripheral interleukin-6 response. Pretreatment with prazosin (alpha(1)-adrenergic antagonist), yohimbine (alpha(2)-adrenergic antagonist), and ICI-118,551 (beta(2)-adrenergic antagonist), but not with betaxolol (beta(1)-adrenergic antagonist), inhibited Abeta(1-42)-induced plasma interleukin-6 levels. These results demonstrate that centrally administered Abeta(1-42) effectively induces the systemic interleukin-6 response which is mediated, in part, by central Abeta(1-42)-induced activation of the central and the peripheral norepinephrine systems.  相似文献   

16.
DE JONGE, LILIAN, GEORGE BRAY. The thermic effect of food and obesity: A critical review. This review has examined the factors that influence the thermic effect of food (TEF) by evaluating 49 studies that have compared subjects who are obese with those who are lean. Meal size, meal composition, the nature of the previous diet, insulin resistance, physical activity, and ageing influence TEF. In the studies of individuals who are obese or lean, of those who used intravenous glucose infusions, all but one found an impaired thermic response. A total of 29 out of 49 studies of individuals of normal weight or with obesity were identified where there was no difference in age between the groups, and where the subjects who were “overweight” were clearly obese. Of these 29, 22 reported a statistically significant reduction in TEF, 3 studies were not designed to look primarily at the effect of obesity on TEF, and the other 4 may not have had sufficiently palatable meals. From this review, we conclude that the reduction of TEF in obesity is related to the degree of insulin resistance, which may be influenced by a low level of sympathetic activity.  相似文献   

17.
配体指数级富集系统进化(systematic evolution of ligands by exponential enrichment,SELEX)技术是一种组合化学技术,可经过反复筛选扩增得到针对靶分子的高亲和力和高特异性的适配子.适配子通过识别、结合特定靶分子并对其进行功能调控从而达到对疾病诊断和治疗的目的 .近年来SELEX技术在神经系统功能和疾病研究中的应用越来越多.现已经筛选出针对朊蛋白、肌腱蛋白-C、β-淀粉样肽、乙酰胆碱受体的自身抗体等靶标的适配子,促进了对朊病毒病、脑肿瘤、阿茨海默病、重症肌无力等神经系统疾病的诊断和治疗研究,为这些疾病的诊治提供了新的研究工具.  相似文献   

18.
POU蛋白调节中枢神经系统发育   总被引:1,自引:0,他引:1  
POU蛋白是一组DNA特异的转录调节因子,属同源异形序列超家族.发育过程中,POU蛋白编码基因在中枢神经系统各部位的时空性表达决定神经细胞的发育与分化.  相似文献   

19.
粘附分子通过介导细胞间相互作用发挥其在发育、再生和突触修饰等方面的重要作用.神经细胞粘附分子CHL1(close homologue of L1)是近年发现的粘附分子,属于粘附分子免疫球蛋白超家族,集中表达于神经系统,通过亲异性作用(heterophilic interaction)介导细胞与细胞、细胞与胞外基质的相互作用,进而参与神经系统的发育、轴突的生长、迁移及导向等过程.  相似文献   

20.
The lysophospholipid mediators, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P), are responsible for cell signaling in diverse pathways including survival, proliferation, motility, and differentiation. Most of this signaling occurs through an eight-member family of G-protein coupled receptors once known as the endothelial differentiation gene (EDG) family. More recently, the EDG receptors have been divided into two subfamilies: the lysophosphatidic acid subfamily, which includes LPA1, (EDG-2/VZG-1), LPA2 (EDG-4), and LPA3 (EDG-7), and the sphingosine-1-phosphate receptor subfamily, which includes S1P1 (EDG-1), S1P2 (EDG-5/H218/AGR16), S1P3 (EDG-3), S1P4 (EDG-6), and S1P5 (EDG-8/NRG-1). The ubiquitous expression of these receptors across species, coupled with their diverse cellular functions, has made lysophospholipid receptors an important focus of signal transduction research. Neuroscientists have recently begun to explore the role of lysophospholipid receptors in a number of cell types; this research has implicated these receptors in the survival, migration, and differentiation of cells in the mammalian nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号