首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An amperometric sequence-specific molecularly imprinted single-stranded oligodeoxyribonucleotide (ss-ODN) biosensor was fabricated and characterised in this study. Using ss-ODN as the template and o-phenylenediamine as the functional monomer, the ODN biosensor was fabricated by an electropolymerisation process on an indium-tin oxide (ITO) coated glass substrate. The template ss-ODN was washed out of the ss-ODN/poly(o-phenylenediamine)(PoPD)/ITO electrode using sterilised basic ethanol-water. The resulting ss-ODN imprinted PoPD/ITO electrode was characterised using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The amperometric responses, i.e., Δi as a function of the target ss-ODN concentration was studied. The biosensor using ss-ODN imprinted PoPD/ITO as the working electrode showed a linear Δ current response to the target ss-ODN concentration within the range of 0.01-300 fM. The biosensor showed a sensitivity of 0.62 μA/fM, with a response time of 14s. The present novel molecularly imprinted ss-ODN biosensor could greatly benefit in terms of cost-effectiveness, storage stability, ultra sensitivity and selectivity together with the potential for improved commercial genetic sensors.  相似文献   

2.
Capacitive detection of glucose using molecularly imprinted polymers   总被引:9,自引:0,他引:9  
A novel glucose biosensor based on capacitive detection has been developed using molecularly imprinted polymers. The sensitive layer was prepared by electropolymerization of o-phenylenediamine on a gold electrode in the presence of the template (glucose). Cyclic voltammetry and capacitive measurements monitored the process of electropolymerization. Surface uncovered areas were plugged with 1-dodecanethiol to make the layer dense, and the insulating properties of the layer were studied in the presence of redox couples. The template molecules and the nonbound thiol were removed from the modified electrode surface by washing with distilled water. A capacitance decrease could be obtained after injection of glucose. The electrode constructed similarly but with ascorbic acid or fructose only showed a small response compared with glucose. The stability and reproducibility of the biosensor were also investigated.  相似文献   

3.
A series of molecular dynamics simulations of prepolymerization mixtures for phenylalanine anilide imprinted co-(ethylene glycol dimethacrylate-methacrylic acid) molecularly imprinted polymers have been employed to investigate the mechanistic basis for template selective recognition in these systems. This has provided new insights on the mechanisms underlying template recognition, in particular the significant role played by the crosslinking agent. Importantly, the study supports the occurrence of template self-association events that allows us to resolve debate between the two previously proposed models used to explain this system's underlying recognition mechanisms. Moreover, the complexity of the molecular level events underlying template complexation is highlighted by this study, a factor that should be considered in rational molecularly imprinted polymer design, especially with respect to recognition site heterogeneity.  相似文献   

4.
The template release kinetics of theophylline molecularly imprinted polymers has been examined with a view to determining their potential as a controlled release drug dosage form. The basis for the ligand selectivity of these polymers has been shown through the demonstration of pre-polymerization template-monomer complexation and HPLC studies of the product polymer ligand selectivities. The release kinetics shows a dependence upon template loading and pH. Small differences in release characteristics between imprinted and non-imprinted (reference) polymers have been observed.  相似文献   

5.
A series of polymers molecularly imprinted with the general anaesthetic propofol were synthesized using both semi- and non-covalent approaches. The polymers were evaluated with respect to template rebinding in both aqueous and organic media. In aqueous media, the observed propofol binding in these polymer systems was largely hydrophobic and non-specific in nature. In non-polar solvents such as hexane, electrostatic (hydrogen bonding) interactions dominate resulting in some selectivity. The implication of these results, in conjunction with those obtained using structures of similar size in other studies, is that propofol, a template possessing limited functionality and size, appears to define the lower limit for template size and degree of functionalization that can be used for the creation of ligand-selective recognition sites in molecularly imprinted polymers. Furthermore, studies with alternative ligands indicate that the steric crowding of a ligand's functionality to the polymer contributes to the extent of polymer-ligand recognition.  相似文献   

6.
Epitope imprinting is a promising technique for fabrication of novel diagnostic tools. In this study, an epitope imprinted methodology for recognition of target epitope sequence as well as targeted protein infused by bacterial infection in blood samples of patients suffering from brain fever is developed. Template sequence chosen is a ferric iron binding fbp A protein present in Neisseria meningitidis bacteria. To orient the imprinting template peptide sequence on gold surface of electrochemical quartz crystal microbalance (EQCM), thiol chemistry was utilized to form the self‐assembled monolayer on EQCM electrode. Here, synergistic effects induced by various noncovalent interactions extended by multiple monomers (3‐sulfopropyl methacrylate potassium‐salt and benzyl methacrylate) were used in fabricating the imprinting polymeric matrix with additional firmness provided by N,N‐methylene‐bis‐acrylamide as cross‐linker and azo‐isobutyronitrile as initiator. Extraction of template molecule was carried out with phosphate buffer solution. After extraction of epitope molecules from the polymeric film, epitope molecularly imprinted polymeric films were fabricated on EQCM electrode surface. Nonimprinted polymers were also synthesized in the similar manner without epitope molecule. Detection limit of epitope molecularly imprinted polymers and imprinting factor (epitope molecularly imprinted polymers/nonimprinted polymers) was calculated 1.39 ng mL?1 and 12.27 respectively showing high binding capacity and specific recognition behavior toward template molecule. Simplicity of present method would put forward a fast, facile, cost‐effective diagnostic tool for mass health care.  相似文献   

7.
We present a new concept of synthesis for preparation of molecularly imprinted polymers using a functionalized initiator to replace the traditional functional monomer. Using propranolol as a model template, a carboxyl-functionalized radical initiator was demonstrated to lead to high-selectivity polymer particles prepared in a standard precipitation polymerization system. When a single enantiomer of propranolol was used as template, the imprinted polymer particles exhibited clear chiral selectivity in an equilibrium binding experiment. Unlike the previous molecular imprinting systems where the active free radicals can be distant from the template-functional monomer complex, the method reported in this work makes sure that the actual radical polymerization takes place in the vicinity of the template-associated functional groups. The success of using functional initiator to synthesize molecularly imprinted polymers brings in new possibilities to improve the functional performance of molecularly imprinted synthetic receptors.  相似文献   

8.
A novel non-stabilised aqueous suspension polymerisation methodology for the preparation of spherical molecularly imprinted polymers is described with chlorpheniramine (CP), d-chlorpheniramine (d-CP), brompheniramine (BP) and d-brompheniramine (d-BP) as the templates, respectively. Using this rapid and simple technique, controlled polymer beads in the low micron range with narrow size distributions were generated by photo-polymerisation. The use of agitation speed as a method of controlling bead size distribution was demonstrated. Enantioselective properties of the imprinted beads were examined and the polymers prepared using d-chlorpheniramine and d-brompheniramine were capable of discriminating between the enantiomers of the template. Cross-selectivity studies were performed by batch rebinding with the influence of template size and functional group orientation of analytes on the recognition properties of the imprinted polymers investigated. Physical characteristics of all polymers were studied by nitrogen sorption porosimetry, particle size analysis and scanning electron microscopy (SEM) in order to gain an insight into the role of such properties on retention behaviour.  相似文献   

9.
Molecular imprinting and solid phase extraction of flavonoid compounds   总被引:4,自引:0,他引:4  
Molecularly imprinted polymers (MIPs) for quercetin have been successfully prepared by a thermal polymerization method using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EDMA) as functional monomer and cross-linker, respectively. The obtained molecularly imprinted polymers were evaluated by HPLC using organic eluents, with respect to their selective recognition properties for quercetin and related compounds of the flavonoid class. Two equivalent control polymers, a blank polymer and a polymer imprinted with a structural analogous template, were synthesized, in order to confirm the obtained results. Furthermore, preliminary experiments confirm the applicability of the prepared MIPs for solid phase extraction (SPE), as rapid and facile clean-up of wine samples for HPLC analysis is an envisaged field of application. The successful preparation of molecularly imprinted polymers for flavones provides an innovative opportunity for the development of advanced separation materials, with applications in the field of wine and fermentation analysis.  相似文献   

10.
Molecular imprinting is an attractive technique for preparing mimics of natural and biological receptors. Nevertheless, molecular imprinting for aqueous systems remains a challenge due to the hydrogen bonding between templates and functional monomers destroyed in the bulk water. The hydrogen bonding between templates and monomers are the most crucial factor governing recognition, particularly in non-covalent molecularly imprinted polymers. Using mesoporous materials for molecular imprinting is an effective approach to overcome this barrier and to remove the limitations of the traditional molecularly imprinted polymers which include incomplete template removal, small binding capacity, slow mass transfer, and irregular materials shape. Here, SBA-15 was used as a mesoporous silica material for synthesis of molecularly imprinted polypyrrole. The pyrrole monomers and template molecules were immobilized onto the SBA-15 hexagonal channels, and then polymerization occurred. The resulting nanocomposites were characterized by Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. In batch rebinding tests, the imprinted nanocomposites reached saturated adsorption within 100min and exhibited significant specific recognition toward the ascorbic acid (AA) with high adsorption capacity (83.7mgg(-1)). To further illustrate the recognition property of the imprinted nanocomposites, binary competitive and non-competitive adsorption experiments were performed with ascorbic acid, dopamine, paracetamol and epinephrine. The imprinting factors for these compounds in non-competitive adsorption experiments were 3.2, 1.5, 1.4 and 1.3, respectively. The results showed that the imprinted nanocomposites exhibited significant adsorption selectivity for the ascorbic acid against the related compounds.  相似文献   

11.
12.
Novel molecularly imprinted polymer systems utilizing 4-vinylpyridine and 1-vinylimidazole as functional monomers have been developed for enantioselective recognition of carboxylic and N-protected amino acids. Non-covalent interactions between the functional monomers and the template molecules were the source of the subsequent recognition sites in the resultant polymers. The capacity of the polymers for molecular recognition was investigated by using them as stationary phases in the HPLC mode. Polymers prepared with 4-vinylpyridine were found to be more efficient in racemic resolution than those prepared with 1-vinylimidazole. When applying a racemic mixture of the template molecule, the polymers showed highest affinity for the enantiomer used as template. Imprints of a racemic template molecule, as expected, did not exhibit enantioselectivity. The optimal molar ratio of 4-vinylpyridine to the template Cbz-L -Asp-OH in the polymerization mixture was determined to be 12:1. In addition to enantioselectivity, the investigated polymers demonstrated ‘ligand selectivity’ e.g., a Cbz-L -Asp-OH-imprinted polymer was able to separate Cbz-D ,L -Asp-OH, but was unable to separate Cbz-D ,L -Glu-OH.  相似文献   

13.
Molecular recognition-based separation and sensing systems have received much attention in various fields because of their high selectivity for target molecules. Molecular imprinting has been recognized as a promising technique for the development of such systems, where the molecule to be recognized is added to a reaction mixture of a cross-linker(s), a solvent(s), and a functional monomer(s) that possesses a functional groups(s) capable of interacting with the target molecule. Binding sites in the resultant polymers involve functional groups originating from the added functional monomer(s), which can be constructed according to the shape and chemical properties of the target molecules. After removal of the target molecules, these molecularly imprinted complementary binding sites exhibit high selectivity and affinity for the template molecule. In this article, recent developments in molecularly imprinted polymers are described with their applications as separation media in liquid chromatography, capillary electrophoresis, solid-phase extraction, and membranes. Examples of binding assays and sensing systems using molecularly imprinted polymers are also presented.  相似文献   

14.
Three molecularly imprinted polymers (MIPs) were prepared using the phytohormone indole-3-acetic acid (IAA) as a template molecule, 4-vinylpyridine (MIP-1 and MIP-2) or N,N-dimethylaminoethyl methacrylate (MIP-3) as functional monomers, ethylenglycol dimethacrylate as a cross linker and acetonitrile (MIP-1), a methanol–water mixture (MIP-2) or chloroform (MIP-3) as porogens. Retention factors for IAA and 29 indole derivatives were determined by high-performance liquid chromatography, using the molecularly imprinted polymers as stationary phases and acetonitrile as an eluent. High correlations between selectivity factors of above mentioned polymers indicate that their retention mechanisms are basically the same. A quantitative structure–property relationships analysis revealed that the presence of the terminal carboxyl group on the 3-side chain plays an essential role in the binding of the indole derivatives to the polymers. The derivatives without the carboxyl group exhibit a drastically lower affinity toward the polymers. Another factor which favors the binding is electronic density of indole nucleus. Substituents with electro-withdrawing properties enhance the binding, while electro-donating substituents have the opposite effect. The length of the 3-side chain also affects the binding. Indole-3-carboxylic acid having the carboxyl group directly attached to the ring as well as the derivatives whose side chain is longer than that of IAA bind to the polymers with a lower affinity.  相似文献   

15.
Molecularly imprinted nanomaterials are gaining substantial importance. As a simple and efficient synthetic method, precipitation polymerization has been used to prepare uniform molecularly imprinted microspheres for numerous template compounds. Despite of its general applicability, the difficulty of obtaining uniform particles for some difficult templates by precipitation polymerization has been reported. In this work, we attempted to produce uniform atrazine-imprinted nanoparticles using propranolol as an auxiliary template under standard precipitation polymerization condition. When propranolol was added in the prepolymerization mixture for atrazine imprinting, it displayed a significant effect on particle size and size distribution of atrazine-imprinted polymers. The molecular binding characteristics of the molecularly imprinted polymer (MIP) nanoparticles were found to be dependent on the relative ratios of the two templates. Under an optimal template propranolol-atrazine ratio of 1:3 mol/mol, very uniform imprinted nanoparticles (d(H) =?106?nm) with a polydispersity index of 0.07 were obtained. The loading of the auxiliary template (propranolol) could be reduced to as low as 5% without sacrificing the uniformity of the MIP nanoparticles. The uniform MIP nanoparticles could be easily encapsulated into polyethylene terephthalate nanofibers using a simple electrospinning technique. The composite nanofibers containing the MIP nanoparticles maintained specific molecular binding capability for both atrazine and propranolol.  相似文献   

16.
Protein-responsive imprinted polymers with specific shrinking and rebinding   总被引:1,自引:0,他引:1  
Stimuli-responsive protein imprinted polymers were obtained via a combination of molecular imprinting and reversible stimuli-responsive polymer using lysozyme or cytochrome c as template, N-isopropylacrylamide (NIPA) as major monomer, methacrylic acid (MAA) and acrylamide (AAm) as functional co-monomers, and N,N-methylenebisacrylamide (MBAAm) as crosslinker. The molecularly imprinted polymers (MIPs) can respond not only to external stimuli such as temperature and salt concentration, but also to the corresponding template protein with significant specific volume shrinking. This specific shrinking behavior was attributed to the synergistic effect of multiple-site weak interactions (electrostatic force, hydrogen bonding and hydrophobic interaction) and the cavity effect. The MIPs showed highly selective adsorption of template proteins with specific shrinking compared with the non-imprinted polymers. The results indicated that the MIPs seemed to change shape to accommodate the conformation of the template protein leading to the formation of a shape complementary cavity.  相似文献   

17.
This paper describes the rational design, generation and testing of a molecularly imprinted polymer specific for Ibuprofen. Ibuprofen is a member of the class of drugs termed non-steroidal anti-inflammatory drugs (NSAIDS). In the present study, Ibuprofen was used as a template molecule for the preparation of molecularly imprinted polymers. A MIP has been produced which is capable of recognising Ibuprofen in aqueous media. Furthermore, Ibuprofen can be selectively extracted from aqueous conditions by molecularly imprinted solid phase extraction (MISPE). Recoveries were typically high (>80%) and good selectivity for Ibuprofen over structurally related analogues was seen. Moreover, the nature of the recognition between MIP and template has been investigated by NMR and molecular modelling to analyse whether or not it is possible to predict how well a given MIP will perform under set conditions. In addition, the physical characteristics of the MIP have been investigated including the particle size distribution on exposure of the MIP to different solvents. This has been related to the ability of the MIP to rebind Ibuprofen under the same conditions. The data from the characterisation of the MIP has been used to further enhance the understanding of the nature of MIP recognition.  相似文献   

18.
采用沉淀聚合法制备孔雀石绿分子印迹聚合物(MG-MIPs),以洗脱效率及吸附量为指标,考察超声波辅助抽提法对MIPs中MG洗脱效果及吸附性能的影响,通过扫描电镜观察MIPs的表面形态,并对其吸附性能进行研究。结果表明:模板分子MG在超声30 min、超声10次、料液比m(MG-MIPs)∶V(甲醇-乙酸溶液)为1∶10(g/m L)、温度为25℃、超声功率为270 W的条件下,洗脱效果最好,MIPs在固相萃取柱中的吸附效率较高,达到198μg/g。  相似文献   

19.
Molecularly imprinted polyaniline (PANI) film (~ 100 nm thick) has been electrochemically fabricated onto indium-tin-oxide (ITO) coated glass plate using ascorbic acid (AA) as template molecule. Fourier transform infra-red spectroscopy, scanning electron microscopy, cyclic voltammetry and differential pulse voltammetry (DPV) studies indicate the presence of AA in PANI matrix, which also acts as a dopant for PANI. Further, the AA selective molecularly imprinted PANI electrode (AA-MI-PANI/ITO) has been developed via over-oxidation of AA doped PANI electrode which leads to the removal of AA moieties from PANI film. The response studies using DPV technique have revealed that this molecularly imprinted AA-MI-PANI/ITO electrode can detect AA in the range of 0.05-0.4 mM with detection limit of 0.018 mM and sensitivity of 1.2 × 10(-5) AmM(-1). Interestingly, this AA-MI-PANI/ITO electrode shows excellent reusability, selectivity and stability.  相似文献   

20.
A systematic cross-selectivity study involving a series of structurally related N-methylated and non-methylated substituted pyridines was performed with the aim of evaluating the parameters responsible for template receptor binding in molecularly imprinted polymers. Variation in binding of substrate structure permitted evaluation of the steric restraints of the imprinted cavity. The electrostatic effects, primarily hydrogen-bonding, were investigated through rebinding in chloroform and acetonitrile. All species were non-covalently imprinted in thermoinduced methacrylic acid-ethylene glycol dimethacrylate co-polymers. Evaluation of template properties indicate that a correlation exists between non-specific binding and template basicity for a series of structural isomers. A correlation between non-specific binding and hydrophobicity was also identified for templates increasing in alkyl character. However no overall correlation was observed, as it was speculated that these factors may be competing. All species imprinted, with the exception of 2-dimethylaminopyridine, produced a selective response for the template species. Varying degrees of cross-selectivity were observed for each imprinted polymer. Polymers imprinted with templates of higher basicity demonstrated a greater degree of cross-selectivity relative to those of lower basicity. While overall binding was reduced in acetonitrile relative to chloroform, specificity was increased. This highlights the intrinsic difference in binding sites within imprinted and non-imprinted sites of the polymer. Finally, while the ability of the template species to form a co-operative interaction may be advantageous in producing a selective imprint it is not a prerequisite. For species based on this co-operative interaction the steric environment in the immediate proximity to the binding functionalities are critical to recognition. Steric hindrance of non-functionally active groups can dramatically impair the formation of interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号