首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grapevine (Vitis vinifera cv. Touriga) callus cell walls contain a high level of the monomeric extensin, GvP1. Hydrogen peroxide stimulus of these cultures causes the rapid loss of monomeric GvP1, concomitant with marked increases in insoluble GvP1 amino acids and wall resistance to digestion by fungal lytic enzymes. JIM11 immunolocalization studies indicated that monomeric and network GvP1 were evenly distributed in the callus cell wall. These primary cell walls were used to investigate the specific contribution of extensin and other ionically bound cell-wall proteins to hydrogen peroxide-mediated increases in resistance to fungal lytic enzymes. This was performed by removing ionically-bound proteins and assaying for hydrogen peroxide-enhanced resistance after the addition of selected protein fractions. The results indicate that hydrogen peroxide-induced increases in resistance to digestion by fungal lytic enzymes require a co-operative action between network extensin formation and the electrostatic interaction of additional wall proteins with the extracellular matrix.  相似文献   

2.
Early plant defense response is characterized by elevation of activity of peroxidases and enhanced insolubilization of hydroxyproline-rich glycoproteins, such as extensin, in the cell wall. The insolubilization process (cross-linking between soluble extensin precursor molecules) is catalyzed by extensin peroxidases. We have ionically eluted extensin peroxidases from intact water-washed suspension-cultured tomato (hybrid of Lycopersicon esculentum Mill. and Lycopersicon peruvianum L. [Mill.]) cells and purified them to homogeneity by molecular sieve and cation-exchange chromatography. Four ionic forms of peroxidase (PI,PII,EPIII, and EPIV) were resolved; only the latter two cross-linked tomato soluble extensin. The molecular weight (34,000-37,000), amino acid composition, and isoelectric point (9.0) of the extensin peroxidases were determined. Substrate specificities of the enzymes were investigated: soluble extensin and potato lectin (a hydroxyproline-rich glycoprotein with a domain that strongly resembles extensin) were cross-linked by only two forms of the enzyme, whereas bovine serum albumin, aldolase, insulin, a number of other marker proteins, and proteins eluted from tomato cells (except extensin) could not be cross-linked. We have also isolated a yeast elicitor that enhances total peroxidase activity and extensin insolubilization within 1 h of challenge in cultured cells of tomato. A highly sensitive enzyme-linked immunosorbent assay technique using polyclonal antiserum raised against soluble tomato extensin was used to demonstrate extensin insolubilization in vivo. A tomato cell-wall peroxidase that cross-links extensin has been purified and may have a role in plant defense.  相似文献   

3.
4.
 It is proposed that inhibition of extensin peroxidase activity leads to a less rigid cell wall and thus promotes cell expansion and plant growth. A low-molecular-weight inhibitor derived from the cell walls of suspension-cultured tomato cells was found to completely inhibit extensin peroxidase-mediated extensin cross-linking in vitro at a concentration of 260 μg/ml. The inhibitor had no effect upon guaiacol oxidation catalyzed by extensin peroxidase or horseradish peroxidase. We have demonstrated that the light-irradiated inhibition of plant growth may be partially offset by inhibition of endogenous extensin peroxidase activity. Overall plant growth was enhanced by up to 15% in the presence of inhibitor relative to control plants. Inhibitor-treated and illuminated tomato hypocotyls grew up to 15% taller than untreated controls. The inhibitor had no effect upon etiolated plants over a 15-d period, suggesting that only low levels of peroxidase-mediated cross-linking can be found in the cell walls of etiolated plants. SDS-PAGE/Western blots of ionically bound protein from both etiolated and illuminated hypocotyls identified a doublet at 57/58.5 kDa which is immuno-reactive with antibodies raised to tomato extensin peroxidase. Levels of the 58.5-kDa protein, determined by SDS-PAGE, were at least threefold higher in illuminated tomato hypocotyls than in etiolated hypocotyls. Three fold higher levels of extensin peroxidase, elevated in-vitro extensin cross-linking activity and 15% higher levels of cross-linked, non-extractable extensin were observed in illuminated tomato hypocotyls compared with etiolated tomato hypocotyls. This suggests that white-light inhibition of tomato hypocotyl growth appears to be mediated, at least partially, by deposition of cell wall extensin, a process regulated by Mr-58,500 extensin peroxidase. Our results indicate that the contribution of peroxidase-mediated extensin deposition to plant cell wall architecture may have an important role in plant growth. Received: 22 July 1999 / Accepted: 11 October 1999  相似文献   

5.
Lignin is formed abundantly in the maturing walls of slash pine cambial cells, but very little in slash pine callus cell walls. Peroxidases removed from the cytoplasm of callus or cambial cells with phosphate buffer (soluble peroxidase), from the walls with NACl (ionically bound peroxidase), and from the walls with cellulase (covalently bound peroxidase) differed in their capacity to catalyze bond formation between carbohydrate and ferulic acid or its condensation products. Bond formation per unit of enzyme was highest in the peroxidases of cambium, especially in those attached ionically or covalently to the cell walls. The wall-bound peroxidases also catalyzed the strongest linkages between lignin monomers and carbohydrates as estimated by their resistance to hydrolysis by NaOH.  相似文献   

6.
Changes in apoplastic peroxidases during auxin-induced in vitro rooting of cultured grapevine (Vitis vinifera L. cv. Touriga) stems have been studied. The largest increase in peroxidase activity (EC 1.11.1.7) was associated with the early stages of root initiation and could be attributed to an increase in activity of an apoplastic 36 kDa cationic peroxidase (PxB2). Relative to other peroxidases, PxB2 demonstrated high indole-3-acetic acid (IAA) oxidase activity and apparently contributed the majority of potential IAA oxidase activity in rooting tissues. The distribution of this peroxidase in developing roots additionally associates it with early phases of growth restriction. PxB2 was purified from cell wall extracts prepared from the basal 1 cm of rooting stems. Microsequencing and subsequent cloning of its corresponding 3' truncated cDNA (encoding 255 amino acids of the mature protein) revealed it to have a typical class III peroxidase structure. The results suggest that this class III peroxidase with IAA oxidase activity is important for the control of IAA levels during root initiation and development.  相似文献   

7.
Extensins, hydroxyproline‐rich repetitive glycoproteins with Ser–Hyp4 motifs, are structural proteins in plant cell walls. The leucine‐rich repeat extensin 1 (LRX1) of Arabidopsis thaliana is an extracellular protein with both a leucine‐rich repeat and an extensin domain, and has been demonstrated to be important for cell‐wall formation in root hairs. lrx1 mutants develop defective cell walls, resulting in a strong root hair phenotype. The extensin domain is essential for protein function and is thought to confer insolubilization of LRX1 in the cell wall. Here, in vivo characterization of the LRX1 extensin domain is described. First, a series of LRX1 extensin deletion constructs was produced that led to identification of a much shorter, functional extensin domain. Tyr residues can induce intra‐ and inter‐molecular cross‐links in extensins, and substitution of Tyr in the extensin domain by Phe led to reduced activity of the corresponding LRX1 protein. An additional function of Tyr (or Phe) is provided by the aromatic nature of the side chain. This suggests that these residues might be involved in hydrophobic stacking, possibly as a mechanism of protein assembly. Finally, modified LRX1 proteins lacking Tyr in the extensin domain are still insolubilized in the cell wall, indicating strong interactions of extensins within the cell wall in addition to the well‐described Tyr cross‐links.  相似文献   

8.
A library of 22 hybridomas, which make antibodies to soluble wall antigens from the coleoptiles and primary leaves of etiolated corn (Zea mays L.) seedlings, was raised and cloned three times by limit dilution to assure monoclonal growth and stability. Two of these hybridomas made immunoglobulin G antibodies, designated mWP3 and mWP19, which both effectively immunoprecipitated peroxidase activity from crude and partially purified preparations of wall peroxidases. Direct peroxidase-binding assays revealed that both antibodies bound enzymes with peroxidase activity. As judged by immunoblot analyses, mWP3 recognized a Mr 98,000 wall peroxidase with an isoelectric point near 4.2, and mWP19 recognized a Mr 58,000 wall peroxidase. Immunogold localization studies showed both peroxidases are predominately in cell walls.  相似文献   

9.
《Phytochemistry》1986,25(6):1271-1274
Cytoplasmic and wall bound peroxidases were extracted from successive segments of decreasing growth potential along the mung bean hypocotyl. Active wall bound peroxidases were present in the epidermis and external parenchyma layers at the end of the elongation phase. Two fast migrating anionic isoperoxidases covalently bound to the cell walls increased when the cell walls lost their plasticity. These isoenzymes were characterized by a high affinity for several peroxidase substrates and high thermal stability.  相似文献   

10.
Activity of a number of enzymes related to lignin formation was measured in a Picea abies (L) Karsten suspension culture that is able to produce native-like lignin into the nutrient medium. This cell culture is an attractive model for studying lignin formation, as the process takes place independently of the complex macromolecular matrix of the native apoplast. Suspension culture proteins were fractionated into soluble cellular proteins, ionically and covalently bound cell wall proteins and nutrient medium proteins. The nutrient medium contained up to 5.3% of total coniferyl alcohol peroxidase (EC 1.11.1.7) activity and a significant NADH oxidase activity that is suggested to be responsible for hydrogen peroxide (H2O2) production. There also existed some malate dehydrogenase (EC 1.1.1.37) activity in the apoplast of suspension culture cells (in ionically and covalently bound cell wall protein fractions), possibly for the regeneration of NADH that is needed for peroxidase-catalysed H2O2 production. However, there is no proof of the existence of NADH in the apoplast. Nutrient medium peroxidases could be classified into acidic, slightly basic and highly basic isoenzyme groups by isoelectric focusing. Only acidic peroxidases were found in the covalently bound cell wall protein fraction. Several peroxidase isoenzymes across the whole pI range were detected in the protein fraction ionically bound to cell walls and in the soluble cellular protein fraction. One laccase-like isoenzyme with pI of approximately 8.5 was found in the nutrient medium that was able to form dehydrogenation polymer from coniferyl alcohol in the absence of H2O2. The total activity of this oxidase towards coniferyl alcohol was, however, several orders of magnitude smaller than that of peroxidases in vitro. According to 2D 1H-13C correlation NMR spectra, most of the abundant structural units of native lignin and released suspension culture lignin are present in the oxidase produced dehydrogenation polymer but in somewhat different amounts compared to peroxidase derived synthetic lignin preparations. A coniferin beta-glucosidase (EC 3.2.1.21) was observed to be secreted into the culture medium.  相似文献   

11.
Enzymatic removal of the cell wall induces vegetative Chlamydomonas reinhardtii cells to transcribe wall genes and synthesize new hydroxyproline-rich glycoproteins (HRGPs) related to the extensins found in higher plant cell walls. A cDNA expression library made from such induced cells was screened with antibodies to an oligopeptide containing the (SP)x repetitive domains found in Chlamydomonas wall proteins. One of the selected cDNAs encodes an (SP)x-rich polypeptide that also displays a repeated YGG motif. Ascorbate, a peroxidase inhibitor, and tyrosine derivatives were shown to inhibit insolubilization of both the vegetative and zygotic cell walls of Chlamydomonas, suggesting that oxidative cross-linking of tyrosines is occurring. Moreover, insolubilization of both walls was concomitant with a burst in H2O2 production and in extracellular peroxidase activity. Finally, both isodityrosine and dityrosine were found in hydrolysates of the insolubilized vegetative wall layer. We propose that the formation of tyrosine cross-links is essential to Chlamydomonas HRGP insolubilization.  相似文献   

12.
Purified cell-wall preparations from the epicotyl of etiolatedPisum sativum contain covalently bound peroxidases and hydroxyproline-richproteins. Towards the end of cell elongation there is a largerise in these wall components and thereafter a continuing slowrise which is associated with increasing age of tissue. Ethyleneat concentrations of 0.1 ppm or more increases both peroxidaseactivity and hydroxyproline levels in the walls, the greatestresponse occurring in immature tissue including the apical hook.Growth of these tissues is highly sensitive to ethylene whichcauses an inhibition of elongation in extending cells and anenhanced lateral cell expansion. We suggest that the effectsof ethylene on wall-bound peroxidase and hydroxyproline areimplicated in the ethylene regulation of cell growth. The covalently bound wall peroxidase was found to be extremelystable and to contain unique isoenzymes which do not occur ineither the cytoplasm or in the peroxidase which is ionicallybound to walls. Ethylene increases peroxidase activity in boththe cytoplasmic and the ionically bound wall fractions, butthere is little or no increase in their hydroxyproline content.The possible relationships between covalently bound wall peroxidaseand hydroxyproline are discussed and we speculate that thisperoxidase may be involved in the hydroxylation of proline inthe walls.  相似文献   

13.
Enzymic cross-linkage of monomeric extensin precursors in vitro   总被引:7,自引:4,他引:3       下载免费PDF全文
Rapidly growing tomato (Lycopersicon esculentum) cell suspension cultures contain transiently high levels of cell surface, salt-elutable, monomeric precursors to the covalently cross-linked extensin network of the primary cell wall. Thus, we purified a highly soluble monomeric extensin substrate from rapidly growing cells, and devised a soluble in vitro cross-linking assay based on Superose-6 fast protein liquid chromatography separation, which resolved extensin monomers from the newly formed oligomers within 25 minutes. Salt elution of slowly growing (early stationary phase) cells yielded little or no extensin monomers but did give a highly active enzymic preparation that specifically cross-linked extensin monomers in the presence of hydrogen peroxide, judging from: (a) a decrease in the extensin monomer peak on fast protein liquid chromatography gel filtration, (b) appearance of oligomeric peaks, and (c) direct electron microscopical observation of the cross-linked oligomers. The cross-linking reaction had a broad pH optimum between 5.5 and 6.5. An approach to substrate saturation of the enzyme required extensin monomer concentrations of 20 to 40 milligrams per milliliter. Preincubation with catalase completely inhibited the cross-linking reaction, which was highly dependent on hydrogen peroxide and optimal at 15 to 50 micromolar. We therefore identified the cross-linking activity as extensin peroxidase.  相似文献   

14.
P. Schloß  C. Walter  M. Mäder 《Planta》1987,170(2):225-229
Vacuoles of tobacco mesophyll and of suspension-cultured cells were isolated in order to study the localization of peroxidase isoenzymes. Only basic peroxidases were detectable by electrophoretic separation of the vacuolar sap. Some of the basic peroxidases have formerly been described as an ionically bound cell-wall fraction. This fraction, however, was found to be an artifact produced by incomplete cell breakage. Reinvestigation of isolated cell walls confirmed that mainly acidic peroxidases are localized in the cell walls where they move freely or are bound. As a consequence of former and present results we think it probable that all of the peroxidase isoenzymes are secretory proteins because they have to be transported from the sites of synthesis in the cytoplasm to the sites of function, the extracytoplasmic spaces, cell wall (acidic peroxidases), and vacuole (basic peroxidases).Abbreviation ER endoplasmic reticulum - PAGE polyacrylamide gel electrophoresis  相似文献   

15.
Cell walls of Pinus elliottii tissue cultures were isolated and incubated with coniferyl alcohol and H2O2. Lignin having physical and chemical properties similar to that prepared from wood was formed by the peroxidase attached to the walls. Fractions of the callus lignin isolated enzymatically or chemically contained bound carbohydrate. The lignin was also strongly bound to a protein containing hydroxyproline, probably extensin. This system may be analogous to the earliest stage of normal lignin formation in which monomers are transported from the protoplast into the primary wall and middle lamella, where peroxidase polymerizes monomers and catalyzes bonds to carbohydrate and protein.  相似文献   

16.
Sánchez, O.J., Pan, A., Nicolás, G. and Labrador, E. 1989. Relation of cell wall peroxidase activity with growth in epicotyls of Cicer arietinum. Effects of calmodulin inhibitors.
Peroxidases are bound ionically to cell walls in epicotyls of Cicer arietinum L. cv. Castellana. The cell wall peroxidase activity increases during the growth of epicotyls, being the lowest in 3-day-old epicotyls with high growth capacity. The cell wall phenolic compounds, postulated natural substrates of cell wall peroxidases, also increase during growth.
The calmodulin inhibitors chlorpromazine and trifluoperazine decrease the elongation rate of epicotyls of Cicer arietinum. These inhibitors also cause an increase in the cell wall peroxidase activity and in the level of phenolic compounds. A possible regulatory effect of calmodulin on peroxidase activity is postulated.  相似文献   

17.
Regulation of assimilation and senescence by the fruit in monocarpic plants   总被引:1,自引:0,他引:1  
Intercellular acidic isoperoxidases (EC 1.11.1.7) isolated from exponentially growing lupin ( Lupinus albus . L. cv. multolupa) hypocotyls are under the control of exogenously applied auxins. Application of auxins leads to a short-term reduction in the level of free intercellular peroxidases, and this effect is associated with a binding of these free peroxidases to the cell walls, probably mediated by an acidification of the cell wall. The ratio of free intercellular peroxidases to the total intercellular peroxidase activity, varies along the axis of exponentially growing hypocotyls. It has a V-shaped distribution with the minimum value in the elongation III-zone, where high levels of auxins have previously been implied in differentiation. This minimum value coincides spatially with the first signs of cell wall thickening in the hypocotyl cells and, paradoxically, it is out of phase with respect to the maximal cell elongation. On the other hand, the ratio of free intercellular peroxidases reaches its maximal values in both the most undiffercntiated phloem cells and the differentiated xylem cells. High levels of free intercellular peroxidase activity in phloem cells are hard to explain, since phloem cell walls remain unlignified during almost all stages of differentiation. However, association of free intercellular peroxidase activity with xylem cells is clearly associated with the lignification of the xylem cell walls. The physiological significance of the binding vs release of intercellular peroxidase is discussed in relation to the catalytic properties and stability at acidic pH of both the bound and free forms of this enzyme.  相似文献   

18.
Culture of tobacco callus on high or low kinetin in light or darkness leads to changed tissue texture and associated changes in cell wall composition. In particular, friable callus (low kinetin, darkness) cell walls have a greater extensin content and an altered composition of arabinose and xylose containing hemicelluloses compared with cell walls of compact callus (high kinetin, darkness). The possible importance of these differences in determining callus friability is discussed.  相似文献   

19.
Extensins are cell wall hydroxyproline-rich glycoproteins that form covalent networks putatively involving tyrosyl and lysyl residues in cross-links catalyzed by one or more extensin peroxidases. The precise cross-links remain to be chemically identified both as network components in muro and as enzymic products generated in vitro with native extensin monomers as substrates. However, some extensin monomers contain variations within their putative cross-linking motifs that complicate cross-link identification. Other simpler extensins are recalcitrant to isolation including the ubiquitous P3-type extensin whose major repetitive motif, Hyp)(4)-Ser-Hyp-Ser-(Hyp)(4)-Tyr-Tyr-Tyr-Lys, is of particular interest, not least because its Tyr-Tyr-Tyr intramolecular isodityrosine cross-link motifs are also putative candidates for further intermolecular cross-linking to form di-isodityrosine. Therefore, we designed a set of extensin analogs encoding tandem repeats of the P3 motif, including Tyr --> Phe and Lys --> Leu variations. Expression of these P3 analogs in Nicotiana tabacum cells yielded glycoproteins with virtually all Pro residues hydroxylated and subsequently arabinosylated and with likely galactosylated Ser residues. This was consistent with earlier analyses of P3 glycopeptides isolated from cell wall digests and the predictions of the Hyp contiguity hypothesis. The tyrosine-rich P3 analogs also contained isodityrosine, formed in vivo. Significantly, these isodityrosine-containing analogs were further cross-linked in vitro by an extensin peroxidase to form the tetra-tyrosine intermolecular cross-link amino acid di-isodityrosine. This is the first identification of an inter-molecular cross-link amino acid in an extensin module and corroborates earlier suggestions that di-isodityrosine represents one mechanism for cross-linking extensins in muro.  相似文献   

20.
The accumulation and cross-linking of hydroxyproline-rich glycoproteins (HRGPs) in cell walls of dicotyledonous plants has been correlated with a number of wall-strengthening phenomena. Polyclonal antibodies raised against glycosylated extensin-1, the most abundant HRGP in carrot (Daucus carota L.) cell walls, recognize this antigen on gel and dot blots and on thin sections of epoxy-embedded carrot-root cell walls. Since wall labeling can be largely reduced by preincubating the antibodies with purified extensin-1, most labeling can be attributed to recognition of this antigen. The remaining label may be the result of recognition of extensin-2, a second carrot HRGP, or other wall components (cellulose, hemicellulose and pectin are not recognized). Extensin-1 label was distributed quite uniformly across the cell wall but was absent from the expanded middle lamella at the intersection of three or more cells and was reduced in the narrow middle lamella between two cells. This distribution is essentially the same as that of cellulose. Because of limitations of this labeling technique, it is not possible to construct a complete model of the structure of the cross-linked extensin matrix. Nonetheless, short, linear arrays of gold particles may represent small portions of the extensin matrix or of individual extensin molecules as they are exposed on the surface of sections. These and other results presented here indicate that: a) newly synthesized extensin is added to the wall by intussusception; b) extensin cannot cross the middle lamella separating the walls of adjacent cells; and c) incorporation of extensin is a late event in the development of phloem-parenchyma cell walls in carrot.Abbreviations dE-1 antibodies antibodies raised against deglycosylated extensin 1 - ELISA enzyme-linked immunosorbant assay - gE-1 antibodies antibodies raised against glycosylated extensin 1 - HRGP hydroxyproline-rich glycoprotein - PAGE polyacrylamide gel electrophoresis - RG-1 rhamnogalacturonan I - SDS sodium dodecyl sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号