首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings of a susceptible inbred line of male-fertile corn were inoculated with conidia of Helminthosporium maydis race O. Histological and ultrastructural observations of mesophyll, bundle sheath and phloem were made over a period of 8 days. Histological observations at 1 day revealed that lesions were comprised of several dead mesophyll cells bordered by a pair of vascular bundles. By 3 days lesions had developed their characteristic appearance caused by mesophyll collapse and had increased to a width of 10–12 bundles. At the ultrastructural level, the first signs of mesophyll cell change were rupture of the tonoplast and swelling of the mitochondrial matrix followed by a disintegration of the cytoplasm and swelling of the chloroplast stroma. Following these changes the cytoplasm became filled with an electron dense material and the plasmalemma ruptured leaving only partial remnants of chloroplasts as recognizable organelles. All of these changes occurred by 1 day. Bundle sheath cells were more resistant and intact cells could be observed in 3-day-old lesions. Phloem showed signs of degeneration by 1 day with distortion of the sieve-tube element membranes and disintegration of the companion cell cytoplasm. By 4 days the phloem had disintegrated.  相似文献   

2.
Large, intermediate, and small bundles and contiguous tissues of the leaf blade of Hordeum tvulgare L. ‘Morex’ were examined with the transmission electron microscope to determine their cellular composition and the distribution and frequency of the plasmodesmata between the various cell combinations. Plasmodesmata are abundant at the mesophyll/parenchymatous bundle sheath, parenchymatous bundle sheath/mestome sheath, and mestome sheath/vascular parenchyma cell interfaces. Within the bundles, plasmodesmata are also abundant between vascular parenchyma cells, which occupy most of the interface between the sieve tube-companion cell complexes and the mestome sheath. Other vascular parenchyma cells commonly separate the thick-walled sieve tubes from the sieve tube-companion cell complexes. Plasmodesmatal frequencies between all remaining cell combinations of the vascular tissues are very low, even between the thin-walled sieve tubes and their associated companion cells. Both the sieve tube-companion cell complexes and the thick-walled sieve tubes, which lack companion cells, are virtually isolated symplastically from the rest of the leaf. Data on plamodesmatal frequency between protophloem sieve tubes and other cell types in intermediate and large bundles indicate that they (and their associated companion cells, when present) are also isolated symplastically from the rest of the leaf. Collectively, these data indicate that both phloem loading and unloading in the barley leaf involve apoplastic mechanisms.  相似文献   

3.
Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

4.
5.
Ku SB  Shieh YJ  Reger BJ  Black CC 《Plant physiology》1981,68(5):1073-1080
The succulent, cylindrical leaves of the C4 dicot Portulaca grandiflora possess three distinct green cell types: bundle sheath cells (BSC) in radial arrangement around the vascular bundles; mesophyll cells (MC) in an outer layer adjacent to the BSC; and water storage cells (WSC) in the leaf center. Unlike typical Kranz leaf anatomy, the MC do not surround the bundle sheath tissue but occur only in the area between the bundle sheath and the epidermis. Intercellular localization of photosynthetic enzymes was characterized using protoplasts isolated enzymatically from all three green cell types.  相似文献   

6.
The localization of enzymes responsible for nitrate assimilation and the generation of NADH for nitrate reduction were studied in corn (Zea mays L.) leaf blades. The techniques used effectively separated mesophyll and bundle sheath cells as judged by microscopic observations, enzymic assays, chlorophyll a/b ratios and photochemical activities. Nitrate reductase, nitrite reductase, and the nitrate content of leaf blades were localized primarily in the mesophyll cells, although some nitrite reductase was found in the bundle sheath cells. Glutamine synthetase, NAD-malate dehydrogenase, NAD-glyceraldehyde-3-phosphate dehydrogenase, and NADP-glutamate dehydrogenase were found in both types of cells, however, more NADP-glutamate dehydrogenase was found in the bundle sheath cells than in the mesophyll cells. These data indicate that the mesophyll cells are the major site for nitrate assimilation in the leaf blade because they contained an ample supply of nitrate and the enzymes considered essential for the assimilation of nitrate into amino acids. Because the specific activity of nitrate reductase was severalfold lower than the other enzymes involved in nitrate assimilation, nitrate reduction is indicated as the rate-limiting step in situ. A sequence of reactions is proposed for nitrate assimilation in the mesophyll cells of corn leaves as related to the C-4 pathway of photosynthesis.  相似文献   

7.
为了从显微结构上进一步探讨虉草(Phalaris arundinacea L.)的抗旱耐涝性及与利用的关系,于2011年采用常规石蜡切片技术,对其根、茎叶3种营养器官进行解剖观察。结果表明,虉草根的结构自外而内依次为表皮、皮层、维管束鞘、初生韧皮部和初生木质部;茎由表皮、基本组织和维管束构成;叶片内部结构可分为表皮、叶肉和叶脉3部分。根皮层大的细胞间隙和气腔,初生木质部的后生大导管和茎基本组织解体形成的髓腔都是虉草良好的通气组织,是其耐水淹的主要显微特征。茎、叶片角质化的表皮和叶表皮所含的丰富泡状细胞组是虉草具有抗旱性的主要解剖结构特征。叶肉细胞排列紧密且只有少量气孔分布于叶片下表皮,这样的结构可减少蒸腾;叶肉细胞富含叶绿体,增强光合作用,获得更多的同化产物,确保了植株在干旱条件下也有足够的光合产物来维持正常的生理活动。茎、叶维管束部分大量的木纤维起到支撑作用。虉草根的皮层和维管柱部分、茎的基本组织和维管束部分、叶的叶脉部分都含有大面积的厚壁细胞,厚壁细胞中含有丰富的粗纤维和木质素。丰富的粗纤维、木质素等成分则是虉草能成为新能源燃料植物的必备条件。  相似文献   

8.
The origin and early development of procambium and associated ground meristem of major and minor veins have been examined in the leaf blades of seven C4 grass species, representing different taxonomic groups and the three recognized biochemical C4 types (NAD-ME, PCK, and NADP-ME). Comparisons were made with the C3 species, Festuca arundinacea. In “double sheath” (XyMS+) species (Panicum effusum, Eleusine coracana, and Sporoboìus elongatus), the procambium of major veins gives rise to xylem, phloem, and a mestome sheath; associated ground meristem differentiates into PCA (“C4 mesophyll”) tissue and the PCR (“Kranz”) sheath. Development in the C3 species parallels this pattern, except that associated ground meristem differentiates into mesophyll and a parenchymatous bundle sheath. In contrast, major vein procambium of “single sheath” (XyMS–) species (Panicum bulbosum, Digitaria brownii, and Cymbopogon procerus) differentiates into xylem, phloem and a PCR sheath; associated ground meristem gives rise to PCA tissue. These observations of major vein development support W. V. Brown's hypothesis that the PCR sheaths of “double sheath” (XyMS+) C4 grasses are homologous with the parenchymatous bundle sheaths of C3 grasses, while in “single sheath” (XyMS–) C4 species they are homologous with the mestome sheath. Although there are some similarities in the development of the major and minor vascular bundle procambium in the C4 species examined, the ontogeny of the smaller minor veins is characterized by a precocious delineation of the PCR sheath layer that may even precede the appearance of the distinctive cytological features of ground meristem and procambium. This contracted development in minor veins appears to be related to their close spacing in mature leaves and to their comparatively late appearance during leaf ontogeny.  相似文献   

9.
Leaves of the Princeton and a variegated clone of Coleus blumei Benth. were examined with the light microscope to determine the course of their vasculature and the spatial relationship between the mesophyll, bundle sheath, and vascular tissues. In Princeton clone leaves two leaf traces enter the petiole at the node and quickly branch to form an arc of bundles which undergo further divisions as well as fusions in the distal half of the petiole. The anastomosing arc of bundles reaches its greatest complexity in the base of the midvein, where its lateral-most bundles unite and diverge outward to form secondary veins. As the midvein bundles continue acropetally, they gradually fuse more and divide less until only a single bundle remains, from which secondaries and smaller veins branch. Major (ribbed) veins include not only the midvein and secondaries but also tertiary and quaternary veins. Decreasing vein size is accompanied by increasing direct contact between vascular and photosynthetic tissues. Minor veins, which make up 86% of the total vein length, are completely surrounded by photosynthetic bundle sheaths and mesophyll consisting of palisade and spongy parenchyma. Statoliths occur in a layer of cells just outside the phloem of the petiole-midrib axis and secondary veins. Functional hydathodes are present at the apices of the marginal teeth. The overall organization of tissues in variegated leaves differs little in either the green or albuminous areas from corresponding (but always green) regions of Princeton leaves. Chloroplasts are lacking in mesophyll, bundle-sheath, and most guard cells of the albuminous region but are present in guard cells which are within 1 mm of green areas.  相似文献   

10.
The anatomy of leaves and inflorescence peduncles was studied in species of Monotrema (4), Stegolepis (1) and Saxofridericia (1), aiming to contribute to the taxonomy of Rapateaceae. The form and structure of leaf blade midrib and the form of the inflorescence peduncle are diagnostic characteristics for the studied species. Monotrema is distinguished by: epidermal and vascular bundle outer sheath cells containing phenolic compounds in both organs; leaf blade with palisade and spongy chlorenchyma, arm-parenchyma, and air canals between the vascular bundles; leaf sheath with phenolic idioblasts in the mesophyll; inflorescence peduncle with tabular epidermal cells and air canals in the cortex and pith. Such characteristics support the recognition of Monotremoideae, which includes Monotrema. Stegolepis guianensis is distinguished by thick-walled epidermal cells and a plicate chlorenchyma in both organs; leaf blade with subepidermal fiber strands in abaxial surface and a heterogeneous mesophyll; inflorescence peduncle with rounded epidermal cells, a hypodermis with slightly thick-walled cells, and a pith with isodiametric cells and vascular bundles. Saxofridericia aculeata is distinguished by papillate epidermal cells in both organs; unifacial leaf blade with subepidermal fiber strands in both surfaces and a regular chlorenchyma; leaf sheath with a hypodermis in both surfaces and fiber bundles in the mesophyll; inflorescence peduncle with an undefined cortex and a hypodermis with thick-walled cells. S. guianensis shares few characteristics with S. aculeata, supporting their placement in different tribes.  相似文献   

11.
Arundinella hirta L. is a C4 plant having an unusual C4 leaf anatomy. Besides mesophyll and bundle sheath cells, A. hirta leaves have specialized parenchyma cells which look morphologically like bundle sheath cells but which lack vascular connections and are located between veins, running parallel to them. Activities of phosphoenolpyruvate and ribulose-1,5-bisphosphate carboxylases and phosphoenolpyruvate carboxykinase, NADP-and NAD-malic enzymes were determined for whole leaf extracts and isolated mesophyll protoplasts, specialized parenchyma cells, and bundle sheath cells. The data indicate that A. hirta is a NADP-malic enzyme type C4 species. In addition, specialized parenchyma cells and bundle sheath cells are enzymatically alike. Compartmentation of enzymes followed the C4 pattern with phosphoenolpyruvate carboxylase being restricted to mesophyll cells while ribulose-1,5-bisphosphate carboxylase and decarboxylating enzymes were restricted to bundle sheath and specialized parenchyma cells.  相似文献   

12.
We investigated the function of the auxin-regulated cell wall gene DC 2.15, a member of a small gene family, present in Daucus carota (L.) and other plants. Cultured cells derived from carrot hypocotyls transformed by the DC 2.15 cDNA in antisense direction were ten-fold longer than wild-type cells, indicating a function of the corresponding protein in suppression of cell expansion. The analysis of carrot plants expressing the DC 2.15 gene in antisense direction showed that the corresponding protein and/or related proteins probably are involved in leaf and vascular bundle development. The antisense plants generally displayed a retarded growth phenotype and delayed greening in comparison to wild-type plants. The asymmetric architecture of the wild-type leaves was degenerated in the DC 2.15 antisense plants and the leaves showed a torsion within and along their major vein. The vascular bundles showed a lowered ratio of the phloem/xylem area in cross sections of the leaf middle vein whereas the bundle sheath and the cambium showed no obvious phenotype. Expression of a promoter-GUS construct was found primarily in vascular bundles of stems, leaves and in the nectar-producing flower discs. The observed pleiotropic antisense phenotype indicates, by loss of function, that one or several related cell wall proteins of this gene family are necessary to realize several complex developmental processes.  相似文献   

13.
We have exploited the positional gradient of cellular differentiation in Zea mays leaves to study the accumulation of mRNAs encoding subunits of the two CO2-fixing enzymes and the major chlorophyll-binding protein. These three proteins are differentially compartmentalized in the two photosynthetically active cell types of the leaf. Previous studies have shown that accumulation of the two carboxylases commences 2 to 4 cm from the base of the leaf (Mayfield SP, WC Taylor Planta 161: 481-486) at a position where bundle sheath and mesophyll cells show morphological evidence of maturation. The light-harvesting chlorophyll a/b protein accumulates progressively from the leaf base, as does its mRNA, in spite of its localization in mesophyll cells after cellular differentiation occurs. While small quantities of phosphoenolpyruvate carboxylase mRNA are detectable in the basal region of the leaf, significant mRNA accumulation is coincident with that of the polypeptide at 4 to 6 cm from the leaf base, the region where bundle sheath and mesophyll cells exhibit fully differentiated morphologies. mRNAs encoding the small and large subunits of ribulose 1,5-bisphosphate carboxylase accumulate to significant levels before bundle sheath cells are fully differentiated and before their polypeptides are detectable. Cytological examination indicates that this is the position at which the maturation of intermediate vascular bundles is first evident. Cytosolically localized small subunit mRNA and chloroplast-localized large subunit mRNA are complexed with polyribosomes at all positions of the leaf.  相似文献   

14.
Tashima  Maho  Yabiku  Takayuki  Ueno  Osamu 《Photosynthesis research》2021,147(2):211-227

C4-like plants represent the penultimate stage of evolution from C3 to C4 plants. Although Coleataenia prionitis (formerly Panicum prionitis) has been described as a C4 plant, its leaf anatomy and gas exchange traits suggest that it may be a C4-like plant. Here, we reexamined the leaf structure and biochemical and physiological traits of photosynthesis in this grass. The large vascular bundles were surrounded by two layers of bundle sheath (BS): a colorless outer BS and a chloroplast-rich inner BS. Small vascular bundles, which generally had a single BS layer with various vascular structures, also occurred throughout the mesophyll together with BS cells not associated with vascular tissue. The mesophyll cells did not show a radial arrangement typical of Kranz anatomy. These features suggest that the leaf anatomy of C. prionitis is on the evolutionary pathway to a complete C4 Kranz type. Phosphoenolpyruvate carboxylase (PEPC) and pyruvate, Pi dikinase occurred in the mesophyll and outer BS. Glycine decarboxylase was confined to the inner BS. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) accumulated in the mesophyll and both BSs. C. prionitis had biochemical traits of NADP-malic enzyme type, whereas its gas exchange traits were close to those of C4-like intermediate plants rather than C4 plants. A gas exchange study with a PEPC inhibitor suggested that Rubisco in the mesophyll could fix atmospheric CO2. These data demonstrate that C. prionitis is not a true C4 plant but should be considered as a C4-like plant.

  相似文献   

15.
甘蔗叶不同部位ATP酶活性细胞化学定位   总被引:5,自引:0,他引:5  
甘蔗叶片,叶鞘和肥厚带韧皮部 ATP 酶活性定位于筛管、伴胞的质膜、内质网和某些伴胞细胞基质、小囊泡和发育成熟的液泡上;叶片韧皮部薄壁细胞、厚壁细胞和厚壁通道细胞质膜及小囊泡中亦显示有 ATP 水解产物;维管束鞘细咆与厚壁细胞或厚壁通道细胞所构成的细胞间隙上也存在有 ATP 酶活性反应产物沉淀。甘蔗叶片大、中、小三种维管束,从小维管束到大维管束,面向细胞间隙的细胞表面上的 ATP 酶活性逐渐增强,而维管束鞘细胞质膜上的 ATP 酶活性则趋于减弱;同一维管束内则以韧皮部细胞的 ATP 酶活性最强。维管束鞘细胞与叶肉细胞之间存在很多的胞间连丝,并表现出高的 ATP 酶活性。讨论了 ATP 酶活性的分布状态与叶肉细胞的光合产物向韧皮部运输的关系。  相似文献   

16.
Eleocharis vivipara Link alters its photosynthetic mode depending on the growth environment. It utilizes C4 photosynthesis when grown under terrestrial conditions (terrestrial form) and C3 photosynthesis when grown under submerged conditions (submerged form). The photosynthetic organ (the mature internodal region of the culm) of the terrestrial form shows typical Kranz anatomy with well-developed bundle sheath cells, while the bundle sheath cells of the submerged form are not developed. In the mature internodal region of the terrestrial form, expression of the genes encoding two carboxylases, the small subunit of ribulose 1,5-bisphosphate carboxylase (RbcS) and phosphoenolpyruvate carboxylase (Ppc), occurred mainly in bundle sheath cells and in mesophyll cells, respectively, as seen in a typical C4 leaf. In the submerged form, RbcS was expressed in both bundle sheath cells and mesophyll cells, and no expression of Ppc was observed. In the immature internodal region with undeveloped bundle sheath cells, both life forms showed the same expression pattern as in C3 plants: RbcS expression was localized in mesophyll cells and no Ppc expression was observed. The C4-type expression pattern was established concomitantly with the development of bundle sheath cells during tissue maturation in the terrestrial internode. In contrast to the terrestrial form, the submerged form maintains C3-type gene expression during tissue maturation. When the terrestrial culm was submerged, a region of transition from the terrestrial form to the submerged form was established in newly sprouting culms. In this transitional region, C4-type expression of the two carboxylase genes was still maintained even though the development of bundle sheath cells was repressed. This observation suggests that the C4-type cell-specific gene expression pattern does not depend on the formation of Kranz anatomy.  相似文献   

17.
Leaf explants of tobacco were cultured on MS medium supplemented with 2 mg/ l NAA and 0.5 mg/l BA for induction of callus formation, or supplemented with 2 mg/l BA for bud formation. Histocytological observations on callus and bud formation were carried out. Three days after cultivation, mesophyll cells enlarged, the nuclei became more apparent and dark stained, and starch accumulated in the cells. Cell divisions began in the mesophyll cells at the cut ends, in the palisade cells near the vascular bundles and in the vascular parenchyma. Mitotic activity then spreaded over tbc explants, and was most active at the edges of leaf explants. Regular rows of cells appeared as a result of series of transverse divisions in the palisade. The number of chloroplast in the mesophyll cells decreased and degenerated gradually. A number of meristemoids ware initiated in the cultured leaf explants after 7 days of cultivation. They were originated from two kinds of tissues, the mesophyll and vascular bundle, including the phloem parenchyma and vascular sheath. On the medium with NAA and BA, callus formation was induced with vigorous divisions, whereas bud primordia were differentiated from the meristomoids on the medimn with 2 mg/l BA. The buds were developed from both the superficial meristemoids and the meristematic regions deep within the callused leaf explants. The accumulated starch in the cells gradually disappeared as bud formation proceeded.  相似文献   

18.
We investigated the phloem loading pathway in barley, by determining plasmodesmatal frequencies at the electron microscope level for both intermediate and small blade bundles of mature barley leaves. Lucifer yellow was injected intercellularly into bundle sheath, vascular parenchyma, and thin-walled sieve tubes. Passage of this symplastically transported dye was monitored with an epifluorescence microscope under blue light. Low plasmodesmatal frequencies endarch to the bundle sheath cells are relatively low for most interfaces terminating at the thin- and thick-walled sieve tubes within this C3 species. Lack of connections between vascular parenchyma and sieve tubes, and low frequencies (0.5% plasmodesmata per μm cell wall interface) of connections between vascular parenchyma and companion cells, as well as the very low frequency of pore-plasmodesmatal connections between companion cells and sieve tubes in small bundles (0.2% plasmodesmata per μm cell wall interface), suggest that the companion cell-sieve tube complex is symplastically isolated from other vascular parenchyma cells in small bundles. The degree of cellular connectivity and the potential isolation of the companion cell-sieve tube complex was determined electrophysiologically, using an electrometer coupled to microcapillary electrodes. The less negative cell potential (average –52 mV) from mesophyll to the vascular parenchyma cells contrasted sharply with the more negative potential (–122.5 mV) recorded for the companion cell-thin-walled sieve tube complex. Although intercellular injection of lucifer yellow clearly demonstrated rapid (0.75 μm s-1) longitudinal and radial transport in the bundle sheath-vascular parenchyma complex, as well as from the bundle sheath through transverse veins to adjacent longitudinal veins, we were neither able to detect nor present unequivocal evidence in support of the symplastic connectivity of the sieve tubes to the vascular parenchyma. Injection of the companion cell-sieve tube complex, did not demonstrate backward connectivity to the bundle sheath. We conclude that the low plasmodesmatal frequencies, coupled with a two-domain electropotential zonation configuration, and the negative transport experiments using lucifer yellow, precludes symplastic phloem loading in barley leaves.  相似文献   

19.
《Flora》2006,201(7):555-569
We investigated the anatomical and chemical characteristics of the foliar vascular bundles in four ecotypes of common reed (Phragmites communis Trin.) inhabiting the desert region of northwest China: swamp reed (SR), low-salt meadow reed (LSMR), high-salt meadow reed (HSMR), and dune reed (DR). The cell walls of the vascular systems of all four ecotypes exhibited bright autofluorescence. Compared to SR, the three terrestrial ecotypes, LSMR, HSMR and DR, had higher percentages of bundle sheath cell areas, lower percentages of xylem and phloem areas, lower xylem/phloem ratios, and higher frequencies of leaf veins. In addition to differences in the autofluorescence intensity and the morphology of the detached cell walls of the vascular bundle sheath, the three terrestrial ecotypes also exhibited anatomical differences in the outerface tangential walls of the bundle sheath and higher frequencies of pit fields in the walls in comparison to SR. The Fourier transform infrared (FTIR) microspectroscopy spectra of the vascular bundle cell walls differed greatly among the tissues of the different ecotypes as well as within different tissues within each ecotype. Histochemical methods revealed that although pectins were present in all bundle tissue cell walls, large amounts of unesterified pectin were present in the phloem cell walls, especially in the salt reed ecotypes LSMR and HSMR, and large quantities of highly methyl-esterified pectin were present in the xylem and sclerenchyma cell walls of the SR and DR ecotypes. Differences were observed in the lignification and suberization of the xylem and sclerenchyma cell walls of the four ecotypes, but the phloem and bundle sheath cell walls were generally similar. These results suggest that the adaptation of common reed, a hydrophytic species, to saline or drought-prone dunes triggers changes in the anatomical and chemical characteristics of the foliar vascular bundle tissues. These alterations, including higher percentages of bundle sheath areas and lower percentages of xylem and phloem areas and their ratios, changes in the chemical compositions and modifications of the cell walls of different vascular bundle tissues, and differences in the deposition of major cell wall components in the walls of different vascular bundle tissues, could contribute to the high resistance of reeds to extreme habitats such as saline and drought-prone dunes.  相似文献   

20.
Structural aspects of the leaves of two common festucoids,Festuca ovina andPoa sphondylodes, have been examined employing the electron microscopy. The nature of vascular bundles and of sheaths that surround vascular tissues was discussed in the study. The festucoids exhibited a non-Kranz C-3 anatomy with more than four mesophyll cells separating the bundle sheaths of a leaf blade. Vascular tissues in theseFestuca andPoa leaves were surrounded by a double sheath: an inner distinct mestome sheath (MST) and an outer indistinctive layer of parenchymatous bundle sheath (PBS) cells. The PBS cells were much larger than the MST and had thin walls. The MST cells were relatively small and rectangular inP. sphondylodes and more or less hexangular in transverse sections ofF. ovina. InP. sphondylodes, MST had conspicuously thickened inner tangential walls with asymmetrically uninterrupted suberized lamellae in radial and tangential walls. In most differentiated MST cells, all walls were highly suberized. During suberin deposition, MST cells were quite vacuolated and most of the cytoplasm was present as a thin peripheral layer. However, MST walls inF. ovina revealed very thin suberized lamellae with translucent striations. No chloroplasts were detected inP. sphondylodes, whereas the MST inF. ovina contained small chloroplasts. Plasmodesmata were well developed in the primary pit fields of walls between MST and vascular cells, and between adjacent MST cells. Plasmodesmata were less frequent in the walls between the inner and outer sheath cells. Suberized lamellae were totally absent from the PBS cell walls in all veins. External to the PBS, the mesophyll comprised thin walled cells with abundant intercellular spaces. Peripherally arranged chloroplasts in the mesophyll were numerous and often larger than those of PBS and MST cells. Characteristics associated with C-3 and other ultrastructural features were also discussed in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号