首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

2.
Redox state of glutathione in human plasma   总被引:5,自引:0,他引:5  
Thiol and disulfide forms of glutathione (GSH) and cysteine (Cys) were measured in plasma from 24 healthy individuals aged 25-35 and redox potential values (E(h)) for thiol/disulfide couples were calculated using the Nernst equation. Although the concentration of GSH (2.8 +/- 0.9 microM) was much greater than that of GSSG (0.14 +/- 0.04 microM), the redox potential of the GSSG/2GSH pool (-137 +/- 9 mV) was considerably more oxidized than values for tissues and cultured cells (-185 to -258 mV). This indicates that a rapid oxidation of GSH occurs upon release into plasma. The difference in values between individuals was remarkably small, suggesting that the rates of reduction and oxidation in the plasma are closely balanced to maintain this redox potential. The redox potential for the Cys and cystine (CySS) pool (-80 +/- 9 mV) was 57 mV more oxidized, showing that the GSSG/2GSH and the CySS/2Cys pools are not in redox equilibrium in the plasma. Potentials for thiol/disulfide couples involving CysGly were intermediate between the values for these couples. Regression analyses showed that the redox potentials for the different thiol/disulfide couples within individuals were correlated, with the E(h) for CySS-mono-Gly/(Cys. CysGly) providing the best correlation with other low molecular weight pools as well as protein disulfides of GSH, CysGly and Cys. These results suggest that E(h) values for GSSG/2GSH and CySS-mono-Gly/(Cys. CysGly) may provide useful means to quantitatively express the oxidant/antioxidant balance in clinical and epidemiologic studies.  相似文献   

3.
The mammalian cytosolic/nuclear thioredoxin system, comprising thioredoxin (Trx), selenoenzyme thioredoxin reductase (TrxR), and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. The active site of reduced Trx comprises Cys(32)-Gly-Pro-Cys(35) thiols that catalyze target disulfide reduction, generating a disulfide. Human Trx1 has also three structural Cys residues in positions 62, 69, and 73 that upon diamide oxidation induce a second Cys(62)-Cys(69) disulfide as well as dimers and multimers. We have discovered that after incubation with H(2)O(2) only monomeric two-disulfide molecules are generated, and they are inactive but able to regain full activity in an autocatalytic process in the presence of NADPH and TrxR. There are conflicting results regarding the effects of S-nitrosylation on Trx antioxidant functions and which residues are involved. We found that S-nitrosoglutathione-mediated S-nitrosylation at physiological pH is critically dependent on the redox state of Trx. Starting from fully reduced human Trx, both Cys(69) and Cys(73) were nitrosylated, and the active site formed a disulfide; the nitrosylated Trx was not a substrate for TrxR but regained activity after a lag phase consistent with autoactivation. Treatment of a two-disulfide form of Trx1 with S-nitrosoglutathione resulted in nitrosylation of Cys(73), which can act as a trans-nitrosylating agent as observed by others to control caspase 3 activity (Mitchell, D. A., and Marletta, M. A. (2005) Nat. Chem. Biol. 1, 154-158). The reversible inhibition of human Trx1 activity by H(2)O(2) and NO donors is suggested to act in cell signaling via temporal control of reduction for the transmission of oxidative and/or nitrosative signals in thiol redox control.  相似文献   

4.
Grx5 is a yeast mitochondrial protein involved in iron-sulfur biogenesis that belongs to a recently described family of monothiolic glutaredoxin-like proteins. No member of this family has been biochemically characterized previously. Grx5 contains a conserved cysteine residue (Cys-60) and a non-conserved one (Cys-117). In this work, we have purified wild type and mutant C60S and C117S proteins and characterized their biochemical properties. A redox potential of -175 mV was calculated for wild type Grx5. The pKa values obtained by titration of mutant proteins with iodoacetamide at different pHs were 5.0 for Cys-60 and 8.2 for Cys-117. When Grx5 was incubated with glutathione disulfide, a transient mixed disulfide was formed between glutathione and the cystein 60 of the protein because of its low pKa. Binding of glutathione to Cys-60 promoted a decrease in the Cys-117 pKa value that triggered the formation of a disulfide bond between both cysteine residues of the protein, indicating that Cys-117 plays an essential role in the catalytic mechanism of Grx5. The disulfide bond in Grx5 could be reduced by GSH but at a rate at least 20 times slower than that observed for the reduction of glutaredoxin 1 from E. coli, a dithiolic glutaredoxin. This slow reduction rate could suggest that GSH may not be the physiologic reducing agent of Grx5. The fact that wild type Grx5 efficiently reduced a glutathiolated protein used as a substrate indicated that Grx5 may act as a thiol reductase inside the mitochondria.  相似文献   

5.
The skeletal muscle Ca(2+)-release channel (ryanodine receptor type 1 (RyR1)) is a redox sensor, susceptible to reversible S-nitrosylation, S-glutathionylation, and disulfide oxidation. So far, Cys-3635 remains the only cysteine residue identified as functionally relevant to the redox sensing properties of the channel. We demonstrate that expression of the C3635A-RyR1 mutant in RyR1-null myotubes alters the sensitivity of the ryanodine receptor to activation by voltage, indicating that Cys-3635 is involved in voltage-gated excitation-contraction coupling. However, H(2)O(2) treatment of C3635A-RyR1 channels or wild-type RyR1, following their expression in human embryonic kidney cells, enhances [(3)H]ryanodine binding to the same extent, suggesting that cysteines other than Cys-3635 are responsible for the oxidative enhancement of channel activity. Using a combination of Western blotting and sulfhydryl-directed fluorescent labeling, we found that two large regions of RyR1 (amino acids 1-2401 and 3120-4475), previously shown to be involved in disulfide bond formation, are also major sites of both S-nitrosylation and S-glutathionylation. Using selective isotopecoded affinity tag labeling of RyR1 and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy, we identified, out of the 100 cysteines in each RyR1 subunit, 9 that are endogenously modified (Cys-36, Cys-315, Cys-811, Cys-906, Cys-1591, Cys-2326, Cys-2363, Cys-3193, and Cys-3635) and another 3 residues that were only modified with exogenous redox agents (Cys-253, Cys-1040, and Cys-1303). We also identified the types of redox modification each of these cysteines can undergo. In summary, we have identified a discrete subset of cysteines that are likely to be involved in the functional response of RyR1 to different redox modifications (S-nitrosylation, S-glutathionylation, and oxidation to disulfides).  相似文献   

6.
Cigarette smoking contributes to the development or progression of numerous chronic and age-related disease processes, but detailed mechanisms remain elusive. In the present study, we examined the redox states of the GSH/GSSG and Cys/CySS couples in plasma of smokers and nonsmokers between the ages of 44 and 85 years (n = 78 nonsmokers, n = 43 smokers). The Cys/CySS redox in smokers (−64 ± 16 mV) was more oxidized than nonsmokers (− 76 ± 11 mV; p < .001), with decreased Cys in smokers (9 ± 5 μM) compared to nonsmokers (13 ± 6 μM; p < .001). The GSH/GSSG redox was also more oxidized in smokers (−128 ± 18 mV) than in nonsmokers (−137 ± 17 mV; p = .01) and GSH was lower in smokers (1.8 ± 1.3 μM) than in nonsmokers (2.4 ± 1.0; p < .005). Although the oxidation of GSH/GSSG can be explained by the role of GSH in detoxification of reactive species in smoke, the more extensive oxidation of the Cys pool shows that smoking has additional effects on sulfur amino acid metabolism. Cys availability and Cys/CySS redox are known to affect cell proliferation, immune function, and expression of death receptor systems for apoptosis, suggesting that oxidation of Cys/CySS redox or other perturbations of cysteine metabolism may have a key role in chronic diseases associated with cigarette smoking.  相似文献   

7.
Glutaredoxins (Grxs) are glutathione-dependent oxidoreductases that belong to the thioredoxin superfamily catalyzing thiol-disulfide exchange reactions via active site cysteine residues. Focusing on the human dithiol glutaredoxins having a C-X-Y-C active site sequence motif, the redox potentials of hGrx1 and hGrx2 were determined to be -232 and -221 mV, respectively, using a combination of redox buffers, protein-protein equilibrium and thermodynamic linkage. In addition, a nonactive site disulfide was identified between Cys28 and Cys113 in hGrx2 using redox buffers and chemical digestion. This disulfide confers nearly five kcal mol(-1) additional stability by linking the C-terminal helix to the bulk of the protein. The redox potential of this nonactive site disulfide was determined to be -317 mV and is thus expected to be present in all but the most reducing conditions in vivo. As all human glutaredoxins contain additional nonactive site cysteine residues, a full phylogenetic analysis was performed to help elucidate their structural and functional roles. Three distinct groups were found: Grx1, Grx2, and Grx5, the latter representing a highly conserved group of monothiol glutaredoxins having a C-G-F-S active site sequence, with clear homologs from bacteria to human. Grx1 and Grx2 diverged from a common ancestor before the origin of vertebrates, possibly even earlier in animal evolution. The highly stabilizing nonactive site disulfide observed in hGrx2 is found to be a conserved feature within the deuterostomes and appears to be the only additional conserved intramolecular disulfide within the glutaredoxins.  相似文献   

8.
Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis.  相似文献   

9.
The reduced glutathione (GSH)/oxidized glutathione (GSSG) redox state is thought to function in signaling of detoxification gene expression, but also appears to be tightly regulated in cells under normal conditions. Thus it is not clear that the magnitude of change in response to physiologic stimuli is sufficient for a role in redox signaling under nontoxicologic conditions. The purpose of this study was to determine the change in 2GSH/GSSG redox during signaling of differentiation and increased detoxification enzyme activity in HT29 cells. We measured GSH, GSSG, cell volume, and cell pH, and we used the Nernst equation to determine the changes in redox potential Eh of the 2GSH/GSSG pool in response to the differentiating agent, sodium butyrate, and the detoxification enzyme inducer, benzyl isothiocyanate. Sodium butyrate caused a 60-mV oxidation (from -260 to -200 mV), an oxidation sufficient for a 100-fold change in protein dithiols:disulfide ratio. Benzyl isothiocyanate caused a 16-mV oxidation in control cells but a 40-mV oxidation (to -160 mV) in differentiated cells. Changes in GSH and mRNA for glutamate:cysteine ligase did not correlate with Eh; however, correlations were seen between Eh and glutathione S-transferase (GST) and nicotinamide adenine dinucleotide phosphate (NADPH):quinone reductase activities (N:QR). These results show that 2GSH/GSSG redox changes in response to physiologic stimuli such as differentiation and enzyme inducers are of a sufficient magnitude to control the activity of redox-sensitive proteins. This suggests that physiologic modulation of the 2GSH/GSSG redox poise could provide a fundamental parameter for the control of cell phenotype.  相似文献   

10.
Redox-sensitive yellow fluorescent protein (rxYFP) contains a dithiol disulfide pair that is thermodynamically suitable for monitoring intracellular glutathione redox potential. Glutaredoxin 1 (Grx1p) from yeast is known to catalyze the redox equilibrium between rxYFP and glutathione, and here, we have generated a fusion of the two proteins, rxYFP-Grx1p. In comparison to isolated subunits, intramolecular transfer of reducing equivalents made the fusion protein kinetically superior in reactions with glutathione. The rate of GSSG oxidation was thus improved by a factor of 3300. The reaction with GSSG most likely takes place entirely through a glutathionylated intermediate and not through transfer of an intramolecular disulfide bond. However, during oxidation by H(2)O(2), hydroxyethyl disulfide, or cystine, the glutaredoxin domain reacted first, followed by a rate-limiting (0.13 min(-)(1)) transfer of a disulfide bond to the other domain. Thus, reactivity toward other oxidants remains low, giving almost absolute glutathione specificity. We have further studied CPYC --> CPYS variants in the active site of Grx1p and found that the single Cys variant had elevated oxidoreductase activity separately and in the fusion. This could not be ascribed to the lack of an unproductive side reaction to glutaredoxin disulfide. Instead, slower alkylation kinetics with iodoacetamide indicates a better leaving-group capability of the remaining cysteine residue, which can explain the increased activity.  相似文献   

11.
Glutamine (Gln) and keratinocyte growth factor (KGF) each stimulate intestinal epithelial cell growth, but regulatory mechanisms are not well understood. We determined whether Gln and KGF alter intra- and extracellular thiol/disulfide redox pools in Caco-2 cells cultured in oxidizing or reducing cell medium and whether such redox variations are a determinant of proliferative responses to these agents. Cells were cultured over a physiological range of oxidizing to reducing extracellular thiol/disulfide redox (Eh) conditions, obtained by varying cysteine (Cys) and cystine (CySS) concentrations in cell medium. Cell proliferation was determined by 5-bromo-2-deoxyuridine (BrdU) incorporation. Gln (10 mmol/l) or KGF (10 microg/l) did not alter BrdU incorporation at reducing Eh (-131 to -150 mV), but significantly increased incorporation at more oxidizing Eh (Gln at 0 to -109 mV; KGF at -46 to -80 mV). Cellular glutathione/glutathione disulfide (GSH/GSSG) Eh was unaffected by Gln, KGF, or variations in extracellular Cys/CySS Eh. Control cells largely maintained extracellular Eh at initial values after 24 h (-36 to -136 mV). However, extracellular Eh shifted toward a narrow physiological range with Gln and KGF treatment (Gln -56 to -88 mV and KGF -76 to -92 mV, respectively; P < 0.05 vs. control). The results indicate that thiol/disulfide redox state in the extracellular milieu is an important determinant of Caco-2 cell proliferation induced by Gln and KGF, that this control is independent of intracellular GSH redox status, and that both Gln and KGF enhance the capability of Caco-2 cells to modulate extremes of extracellular redox.  相似文献   

12.
Metal toxicity often includes the generation of reactive oxygen species (ROS) and subsequent oxidative stress, but whether metals have different effects on the major thiol antioxidant systems is unknown. Here, we examine the effects of arsenic, cadmium, cesium, copper, iron, mercury, nickel, and zinc on glutathione (GSH), cytoplasmic thioredoxin-1 (Trx1), and mitochondrial thioredoxin-2 (Trx2) redox states. GSH/GSSG redox states were determined by HPLC, and Trx1 and Trx2 redox states were determined by Redox Western blot methods. Copper, iron, and nickel showed significant oxidation of GSH but relatively little oxidation of either Trx1 or Trx2. Arsenic, cadmium, and mercury showed little oxidation of GSH but significantly oxidized both Trx1 and Trx2. The magnitude of effects of arsenic, cadmium, and mercury was greater for the mitochondrial Trx2 (>60 mV) compared to the cytoplasmic Trx1 (20 to 40 mV). Apoptosis signal-regulating kinase 1 (ASK1) may be activated by two different pathways, one dependent upon GSH and glutaredoxin and the other independent of GSH and dependent upon thioredoxin. ASK1 activation and cell death were observed with metals that oxidized thioredoxins but not with metals that oxidized GSH. These findings show that metals have differential oxidative effects on the major thiol antioxidant systems and that activation of apoptosis may be associated with metal ions that oxidize thioredoxin and activate ASK1. The differential oxidation of the major thiol antioxidant systems by metal ions suggest that the distinct thiol/disulfide redox couples represented by GSH/GSSG and the thioredoxins may convey different levels of control in apoptotic and toxic signaling pathways.  相似文献   

13.
Glutaredoxins (Grx) are small (approximately 12kDa) proteins which catalyze thiol disulfide oxidoreductions involving glutathione (GSH) and disulfides in proteins or small molecules. Here, we present data which demonstrate the ability of glutaredoxins to catalyze the reduction of oxidized glutathione (GSSG) by dihydrolipoamide (DHL), an important biological redox catalyst and synthetic antioxidant. We have designed a new assay method to quantify the rate of reduction of GSSG and other disulfides by reduced lipoamide and have tested a set of eight recombinant Grx from human, rat, yeast, and E. coli. Lipoamide dependent activity is highest with the large atypical E. coli Grx2 (k(cat)=3.235 min(-1)) and lowest for human mitochondrial Grx2a (k(cat)=96 min(-1)) covering a wider range than k(cat) for the standard reduction of hydroxyethyldisulfide (HED) by GSH (290-2.851 min(-1)). The lipoamide/HED activity ratio was highest for yeast Grx2 (1.25) and E. coli Grx2 and lowest for E. coli Grx1 (0.13). These results suggest a new role for Grxs as ancillary proteins that could shunt reducing equivalents from main catabolic pathways to recycling of GSSG via a lipoyl group, thus serving biochemical functions which involve GSH but without NAD(P)H consumption.  相似文献   

14.
15.
Redox compartmentalization in eukaryotic cells   总被引:1,自引:0,他引:1  
Diverse functions of eukaryotic cells are optimized by organization of compatible chemistries into distinct compartments defined by the structures of lipid-containing membranes, multiprotein complexes and oligomeric structures of saccharides and nucleic acids. This structural and chemical organization is coordinated, in part, through cysteine residues of proteins which undergo reversible oxidation-reduction and serve as chemical/structural transducing elements. The central thiol/disulfide redox couples, thioredoxin-1, thioredoxin-2, GSH/GSSG and cysteine/cystine (Cys/CySS), are not in equilibrium with each other and are maintained at distinct, non-equilibrium potentials in mitochondria, nuclei, the secretory pathway and the extracellular space. Mitochondria contain the most reducing compartment, have the highest rates of electron transfer and are highly sensitive to oxidation. Nuclei also have more reduced redox potentials but are relatively resistant to oxidation. The secretory pathway contains oxidative systems which introduce disulfides into proteins for export. The cytoplasm contains few metabolic oxidases and this maintains an environment for redox signaling dependent upon NADPH oxidases and NO synthases. Extracellular compartments are maintained at stable oxidizing potentials. Controlled changes in cytoplasmic GSH/GSSG redox potential are associated with functional state, varying with proliferation, differentiation and apoptosis. Variation in extracellular Cys/CySS redox potential is also associated with proliferation, cell adhesion and apoptosis. Thus, cellular redox biology is inseparable from redox compartmentalization. Further elucidation of the redox control networks within compartments will improve the mechanistic understanding of cell functions and their disruption in disease.  相似文献   

16.
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m−1 s−1) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.  相似文献   

17.
Oxidative stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) is poorly understood. Following one dose of TCDD (5 microg/kg body weight), mitochondrial succinate-dependent production of superoxide and H2O2 in mouse liver doubled at 7-28 days, then subsided by day 56; concomitantly, levels of GSH and GSSG increased in both cytosol and mitochondria. Cytosol displayed a typical oxidative stress response, consisting of diminished GSH relative to GSSG, decreased potential to reduce protein-SSG mixed disulfide bonds (type 1 thiol redox switch) or protein-SS-protein disulfide bonds (type 2 thiol redox switch), and a +10 mV change in GSSG/2GSH reduction potential. In contrast, mitochondria showed a rise in reduction state, consisting of increased GSH relative to GSSG, increases in type 1 and type 2 thiol redox switches, and a -25 mV change in GSSG/2GSH reduction potential. Comparing Ahr(-/-) knock-out and wild-type mice, we found that TCDD-induced thiol changes in both cytosol and mitochondria were dependent on the aromatic hydrocarbon receptor (AHR). GSH was rapidly taken up by mitochondria and stimulated succinate-dependent H2O2 production. A linear dependence of H2O2 production on the reduction potential for GSSG/2GSH exists between -150 and -300 mV. The TCDD-stimulated increase in succinate-dependent and thiol-stimulated production of reactive oxygen paralleled a four-fold increase in formamidopyrimidine DNA N-glycosylase (FPG)-sensitive cleavage sites in mitochondrial DNA, compared with a two-fold increase in nuclear DNA. These results suggest that TCDD produces an AHR-dependent oxidative stress in mitochondria, with concomitant mitochondrial DNA damage mediated, at least in part, by an increase in the mitochondrial thiol reduction state.  相似文献   

18.
Glutaredoxin 2 (Grx2) from Escherichia coli is distinguished from other glutaredoxins by its larger size, low overall sequence identity and lack of electron donor activity with ribonucleotide reductase. However, catalysis of glutathione (GSH)-dependent general disulfide reduction by Grx2 is extremely efficient. The high-resolution solution structure of E. coli Grx2 shows a two-domain protein, with residues 1 to 72 forming a classical "thioredoxin-fold" glutaredoxin domain, connected by an 11 residue linker to the highly helical C-terminal domain, residues 84 to 215. The active site, Cys9-Pro10-Tyr11-Cys12, is buried in the interface between the two domains, but Cys9 is solvent-accessible, consistent with its role in catalysis. The structures reveal the hither to unknown fact that Grx2 is structurally similar to glutathione-S-transferases (GST), although there is no obvious sequence homology. The similarity of these structures gives important insights into the functional significance of a new class of mammalian GST-like proteins, the single-cysteine omega class, which have glutaredoxin oxidoreductase activity rather than GSH-S-transferase conjugating activity. E. coli Grx 2 is structurally and functionally a member of this new expanding family of large glutaredoxins. The primary function of Grx2 as a GST-like glutaredoxin is to catalyze reversible glutathionylation of proteins with GSH in cellular redox regulation including stress responses.  相似文献   

19.
In most organisms, thioredoxin (Trx) and/or glutathione (GSH) systems are essential for redox homeostasis and deoxyribonucleotide synthesis. Platyhelminth parasites have a unique and simplified thiol-based redox system, in which the selenoprotein thioredoxin-glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase domains, is the sole enzyme supplying electrons to oxidized glutathione (GSSG) and Trx. This enzyme has recently been validated as a key drug target for flatworm infections. In this study, we show that TGR possesses GSH-independent deglutathionylase activity on a glutathionylated peptide. Furthermore, we demonstrate that deglutathionylation and GSSG reduction are mediated by the Grx domain by a monothiolic mechanism and that the glutathionylated TGR intermediate is resolved by selenocysteine. Deglutathionylation and GSSG reduction via Grx domain, but not Trx reduction, are inhibited at high [GSSG]/[GSH] ratios. We found that Trxs (cytosolic and mitochondrial) provide alternative pathways for deglutathionylation and GSSG reduction. These pathways are operative at high [GSSG]/[GSH] and function in a complementary manner to the Grx domain-dependent one. Despite the existence of alternative pathways, the thioredoxin reductase domains of TGR are an obligate electron route for both the Grx domain- and the Trx-dependent pathways. Overall, our results provide an explanation for the unique array of thiol-dependent redox pathways present in parasitic platyhelminths. Finally, we found that TGR is inhibited by 1-hydroxy-2-oxo-3-(N-3-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7), giving further evidence for NO donation as a mechanism of action for oxadiazole N-oxide TGR inhibitors. Thus, NO donors aimed at TGR could disrupt the entire redox homeostasis of parasitic flatworms.  相似文献   

20.

Background

Diesel exhaust particle (DEP) exposure enhances allergic inflammation and has been linked to the incidence of asthma. Oxidative stress on the thiol molecules cysteine (Cys) and glutathione (GSH) can promote inflammatory host responses. The effect of DEP on the thiol oxidation/reduction (redox) state in the asthmatic lung is unknown.

Objective

To determine if DEP exposure alters the Cys or GSH redox state in the asthmatic airway.

Methods

Bronchoalveolar lavage fluid was obtained from a house dust mite (HDM) induced murine asthma model exposed to DEP. GSH, glutathione disulfide (GSSG), Cys, cystine (CySS), and s-glutathionylated cysteine (CySSG) were determined by high pressure liquid chromatography.

Results

DEP co-administered with HDM, but not DEP or HDM alone, decreased total Cys, increased CySS, and increased CySSG without significantly altering GSH or GSSG.

Conclusions

DEP exposure promotes oxidation and S-glutathionylation of cysteine amino acids in the asthmatic airway, suggesting a novel mechanism by which DEP may enhance allergic inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号