首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Restriction endonucleases (REases) and homing endonucleases (HEases) are biotechnologically important enzymes. Nearly all structurally characterized REases belong to the PD-(D/E)XK superfamily of nucleases, while most HEases belong to an unrelated LAGLIDADG superfamily. These two protein folds are typically associated with very different modes of protein-DNA recognition, consistent with the different mechanisms of action required to achieve high specificity. REases recognize short DNA sequences using multiple contacts per base pair, while HEases recognize very long sites using a few contacts per base pair, thereby allowing for partial degeneracy of the target sequence. Thus far, neither REases with the LAGLIDADG fold, nor HEases with the PD-(D/E)XK fold, have been found. RESULTS: Using protein fold recognition, we have identified the first member of the PD-(D/E)XK superfamily among homing endonucleases, a cyanobacterial enzyme I-Ssp6803I. We present a model of the I-Ssp6803I-DNA complex based on the structure of Type II restriction endonuclease R.BglI and predict the active site and residues involved in specific DNA sequence recognition by I-Ssp6803I. Our finding reveals a new unexpected evolutionary link between HEases and REases and suggests how PD-(D/E)XK nucleases may develop a 'HEase-like' way of interacting with the extended DNA sequence. This in turn may be exploited to study the evolution of DNA sequence specificity and to engineer nucleases with new substrate specificities.  相似文献   

2.
The restriction endonuclease fold [a three-layer α-β sandwich containing variations of the PD-(D/E)XK nuclease motif] has been greatly diversified during evolution, facilitating its use for many biological functions. Here we characterize DNA binding and cleavage by the PD-(D/E)XK homing endonuclease I-Ssp6803I. Unlike most restriction endonucleases harboring the same core fold, the specificity profile of this enzyme extends over a long (17 bp) target site. The DNA binding and cleavage specificity profiles of this enzyme were independently determined and found to be highly correlated. However, the DNA target sequence contains several positions where binding and cleavage activities are not tightly coupled: individual DNA base-pair substitutions at those positions that significantly decrease cleavage activity have minor effects on binding affinity. These changes in the DNA target sequence appear to correspond to substitutions that uniquely increase the free energy change between the ground state and the transition state, rather than simply decreasing the overall DNA binding affinity. The specificity of the enzyme reflects constraints on its host gene and limitations imposed by the enzyme's quaternary structure and illustrate the highly diverse repertoire of DNA recognition specificities that can be adopted by the related folds surrounding the PD-(D/E)XK nuclease motif.  相似文献   

3.
4.
Type II restriction endonuclease Mva1269I recognizes an asymmetric DNA sequence 5'-GAATGCN / -3'/5'-NG / CATTC-3' and cuts top and bottom DNA strands at positions, indicated by the "/" symbol. Most restriction endonucleases require dimerization to cleave both strands of DNA. We found that Mva1269I is a monomer both in solution and upon binding of cognate DNA. Protein fold-recognition analysis revealed that Mva1269I comprises two "PD-(D/E)XK" domains. The N-terminal domain is related to the 5'-GAATTC-3'-specific restriction endonuclease EcoRI, whereas the C-terminal one resembles the nonspecific nuclease domain of restriction endonuclease FokI. Inactivation of the C-terminal catalytic site transformed Mva1269I into a very active bottom strand-nicking enzyme, whereas mutants in the N-terminal domain nicked the top strand, but only at elevated enzyme concentrations. We found that the cleavage of the bottom strand is a prerequisite for the cleavage of the top strand. We suggest that Mva1269I evolved the ability to recognize and to cleave its asymmetrical target by a fusion of an EcoRI-like domain, which incises the bottom strand within the target, and a FokI-like domain that completes the cleavage within the nonspecific region outside the target sequence. Our results have implications for the molecular evolution of restriction endonucleases, as well as for perspectives of engineering new restriction and nicking enzymes with asymmetric target sites.  相似文献   

5.
The GIY-YIG nuclease domain was originally identified in homing endonucleases and enzymes involved in DNA repair and recombination. Many of the GIY-YIG family enzymes are functional as monomers. We show here that the Cfr42I restriction endonuclease which belongs to the GIY-YIG family and recognizes the symmetric sequence 5′-CCGC/GG-3′ (‘/’ indicates the cleavage site) is a tetramer in solution. Moreover, biochemical and kinetic studies provided here demonstrate that the Cfr42I tetramer is catalytically active only upon simultaneous binding of two copies of its recognition sequence. In that respect Cfr42I resembles the homotetrameric Type IIF restriction enzymes that belong to the distinct PD-(E/D)XK nuclease superfamily. Unlike the PD-(E/D)XK enzymes, the GIY-YIG nuclease Cfr42I accommodates an extremely wide selection of metal-ion cofactors, including Mg2+, Mn2+, Co2+, Zn2+, Ni2+, Cu2+ and Ca2+. To our knowledge, Cfr42I is the first tetrameric GIY-YIG family enzyme. Similar structural arrangement and phenotypes displayed by restriction enzymes of the PD-(E/D)XK and GIY-YIG nuclease families point to the functional significance of tetramerization.  相似文献   

6.
7.
The first group I intron in the cox1 gene (cox1I1b ) of the mitochondrial genome of the fission yeast Schizosaccharomyces pombe is a mobile DNA element. The mobility is dependent on an endonuclease protein that is encoded by an intronic open reading frame (ORF). The intron-encoded endonuclease is a typical member of the LAGLIDADG protein family of endonucleases with two consensus motifs. In addition to this, analysis of several intron mutants revealed that this protein is required for intron splicing. However, this protein is one of the few group I intron-encoded proteins that functions in RNA splicing simultaneously with its DNA endonuclease activity. We report here on the biochemical characterization of the endonuclease activity of this protein artificially expressed in Escherichia coli. Although the intronic ORF is expressed as a fusion protein with the upstream exon in vivo, the experiments showed that a truncated translation product consisting of the C-terminal 304 codons of the cox1I1b ORF restricted to loop 8 of the intron RNA secondary structure is sufficient for the specific endonuclease activity in vitro. Based on the results, we speculate on the evolution of site-specific homing endonucleases encoded by group I introns in eukaryotes.  相似文献   

8.
Bujnicki JM  Rychlewski L 《Gene》2001,267(2):183-191
The Escherichia coli K-12 restriction enzyme Mrr recognizes and cleaves N6-methyladenine- and 5-methylcytosine-containing DNA. Its amino acid sequence has been subjected to structure prediction and comparison with other sequences from publicly available sources. The results obtained suggest that Mrr and related putative endonucleases possess a cleavage domain typical for all the so far structurally characterized type II restriction enzymes, however with an unusual glutamine residue at the central position of the (D/E)-(D/E)XK hallmark of the active site. The "missing" acidic side chain was instead found anchored in a different, unusual position, suggesting that Mrr represents a third topological variant of the endonuclease active site in addition to the two alternatives determined previously (Skirgaila et al., 1998. J. Mol. Biol. 279, 473-481). One of the newly identified putative endonucleases from the Mrr family is composed of two diverged cleavage domains, which possess both the "typical" D-EXK and the "Mrr-like" D-QXK variants of the active site. Among the Mrr homologs there are also proteins from yeast, in which restriction phenotype has not been observed, suggesting that the free-standing Eukaryotic PD-(D/E)XK superfamily members might be implicated in other cellular processes involving enzymatic DNA cleavage.  相似文献   

9.
Although mobility of the phylogenetically widespread group I introns appears to be mechanistically similar, the phage T4 intron-encoded endonucleases that promote mobility of the td and sunY introns are different from their eukaryotic counterparts. Most notably, they cleave at a distance from the intron insertion sites. The td enzyme was shown to cleave 23-26 nt 5' and the sunY endonuclease 13-15 nt 3' to the intron insertion site to generate 3-nt or 2-nt 3'-OH extensions, respectively. The absolute coconversion of exon markers between the distant cleavage and insertion sites is consistent with the double-strand-break repair model for intron mobility. As a further critical test of the model we have demonstrated that the mobility event is independent of DNA sequences that encode the catalytic intron core structure. Thus, in derivatives in which the lacZ or kanR coding sequences replace the intron, these marker genes are efficiently inserted into intron-minus alleles when the cognate endonuclease is provided in trans. The process is therefore endonuclease-dependent, rather than dependent on the intron per se. These findings, which imply that the endonucleases rather than the introns themselves were the primordial mobile elements, are incorporated into a model for the evolution of mobile introns.  相似文献   

10.
Rare-cutting restriction enzymes are important tools in genome analysis. We report here the crystal structure of SdaI restriction endonuclease, which is specific for the 8 bp sequence CCTGCA/GG ("/" designates the cleavage site). Unlike orthodox Type IIP enzymes, which are single domain proteins, the SdaI monomer is composed of two structural domains. The N domain contains a classical winged helix-turn-helix (wHTH) DNA binding motif, while the C domain shows a typical restriction endonuclease fold. The active site of SdaI is located within the C domain and represents a variant of the canonical PD-(D/E)XK motif. SdaI determinants of sequence specificity are clustered on the recognition helix of the wHTH motif at the N domain. The modular architecture of SdaI, wherein one domain mediates DNA binding while the other domain is predicted to catalyze hydrolysis, distinguishes SdaI from previously characterized restriction enzymes interacting with symmetric recognition sequences.  相似文献   

11.
Rigden DJ 《FEBS letters》2002,518(1-3):17-22
A catalytic sequence motif PDX10-30(E/D)XK is found in many restriction enzymes. On the basis of sequence similarities and mapping of the conserved residues to the crystal structure of NgoMIV we suggest that residues D160, K182, R186, R188 and E195 contribute to the catalytic/DNA binding site of the Ecl18kI restriction endonuclease. Mutational analysis confirms the functional significance of the conserved residues of Ecl18kI. Therefore, we conclude that the active site motif 159VDX21KX12E of Ecl18kI differs from the canonical PDX10-30(E/D)XK motif characteristic for most of the restriction enzymes. Moreover, we propose that two subfamilies of endonucleases Ecl18kI/PspGI/EcoRII and Cfr10I/Bse634I/NgoMIV, specific, respectively, for CCNGG/CCWGG and RCCGGY/GCCGGC sites, share conserved active site architecture and DNA binding elements.  相似文献   

12.
The tRNA splicing endoribonuclease EndA from Methanococcus jannaschii is a homotetramer formed via heterologous interaction between the two pairs of homodimers. Each monomer consists of two alpha/beta domains, the N-terminal domain (NTD) and the C-terminal domain (CTD) containing the RNase A-like active site. Comparison of the EndA coordinates with the publicly available protein structure database revealed the similarity of both domains to site-specific deoxyribonucleases: the NTD to the LAGLIDADG family and the CTD to the PD-(D/E)XK family. Superposition of the NTD on the catalytic domain of LAGLIDADG homing endonucleases allowed a suggestion to be made about which amino acid residues of the tRNA splicing nuclease might participate in formation of a presumptive cryptic deoxyribonuclease active site. On the other hand, the CTD and PD-(D/E)XK endonucleases, represented by restriction enzymes and a phage lambda exonuclease, were shown to share extensive similarities of the structural framework, to which entirely different active sites might be attached in two alternative locations. These findings suggest that EndA evolved from a fusion protein with at least two distinct endonuclease activities: the ribonuclease, which made it an essential "antitoxin" for the cells whose RNA genes were interrupted by introns, and the deoxyribonuclease, which provided the means for homing-like mobility. The residues of the noncatalytic CTDs from the positions corresponding to the catalytic side chains in PD-(D/E)XK deoxyribonucleases map to the surface at the opposite side to the tRNA binding site, for which no function has been implicated. Many restriction enzymes from the PD-(D/E)XK superfamily might have the potential to maintain an additional active or binding site at the face opposite the deoxyribonuclease active site, a property that can be utilized in protein engineering.  相似文献   

13.
Novel family of putative homing endonuclease genes was recently discovered during analyses of metagenomic and genomic sequence data. One such protein is encoded within a group I intron that resides in the recA gene of the Bacillus thuringiensis 03058-36 bacteriophage. Named I-Bth0305I, the endonuclease cleaves a DNA target in the uninterrupted recA gene at a position immediately adjacent to the intron insertion site. The enzyme displays a multidomain, homodimeric architecture and footprints a DNA region of ~60 bp. Its highest specificity corresponds to a 14-bp pseudopalindromic sequence that is directly centered across the DNA cleavage site. Unlike many homing endonucleases, the specificity profile of the enzyme is evenly distributed across much of its target site, such that few single base pair substitutions cause a significant decrease in cleavage activity. A crystal structure of its C-terminal domain confirms a nuclease fold that is homologous to very short patch repair (Vsr) endonucleases. The domain architecture and DNA recognition profile displayed by I-Bth0305I, which is the prototype of a homing lineage that we term the 'EDxHD' family, are distinct from previously characterized homing endonucleases.  相似文献   

14.
15.
Guzzo CR  Nagem RA  Barbosa JA  Farah CS 《Proteins》2007,69(3):644-651
The YaeQ family of proteins are found in many Gram-negative and a few Gram-positive bacteria. We have determined the first structure of a member of the YaeQ family by X-ray crystallography. Comparisons with other structures indicate that YaeQ represents a new compact protein fold built around a variation of the PD-(D/E)XK nuclease motif found in type II endonucleases and enzymes involved in DNA replication, repair, and recombination. We show that catalytically important residues in the PD-(D/E)XK nuclease superfamily are spatially conserved in YaeQ and other highly conserved YaeQ residues may be poised to interact with nucleic acid structures.  相似文献   

16.
We describe the identification and characterization of novel homing endonucleases using genome database mining to identify putative target sites, followed by high throughput activity screening in a bacterial selection system. We characterized the substrate specificity and kinetics of these endonucleases by monitoring DNA cleavage events with deep sequencing. The endonuclease specificities revealed by these experiments can be partially recapitulated using 3D structure-based computational models. Analysis of these models together with genome sequence data provide insights into how alternative endonuclease specificities were generated during natural evolution.  相似文献   

17.
Here we describe the discovery of a group I intron in the DNA polymerase gene of Bacillus thuringiensis phage Bastille. Although the intron insertion site is identical to that of the Bacillus subtilis phages SPO1 and SP82 introns, the Bastille intron differs from them substantially in primary and secondary structure. Like the SPO1 and SP82 introns, the Bastille intron encodes a nicking DNA endonuclease of the H-N-H family, I-BasI, with a cleavage site identical to that of the SPO1-encoded enzyme I-HmuI. Unlike I-HmuI, which nicks both intron-minus and intron-plus DNA, I-BasI cleaves only intron-minus alleles, which is a characteristic of typical homing endonucleases. Interestingly, the C-terminal portions of these H-N-H phage endonucleases contain a conserved sequence motif, the intron-encoded endonuclease repeat motif (IENR1) that also has been found in endonucleases of the GIY-YIG family, and which likely comprises a small DNA-binding module with a globular ββααβ fold, suggestive of module shuffling between different homing endonuclease families.  相似文献   

18.
Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA–intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods. Such efforts are complicated, because the superfamily exhibits extreme sequence and structural divergence. Using advanced homology detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses, we provide a comprehensive reclassification of proteins containing a PD-(D/E)XK domain. The PD-(D/E)XK phosphodiesterases span over 21 900 proteins, which can be classified into 121 groups of various families. Eleven of them, including DUF4420, DUF3883, DUF4263, COG5482, COG1395, Tsp45I, HaeII, Eco47II, ScaI, HpaII and Replic_Relax, are newly assigned to the PD-(D/E)XK superfamily. Some groups of PD-(D/E)XK proteins are present in all domains of life, whereas others occur within small numbers of organisms. We observed multiple horizontal gene transfers even between human pathogenic bacteria or from Prokaryota to Eukaryota. Uncommon domain arrangements greatly elaborate the PD-(D/E)XK world. These include domain architectures suggesting regulatory roles in Eukaryotes, like stress sensing and cell-cycle regulation. Our results may inspire further experimental studies aimed at identification of exact biological functions, specific substrates and molecular mechanisms of reactions performed by these highly diverse proteins.  相似文献   

19.
P W Gray  R B Hallick 《Biochemistry》1977,16(8):1665-1671
A physical map of the Euglena gracilis chloroplast genome has been constructed, based on cleavage sites of Euglena gracilis chloroplast DNA treated with bacterial restriction endonucleases. Covalently close, circular chloroplast DNA is cleaved by restriction endonuclease SalI into three fragments and by restriction endonuclease BamHI into six fragments. These nine cleavage sites have been ordered by fragment molecular weight analysis, double digestions, partial digestions, and by digestion studies of isolated DNA fragments. A fragment pattern of the products of EcoRI restriction endonuclease digestion of Euglena chloroplast DNA is also described. One of these fragments has been located on the cleavage site map.  相似文献   

20.
The recent transfer of a homing endonuclease gene   总被引:1,自引:0,他引:1       下载免费PDF全文
The myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI. Homing endonuclease genes (HEGs) usually spread with their associated introns as a unit, but infrequently also spread independent of introns (or inteins). Clear examples of HEG mobility are however sparse. Here, we provide evidence for the transfer of a HEG into a group I intron named Dir.S956-2 that is inserted into the SSU rDNA of the Costa Rica 8 isolate of D.iridis. Similarities between intron sequences that flank the HEG and rDNA sequences that flank the intron (the homing endonuclease recognition sequence) suggest that the HEG invaded the intron during the recent evolution in a homing-like event. Dir.S956-2 is inserted into the same SSU site as Dir.S956-1. Remarkably, the two group I introns encode distantly related splicing ribozymes with phylogenetically related HEGs inserted on the opposite strands of different peripheral loop regions. The HEGs are both interrupted by small spliceosomal introns that must be removed during RNA maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号