首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A growing body of evidence indicates that nitric oxide (NO) plays important signaling roles in plants. However, the enzyme(s) responsible for its synthesis after infection was unknown. Here, we demonstrate that the pathogen-induced, NO-synthesizing enzyme is a variant form of the P protein of glycine decarboxylase (GDC). Inhibitors of the P protein of GDC block its NO synthase (NOS)-like activity, and variant P produced in E. coli or insect cells displays NOS activity. The plant enzyme shares many biochemical and kinetic properties with animal NOSs. However, only a few of the critical motifs associated with NO production in animals can be recognized in the variant P sequence, suggesting that it uses very different chemistry for NO synthesis. Since nitrate reductase is likely responsible for NO production in uninfected or nonelicited plants, our results suggest that plants, like animals, use multiple enzymes for the synthesis of this critical hormone.  相似文献   

2.
The role of gamma-aminobutyric acid (GABA) mechanism on the synthesis of nitric oxide (NO) has been investigated by measuring the activity of nitric oxide synthase (NOS) and the concentration of NO in rat brain 15 min after administration of anticonvulsant doses of diazepam (0.25 and 0.5 mg/kg) which is known to activate GABA A receptor for its anticonvulsant action. Diazepam enhanced both NOS activity and the concentration of NO in a dose-dependent manner. A reversal has been observed in animals treated with a convulsant dose of picrotoxin (5 mg/kg) which is known to produce convulsions by blocking GABA A receptor mechanism. These results suggest that a functional interaction occurs between GABA A receptor activity and NO synthesis in the brain.  相似文献   

3.
Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.  相似文献   

4.
Nitric oxide signaling in invertebrates   总被引:6,自引:0,他引:6  
Nitric oxide (NO) is an unconventional neurotransmitter and neuromodulator molecule that is increasingly found to have important signaling functions in animals from nematodes to mammals. NO signaling mechanisms in the past were identified largely through experiments on mammals, after the discovery of NO's vasodilatory functions. The use of gene knock out mice has been particularly important in revealing the functions of the several isoforms of nitric oxide synthase (NOS), the enzyme that produces NO. Recent studies have revealed rich diversity in NO signaling. In addition to the well-established pathway in which NO activates guanylyl cyclase and cGMP production, redox mechanisms involving protein nitrosylation are important contributors to modulation of neurotransmitter release and reception. NO signaling studies in invertebrates are now generating a wealth of comparative information. Invertebrate NOS isoforms have been identified in insects and molluscs, and the conserved and variable amino acid sequences evaluated. Calcium-calmodulin dependence and cofactor requirements are conserved. NADPH diaphorase studies show that NOS is found in echinoderms, coelenterates, nematodes, annelids, insects, crustaceans and molluscs. Accumulating evidence reveals that NO is used as an orthograde transmitter and cotransmitter, and as a modulator of conventional transmitter release. NO appears to be used in diverse animals for certain neuronal functions, such as chemosensory signalin, learning, and development, suggesting that these NO functions have been conserved during evolution. The discovery of NO's diverse and unconventional signaling functions has stimulated a plethora of enthusiastic investigations into its uses. We can anticipate the discovery of many more interesting and some surprising NO signaling functions.  相似文献   

5.
Ultraviolet (UV) B irradiation evokes erythema and delayed pigmentation in skin, where a variety of toxic and modulating events are known to be involved. Nitric oxide (NO) is generated from l ‐arginine by NO synthases (NOS). Production of NO is enhanced in response to UVB‐stimulation and has an important role in the development of erythema. NO has recently been demonstrated as a melanogen which stimulates melanocytes in vitro, however, no known in vivo data has been reported to support this finding. In this study, we investigated the contribution of NO with UV‐induced pigmentation in an animal model using an NOS inhibitor. UVB‐induced erythema in guinea pig skin was reduced when an NOS inhibitor, l ‐NAME (N‐nitro‐ l ‐arginine methylester hydrochloride), was topically applied to the skin daily, beginning 3 days before UVB‐irradiation. Delayed pigmentation and an increased number of DOPA‐positive melanocytes in the skin were markedly suppressed by sequential daily treatment with l ‐NAME. Furthermore, melanin content 13 days after UVB‐irradiation was significantly lower in skin treated with l ‐NAME than in the controls. In contrast, d ‐NAME (N‐nitro‐ d ‐arginine methylester hydrochloride), an ineffective isomer of l ‐NAME, demonstrated no effect on these UV‐induced skin responses. These results suggest that NO production may contribute to the regulation of UVB‐induced pigmentation.  相似文献   

6.
Nitric oxide (NO) plays a key role in vascular homeostasis. Accurate measurement of NO production by endothelial nitric oxide synthase (eNOS) is critical for the investigation of vascular disease mechanisms using genetically modified animal models. Previous assays of NO production measuring the conversion of arginine to citrulline have required homogenisation of tissue and reconstitution with cofactors including NADPH and tetrahydrobiopterin. However, the activity and regulation of NOS in vivo is critically dependant on tissue levels of these cofactors. Therefore, understanding eNOS regulation requires assays of NO production in intact vascular tissue that do not depend on the addition of exogenous cofactors and have sufficient sensitivity and specificity. We describe a novel technique, using radiochemical detection of arginine to citrulline conversion, to measure NO production within intact mouse aortas, without exogenous cofactors. We demonstrate the presence of arginase activity in mouse aortas which has the potential to confound this assay. Furthermore, we describe the use of N-hydroxy-nor-L-arginine (nor-NOHA) to inhibit arginase and permit specific detection of NO production in intact mouse tissue. Using this technique we demonstrate a 2.4-fold increase in NO production in aortas of transgenic mice overexpressing eNOS in the endothelium, and show that this technique has high specificity and high sensitivity for detection of in situ NO synthesis by eNOS in mouse vascular tissue. These results have important implications for the investigation of NOS regulation in cells and tissues.  相似文献   

7.
The hunt for plant nitric oxide synthase (NOS): Is one really needed?   总被引:1,自引:0,他引:1  
Fr?hlich A  Durner J 《Plant science》2011,181(4):401-404
Nitric oxide (NO) production is associated with many physiological situations in plants, and NO is a key signaling molecule throughout the lifespan of a plant. The complexity of the underlying signaling events are just starting to be unraveled. The basis for nitric oxide signaling, the production of the signaling molecule itself, is far from understood in plants. While in animals, three homologous NO synthases (NOS) isoforms have been identified, yet in higher plants no corresponding enzymes are known so far. More than half a dozen NO productive reactions have been observed in plants but only few of them have been thoroughly investigated. It remains to be elucidated how these parts act together to form the sophisticated NO signaling network observed in plants.  相似文献   

8.
The aberrant production of nitric oxide (NO) contributes to the pathogenesis of diseases as diverse as cancer and arthritis. Sustained NO production via the inducible enzyme, nitric-oxide synthase 2 (NOS2), requires extracellular arginine uptake. Three closely related cationic amino acid transporter genes (Cat1-3) encode the transporters that mediate most arginine uptake in mammalian cells. Because CAT2 is induced coordinately with NOS2 in numerous cell types, we investigated a possible role for CAT2-mediated arginine transport in regulating NO production. The complexity of arginine transport systems and their biochemically similar transport properties called for a genetic approach to determine the role of CAT2. CAT2-deficient mice were generated and found to be healthy and fertile in contrast to Cat1(-/-) animals. Analysis of cytokine-activated macrophages from Cat2(-/-) mice revealed a 92% reduction in NO production and a 95% reduction in l-Arg uptake. The reduction in NO production was not due to differences in NOS2 protein expression, NOS2 activity, or intracellular l-arginine content. In conclusion, our results show that sustained abundant NO synthesis by macrophages requires arginine transport via the CAT2 transporter.  相似文献   

9.
Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants. NO plays a crucial role in growth and development, from germination to senescence, and is also involved in plant responses to biotic and abiotic stresses. In animals, NO is synthesized by well‐described nitric oxide synthase (NOS) enzymes. NOS activity has also been detected in higher plants, but no gene encoding an NOS protein, or the enzymes required for synthesis of tetrahydrobiopterin, an essential cofactor of mammalian NOS activity, have been identified so far. Recently, an NOS gene from the unicellular marine alga Ostreococcus tauri (OtNOS) has been discovered and characterized. Arabidopsis thaliana plants were transformed with OtNOS under the control of the inducible short promoter fragment (SPF) of the sunflower (Helianthus annuus) Hahb‐4 gene, which responds to abiotic stresses and abscisic acid. Transgenic plants expressing OtNOS accumulated higher NO concentrations compared with siblings transformed with the empty vector, and displayed enhanced salt, drought and oxidative stress tolerance. Moreover, transgenic OtNOS lines exhibited increased stomatal development compared with plants transformed with the empty vector. Both in vitro and in vivo experiments indicate that OtNOS, unlike mammalian NOS, efficiently uses tetrahydrofolate as a cofactor in Arabidopsis plants. The modulation of NO production to alleviate abiotic stress disturbances in higher plants highlights the potential of genetic manipulation to influence NO metabolism as a tool to improve plant fitness under adverse growth conditions.  相似文献   

10.
Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS   总被引:6,自引:0,他引:6  
Recent studies indicated that there is a distinct mitochondrial nitric oxide synthase (mtNOS) enzyme, which may be identical to the other known NOS isoforms. We investigated the possible involvement of the endothelial, the neuronal, and the inducible NOS isoforms (eNOS, nNOS, iNOS, respectively) in mitochondrial NO production. Mouse liver mitochondria were prepared by Percoll gradient purification from wild-type and NOS knockout animals. NOS activity was measured by the arginine conversion assay, NO production of live mitochondria was visualized by the fluorescent probe DAF-FM with confocal microscopy and measured with flow cytometry. Western blotting or immunoprecipitation was performed with 12 different anti-NOS antibodies. Mitochondrial NOS was purified by arginine, 2,5 ADP and calmodulin affinity columns. We observed NO production and NOS activity in mitochondria, which was not attenuated by classic NOS inhibitors. We also detected low amounts of eNOS protein in the mitochondria, however, NO production and NOS activity were intact in eNOS knockout animals. Neither nNOS nor iNOS were present in the mitochondria. Furthermore, we could not find mitochondrial targeting signals in the sequences of either NOS proteins. Taken together, the presented data do not support the hypothesis that any of the known NOS enzymes are present in the mitochondria in physiologically relevant levels.  相似文献   

11.
BACKGROUND: Nitric oxide (NO), a small effector molecule produced enzymatically from L-arginine by nitric oxide synthase (NOS), is a mediator not only of important homeostatic mechanisms (e.g., blood vessel tone and tissue perfusion), but also of key aspects of local and systemic inflammatory responses. Previous efforts to develop inhibitors of NOS to protect against NO-mediated tissue damage in endotoxin shock have been unsuccessful, largely because such competitive NOS antagonists interfere with critical vasoregulatory NO production in blood vessels and decrease survival in endotoxemic animals. Accordingly, we sought to develop a pharmaceutical approach to selectively inhibit NO production in macrophages while sparing NO responses in blood vessels. MATERIALS AND METHODS: The process of cytokine-inducible L-arginine transport and NO production were studied in the murine macrophage-like cell line (RAW 264.7). A series of multivalent guanylhydrazones were synthesized to inhibit cytokine-inducible L-arginine transport. One such compound (CNI-1493) was studied further in animal models of endothelial-derived relaxing factor (EDRF) activity, carrageenan inflammation, and lethal lipopolysaccharide (LPS) challenge. RESULTS: Upon activation with cytokines, macrophages increase transport of L-arginine to support the production of NO by NOS. Since endothelial cells do not require this additional arginine transport to produce NO, we reasoned that a competitive inhibitor of cytokine-inducible L-arginine transport would not inhibit EDRF activity in blood vessels, and thus might be effectively employed against endotoxic shock. CNI-1493, a tetravalent guanylhydrazone, proved to be a selective inhibitor of cytokine-inducible arginine transport and NO production, but did not inhibit EDRF activity. In mice, CNI-1493 prevented the development of carrageenan-induced footpad inflammation, and conferred protection against lethal LPS challenge. CONCLUSIONS: A selective inhibitor of cytokine-inducible L-arginine transport that does not inhibit vascular EDRF responses is effective against endotoxin lethality and significantly reduces inflammatory responses.  相似文献   

12.
Abstract. The snail Helix lucorum has been used as a model to study the adaptation of a nitric oxide (NO)‐forming enteric neural network to the long‐term resting period of summer estivation or winter hibernation. Quantification of the NO‐derived nitrite established that NO formation is confined to the nitric oxide synthase (NOS)‐containing myenteric network of the mid‐intestine. In active snails but not in resting snails, NO production could be enhanced by the NOS substrate l ‐arginine (l ‐ARG, 1 mM). We followed the enteric NO synthesis in a snail population kept at natural conditions for 1 year. Our findings indicate that NO synthesis was depressed in July during entry to the estivation, had a peak in autumn before hibernation, and finally was reduced during hibernation. Monoamines (histamine, serotonin, and adrenalin) could inhibit the NO liberation in active snails. Cofactors of NOS (β‐NADPH, β‐NAD, FAD, FMN, Ca2+, TH4) did not alter the low nitrite production in hibernating snails. We conclude that enteric NO synthesis in H. lucorum has a regular seasonal periodicity following the annual physiological cycles of terrestrial snails. During estivation or hibernation, NOS activity is blocked. Monoamines, the levels of which are elevated during hibernation, can trigger decreased NOS activity. The reduced activity of NOS cannot be restored by the administration of NOS cofactors; therefore, their absence cannot be the cause of the temporarily blocked L‐ARG/NO conversion ability of NOS.  相似文献   

13.
Nitric oxide (NO) is a potent vasodilator and inhibitor of vascular remodeling. Reduced NO production has been implicated in the pathophysiology of pulmonary hypertension, with endothelial NO synthase (NOS) knockout mice showing an increased risk for pulmonary hypertension. Because molecular oxygen (O2) is an essential substrate for NO synthesis by the NOSs and biochemical studies using purified NOS isoforms have estimated the Michaelis-Menten constant values for O2 to be in the physiological range, it has been suggested that O2 substrate limitation may limit NO production in various pathophysiological conditions including hypoxia. This review summarizes numerous studies of the effects of acute and chronic hypoxia on NO production in the lungs of humans and animals as well as in cultured vascular cells. In addition, the effects of hypoxia on NOS expression and posttranslational regulation of NOS activity by other proteins are also discussed. Most studies found that hypoxia limits NO synthesis even when NOS expression is increased.  相似文献   

14.
High-output nitric oxide (NO) production by nitric oxide synthase 2 (NOS2) contributes to normal cellular processes and pathophysiological conditions. The transport of L-arginine, the substrate for NOS2, is required for sustained NO production by NOS2. L-Arginine can be transported by several kinetically defined transport systems, although the majority of arginine uptake is mediated by transport system y(+), encoded by the Cat1-3 gene family. Using macrophages from Cat2-deficient mice, we previously determined that arginine uptake via CAT2 is absolutely required for sustained NO production. Because NO production by fibroblasts is important in wound healing, we sought to determine whether CAT2 is required for NO production in cytokine-stimulated Cat2-deficient and wild-type embryonic fibroblasts. Although macrophages and fibroblasts both required extracellular L-arginine for NO production, NO synthesis by activated Cat2(-/-) fibroblasts was reduced only 19%, whereas Cat2(-/-) macrophages were virtually unable to produce NO. As expected, activated Cat2(-/-) fibroblasts had reduced system y(+)-mediated arginine uptake. However, their reduced NO output was not the result of a significant difference in intracellular L-arginine levels following cytokine stimulation. Uptake experiments revealed that the L-arginine transport system y(+)L was the major cationic amino acid carrier in fibroblasts of both genotypes. We conclude that NO production in embryonic fibroblasts is only partially dependent on CAT2 and that other compensating transporters provide arginine for NOS2-mediated NO synthesis. The data demonstrate that fibroblasts and macrophages have differential dependence on CAT2-mediated L-arginine transport for NO synthesis. The important physiological implication of this finding is discussed.  相似文献   

15.

Background  

It is well known that cytotoxic factors, such as lipopolysaccharides, derange nitrogen metabolism in hepatocytes and nitric oxide (NO) is involved among the other factors regulating this metabolic pathway. Hepatocytes have been shown to express large levels of NO following exposure to endotoxins, such as bacterial lipopolysaccharide and/or cytokines, such as tumour necrosis factor-α (TNFα), interleukin-1. The control role of arginine in both urea and NO biosynthesis is well known, when NO is synthesized from arginine, by the NOS reaction, citrulline is produced. Thus, the urea cycle is bypassed by the NOS reaction. Many authors demonstrated in other cellular types, like cardiomyocytes, that bradykinin caused the increase in reactive oxygen species (ROS) generation. The simultaneous increase of NO and ROS levels could cause peroxynitrite synthesis, inducing damage and reducing cell viability. The aim of this research is to study the effect of bradykinin, a proinflammatory mediator, on cell viability and on urea production in cultures of rat hepatocytes.  相似文献   

16.
Whereas altered nitric oxide (NO.) formation from endothelial nitric oxide synthase (NOS) causes impaired vascular reactivity in a number of cardiovascular diseases, questions remain regarding how endothelial injury results in impaired NO. formation. It is unknown if loss of NOS expression or activity is required or if other factors are involved. Detergent treatment has been used to induce endothelial dysfunction. Therefore, NOS and NO. synthesis were characterized in a rat heart model of endothelial injury and dysfunction induced by the detergent Triton X-100. Cardiac NO. formation was directly measured by electron paramagnetic resonance spectroscopy. NOS activity was determined by the L-[(14)C]arginine conversion assay. Western blots and immunohistology were applied to define the amounts of NOS present in heart tissue before and after Triton treatment. Immunoelectron microscopy was performed to assess intracellular NOS distribution. A short bolus of Triton X-100, 0.25%, abolished responses to histamine and calcium ionophore while preserving response to nitroprusside. Complete blockade of NO. generation occurred after Triton treatment, but NOS activity assayed with addition of exogenous substrate and cofactors was unchanged, and identical 135-kDa NOS bands were seen on Western blots, indicating that NOS was not removed from the heart or structurally damaged by Triton. Immunohistochemistry showed no change in NOS localization after Triton treatment, and immunoelectron microscopy revealed similar NOS distribution in the plasma membrane and intracellular membranes. These results demonstrate that the endothelial dysfunction was due to decreased NO. synthesis but was not caused by loss or denaturation of NOS. Thus endothelial dysfunction due to mild endothelial membrane injury may occur in the presence of active NOS and is triggered by loss of NOS substrates or cofactors.  相似文献   

17.
The origin of nitric oxide (*NO) in plants is unclear and an *NO synthase (NOS)-like enzyme and nitrate reductase (NR) are claimed as potential sources. Here we used wild-type and NR-defective double mutant plants to investigate *NO production in Arabidopsis thaliana in response to Pseudomonas syringae pv maculicola. NOS activity increased substantially in leaves inoculated with P. syringae. However, electron paramagnetic resonance experiments showed a much higher *NO formation that was dependent on nitrite and mitochondrial electron transport rather than on arginine or nitrate. Overall, these results indicate that NOS, NR and a mitochondrial-dependent nitrite-reducing activity cooperate to produce *NO during A. thaliana-P. syringae interaction.  相似文献   

18.
Nitric oxide synthesis and signalling in plants   总被引:10,自引:0,他引:10  
As with all organisms, plants must respond to a plethora of external environmental cues. Individual plant cells must also perceive and respond to a wide range of internal signals. It is now well-accepted that nitric oxide (NO) is a component of the repertoire of signals that a plant uses to both thrive and survive. Recent experimental data have shown, or at least implicated, the involvement of NO in reproductive processes, control of development and in the regulation of physiological responses such as stomatal closure. However, although studies concerning NO synthesis and signalling in animals are well-advanced, in plants there are still fundamental questions concerning how NO is produced and used that need to be answered. For example, there is a range of potential NO-generating enzymes in plants, but no obvious plant nitric oxide synthase (NOS) homolog has yet been identified. Some studies have shown the importance of NOS-like enzymes in mediating NO responses in plants, while other studies suggest that the enzyme nitrate reductase (NR) is more important. Still, more published work suggests the involvement of completely different enzymes in plant NO synthesis. Similarly, it is not always clear how NO mediates its responses. Although it appears that in plants, as in animals, NO can lead to an increase in the signal cGMP which leads to altered ion channel activity and gene expression, it is not understood how this actually occurs.
NO is a relatively reactive compound, and it is not always easy to study. Furthermore, its biological activity needs to be considered in conjunction with that of other compounds such as reactive oxygen species (ROS) which can have a profound effect on both its accumulation and function. In this paper, we will review the present understanding of how NO is produced in plants, how it is removed when its signal is no longer required and how it may be both perceived and acted upon.  相似文献   

19.
Lin L  Ding WH  Jiang W  Zhang YG  Qi YF  Yuan WJ  Tang CS 《Peptides》2004,25(11):1977-1984
Urotensin-II (U-II), a cyclic peptide widely expressed in blood vessels, has diverse vascular actions that range from potent vasoconstriction to vasodilation. Although, U-II-induced vasodilation has been shown to be partially dependent on nitric oxide (NO), the involvement of vascular adventitia-derived NO, remains unknown. The present study aimed to elucidate the activation of U-II on L-arginine/NO pathway in isolated rat aortic adventitia. In adventitia of thoracic and abdominal aortas, the l-arginine/NO pathway was similarly characterized: the uptake of l-[(3)H]arginine was Na(+)-independent, with the peak occurring over around 40 min incubation; the total NO synthase (NOS) activity was mostly calcium-independent (>90%), and significantly inhibited by a specific iNOS inhibitor AMT; the production of NO metabolites nitrate and nitrite (NO(x)) was stimulated by L-arginine but not by D-arginine. In aortic adventitia exposed to rat U-II (10(-9) and 10(-8)M) for 6 h, the V(max) of l-[(3)H]arginine uptake over 40 min incubation was significantly increased, while the K(m) of l-[(3)H]arginine uptake showed no significant change. Besides, the iNOS mRNA level was up-regulated, the total NOS activity, largely calcium-independent, was significantly induced, and the NO(x) production was significantly stimulated by U-II. According to the same protocol as U-II, the positive control lipopolysaccharide (LPS, 10 microg/ml), which had been established to activate adventitial L-arginine/NO pathway, increased l-[(3)H]arginine uptake, iNOS activity and NO(x) production to a greater extent than U-II. In addition, the total NOS activities induced by 3 and 6h incubation of U-II and LPS were significantly inhibited by a specific inhibitor of protein synthesis, actinomycin D. In conclusion, the results showed that rat U-II activated L-arginine/NOS/NO pathway in rat aortic adventitia, suggesting a potential contributive role of adventitia-derived NO in the vasodilator response of U-II.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号