首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yang X  Dubnau E  Smith I  Sampson NS 《Biochemistry》2007,46(31):9058-9067
New approaches are required to combat Mycobacterium tuberculosis (Mtb), especially the multi-drug resistant and extremely drug resistant organisms (MDR-TB and XDR-TB). There are many reports that mycobacteria oxidize 3beta-hydroxysterols to 3-ketosteroids, but the enzymes responsible for this activity have not been identified in mycobacterial species. In this work, the Rv1106c gene that is annotated as a 3beta-hydroxysteroid dehydrogenase in Mtb has been cloned and heterologously expressed. The purified enzyme was kinetically characterized and found to have a pH optimum between 8.5 and 9.5. The enzyme, which is a member of the short chain dehydrogenase superfamily, uses NAD+ as a cofactor and oxidizes cholesterol, pregnenolone, and dehydroepiandrosterone to their respective 3-keto-4-ene products. The enzyme forms a ternary complex with NAD+ binding before the sterol. The enzyme shows no substrate preference for dehydroepiandrosterone versus pregnenolone with second-order rate constants (kcat/Km) of 3.2 +/- 0.4 and 3.9 +/- 0.9 microM-1 min-1, respectively, at pH 8.5, 150 mM NaCl, 30 mM MgCl2, and saturating NAD+. Trilostane is a competitive inhibitor of dehydroepiandrosterone with a Ki of 197 +/- 8 microM. The expression of the 3beta-hydroxysteroid dehydrogenase in Mtb is intracellular. Disruption of the 3beta-hydroxysteroid dehydrogenase gene in Mtb abrogates mycobacterial cholesterol oxidation activity. These data are consistent with the Rv1106c gene being the one responsible for 3beta-hydroxysterol oxidation in Mtb.  相似文献   

2.
The enzyme 17beta-hydroxysteroid dehydrogenase is required for the synthesis and 11beta-hydroxysteroid dehydrogenase for the regulation of androgens in rat Leydig cells. This histochemical study describes ontogenetic changes in distribution and intensity of these enzymes in Leydig cells from postnatal day (pnd) 1-90. Using NAD or NADP as the cofactor, 17beta-hydroxysteroid dehydrogenase (substrate: 5-androstene-3beta,17beta-diol) peaks were observed on pnd 16 for fetal Leydig cells and on pnd 19 and 37 for adult Leydig cells. Between pnd 13 and 25 the fetal cells showed a higher intensity for the 17beta-enzyme than the adult cells; more fetal Leydig cells were stained with NADP, whereas more adult cells were positive with NAD on pnd 13 and 16. A nearly identical distribution of 11beta-hydroxysteroid dehydrogenase (substrate: corticosterone) was observed with NAD or NADP as the cofactor; the reaction was present from pnd 31 onwards, first in a few adult Leydig cells and later in almost all these cells homogeneously. The ontogenetic curves of the two enzymes show an inverse relationship. To conclude: (1) Generally, a stronger reaction for 17beta-hydroxysteroid dehydrogenase is shown with NAD as cofactor than with NADP; using NADP, fetal Leydig cells show a stronger staining than adult Leydig cells. (2) The data possibly support the notion of a new isoform of 11beta-hydroxysteroid dehydrogenase in addition to types 1 and 2.  相似文献   

3.
M E Baker 《FASEB journal》1990,4(2):222-226
A computer-based comparison of the amino acid sequences of human placental 17 beta-hydroxysteroid dehydrogenase and Streptomyces coelicolor actIII protein, which is important in the synthesis of the antibiotic actinorhodin, gives an alignment score 12.15 standard deviations higher than that of 1000 comparisons of randomized sequences of these proteins. The probability of getting this score by chance is 3 x 10(-34). Comparison of actIII protein with Drosophila melanogaster alcohol dehydrogenase yields a score of 10.3 standard deviations (P = 3.5 x 10(-25)). Based on these similarities, we propose that 17 beta-hydroxysteroid dehydrogenase, actIII protein, and Drosophila alcohol dehydrogenase are derived from a common ancestor.  相似文献   

4.
Streptomyces hydrogenans 3 alpha,20 beta-hydroxysteroid dehydrogenase reduces the C20 ketone on glucocorticoids and progestins. We find that two licorice-derived compounds, glycyrrhizic acid and carbenoxolone, inhibit this enzyme with microM Kis. Inhibition is competitive, indicating that these compounds are binding at or close to the catalytic site. Carbenoxolone's high aqueous solubility and affinity for 3 alpha,20 beta-hydroxysteroid dehydrogenase enabled us to prepare crystals of a carbenoxolone-NADH-enzyme ternary complex, which preliminary X-ray analysis indicates has a crystal structure that is significantly different from that of the 3 alpha,20 beta-hydroxysteroid dehydrogenase-NADH complex. A comparison of the tertiary structures of these two complexes should prove useful in understanding this enzyme's catalytic mechanism, as well as those of two homologous enzymes, mammalian 11 beta-hydroxysteroid dehydrogenase and 15-hydroxyprostaglandin dehydrogenase that also are inhibited by carbenoxolone.  相似文献   

5.
Three enzymatic activities (3 alpha/beta-hydroxysteroid dehydrogenase, 20 beta- and 20 alpha-hydroxysteroid dehydrogenases) were measured in testes of pigs as a function of age. Earlier studies reported a highly purified 20 beta-hydroxysteroid dehydrogenase from neonatal pig testes that also showed strong 3 alpha/beta-hydroxysteroid dehydrogenase activity [Ohno et al., J. Steroid Biochem. Molec. Biol. 38 (1991) 787-794]. We report here that neonatal pigs testis is rich in 3 alpha/beta- and 20 beta-hydroxysteroid dehydrogenase activities, both of which fall to low levels (measured as specific activity) at 60 days. Thereafter the activity of 3 alpha/beta-reduction rises to high levels whereas 20 beta-reduction remains low. Activity of 20 alpha-reduction is of intermediate level in the neonate, falls to a nadir at 60 days and rises to high levels in the mature animal. Western blots of cytosolic proteins show that the bifunctional enzyme (3 alpha/beta-plus 20 beta-hydroxysteroid dehydrogenase) is high in neonatal testes and falls to low levels at maturity. It is proposed that the neonatal testis possesses the bifunctional enzyme which is replaced by a second enzyme at maturity, that is a 3 alpha/beta-hydroxysteroid dehydrogenase without 20 beta-reductase activity. The possible functional significance of these changes is considered.  相似文献   

6.
Chalcones were tested for estimating anti-aromatase, anti-3beta-hydroxysteroid dehydrogenase delta5/delta4 isomerase (3beta-HSD) and anti-17beta-hydroxysteroid dehydrogenase (17beta-HSD) activities in human placental microsomes. In the present study, we have demonstrated for the first time that chalcones are potent inhibitors of aromatase and 17beta-hydroxysteroid dehydrogenase activities: these enzymes being considered as important targets in the metabolic pathways of human mammary hormone-dependent cells. Our results showed that naringenin chalcone and 4-hydroxychalcone were the most effective aromatase and 17beta-hydroxysteroid dehydrogenase inhibitors with IC50 values of 2.6 and 16 microM respectively. In addition, inhibitory effects of some flavones and flavanones were compared to those of the corresponding chalcones. A structure-activity relationship was established and regions or/and substituents essential for these inhibitory activities were determined.  相似文献   

7.
delta 5-3 beta-Hydroxysteroid dehydrogenase is a key enzyme for testicular androgen biosynthesis and a marker for the Leydig cells. The hormonal regulation of this enzyme was studied in cultured rat testicular cells. Human chorionic gonadotropin (hCG) increased testosterone production in vitro while time course studies indicated a biphasic action of the gonadotropin on 3 beta-hydroxysteroid dehydrogenase activity. An initial stimulation (51%) of the enzyme was detected between 3 and 12 h of culture when medium testosterone was low. This is followed by an inhibition of 3 beta-hydroxysteroid dehydrogenase activity on days 2 and 3 of culture when medium testosterone was elevated. Concomitant treatment with a synthetic androgen (R1881) inhibited 3 beta-hydroxysteroid dehydrogenase activity and testosterone production in hCG-treated cultures while an anti-androgen (cyproterone acetate) increased 3 beta-hydroxysteroid dehydrogenase activity and testosterone biosynthesis. Addition of 10(-5) M spironolactone, an inhibitor of 17 alpha-hydroxylase, blocked the hCG stimulation of testosterone production but increased medium progesterone. In the absence of the secreted androgen, hCG stimulated 3 beta-hydroxysteroid dehydrogenase activity in a time- and dose-related manner. Furthermore, hCG stimulation of 3 beta-hydroxysteroid dehydrogenase activity and progesterone accumulation in spironolactone-supplemented cultures was decreased by concomitant treatment with R1881 but was not affected by cyproterone acetate. The inhibitory effect of R1881 was blocked by the anti-androgen. In the absence of hCG, treatment with testosterone, dihydrotestosterone, or R1881, but not promegestone, alone also inhibited 3 beta-hydroxysteroid dehydrogenase activity while the inhibitory effect of testosterone was blocked by cyproterone acetate. Thus, hCG stimulates 3 beta-hydroxysteroid dehydrogenase activity in cultured testicular cells. The androgenic steroidogenic end products, in turn, inhibit this enzyme. The hormonal regulation of 3 beta-hydroxysteroid dehydrogenase activity may be important in the ultrashort loop autoregulation of androgen biosynthesis.  相似文献   

8.
By selecting for growth on testosterone or estradiol-17 beta as the only source of organic carbon, we have isolated a number of soil microorganisms which contain highly active and novel, inducible, NAD-linked 3 alpha-, 3 beta-, and 17 beta-hydroxysteroid dehydrogenases. Such enzymes are suitable for the microanalysis of steroids and of steroid-transforming enzymes, as well as for performing stereoselective oxidations and reductions of steroids. Of particular interest among these organisms is a new species of Alcaligenes containing 17 beta-hydroxysteroid dehydrogenase, easily separable from 3 beta-hydroxysteroid dehydrogenase. Unlike any of the other isolated organisms, this Alcaligenes sp. contained no 3 alpha-hydroxysteroid dehydrogenase activity. A large-scale purification (763-fold) to homogeneity of the major induced 17 beta-hydroxysteroid dehydrogenase was achieved by ion-exchange, hydrophobic, and affinity chromatographies. The enzyme has high specific activity for the oxidation of testosterone (Vmax = 303 mumol/min/mg of protein; Km = 3.6 microM) and reacts almost equally well with estradiol-17 beta (Vmax = 356 mumol/min/mg; Km = 6.4 microM). It consists of apparently identical subunits (Mr = 32,000) and exists in polymeric form under nondenaturing conditions (Mr = 68,000 by gel filtration and 86,000 by polyacrylamide gel electrophoresis). The isoelectric point is pH 5.1. The enzyme is almost completely specific for 17 beta-hydroxysteroids which may be delta 5-olefins or ring A phenols or have cis or trans A/B ring fusions. Substituents at other positions are tolerated, although the presence of a 16 alpha- or 16 beta-hydroxyl group blocks the oxidation of the 17 beta-hydroxyl function. 3 beta-Hydroxysteroids (A/B ring fusion trans, but not cis, or delta 5-olefins) are very poor substrates. The application of this highly active, specific, and stable 17 beta-hydroxysteroid dehydrogenase to the microestimation of steroids by enzymatic cycling of nicotinamide nucleotides and for the stereospecific oxidation of steroids is demonstrated.  相似文献   

9.
Ursodeoxycholic acid was estimated in bile samples from humans and wild North American black bears using 7 beta-hydroxysteroid dehydrogenase purified from Clostridium absonum by Procion Red affinity chromatography. The percentage ursodeoxycholic acid was calculated by two methods: (a) 7 beta-hydroxyl groups were quantified using 7 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxyl groups (total bile acids) were quantified using 3 alpha-hydroxysteroid dehydrogenase. The percentage ursodeoxycholic acid was calculated on the basis of [7 beta-hydroxyl groups]/[3 alpha-hydroxyl groups] X 100. (b) Bile was hydrolyzed with sodium hydroxide and subjected to thin-layer chromatography. Bands corresponding to cholic acid, chenodeoxycholic acid plus deoxycholic acid, and ursodeoxycholic acid were identified by the use of standards and Komarowsky's spray reagent. Total bile acids and total ursodeoxycholic acid were measured by elution of silica gel in unsprayed areas corresponding to the bile acid standards and quantification of the total bile acid in each eluate. Direct comparison of these methods validated the use of 7 beta-hydroxysteroid dehydrogenase in the estimation of ursodeoxycholic acid in the biles of black bears and of patients fed ursodeoxycholic acid for cholesterol gallstone dissolution. Relative percentages of ursodeoxycholic acid were 8-24% in four bears and 22 and 27% in the patients ingesting 500 and 750 mg ursodeoxycholic acid per day for 3 months, respectively. Predictably lower values were obtained in two control subjects and one patient ingesting 750 mg chenodeoxycholic acid per day for 3 months.  相似文献   

10.
Ligand specificity of the type I steroid receptor is apparently conferred by the activity of 11 beta-hydroxysteroid dehydrogenase. To determine the kinetic properties of this enzyme, rat liver cDNA was expressed in cultured cells using recombinant vaccinia virus. Although this enzyme catalyzes only dehydrogenation when purified from rat liver, the recombinant enzyme obtained from cell lysates catalyzed both 11 beta-dehydrogenation of corticosterone to 11-dehydrocorticosterone and the reverse 11-oxoreduction reaction. At pH 8.5, the first order rate constant Kcat/Km for dehydrogenase activity exceeded that for reductase (63 vs. 38 min-1 x 10(-4], whereas the rate constants for the two reactions were nearly equal (48 vs. 47 min-1 x 10(-4] at pH 7.0. These results are consistent with the previously determined pH optima for these activities in liver microsomes. Removal (with glucose-6-phosphate dehydrogenase) of NADP+ produced by the reductase reaction significantly increased reductase activity. Glycyrrhetinic acid, a known inhibitor of the dehydrogenase reaction, also inhibited the reductase reaction at slightly higher concentrations (50% inhibitory concentration, less than 5 nM for dehydrogenase, 10-20 nM for reductase). Partial inhibition of glycosylation with A1-tunicamycin decreased dehydrogenase activity 50% without affecting reductase activity. The data demonstrate that a single polypeptide catalyzes both dehydrogenation and reduction, although the presence of additional enzyme forms catalyzing one or the other activity has not been ruled out.  相似文献   

11.
The enzymes studied were cholesterol esterase, cholesterol ester synthetase 3 beta-hydroxysteroid dehydrogenase and 20 alpha-hydroxysteroid dehydrogenase. PGF-2 alpha reduced the activities of 3 beta-hydroxysteroid dehydrogenase and cholesterol esterase but did not affect those of cholesterol ester synthetase of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

12.
A human fecal isolate, characterized by morphological, physiological and biochemical data as a strain of Peptostreptococcus roductus, was shown to contain NAD-dependent 3 alpha- and 3 beta-hydroxysteroid dehydrogenases and a NADP-dependent 7 beta-hydroxysteroid dehydrogenase. All enzyme activities could be demonstrated in crude extracts and in membrane fractions. The 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were synthesized constitutively. Specific enzymatic activities were significantly reduced when bacteria were grown in the presence of 3-keto bile acids, while other bile acids were ineffective. For the 3 alpha (3 beta)-hydroxysteroid dehydrogenase, a pH optimum of 8.5 (9.5) and a molecular weight of 95,000 (132,000) was estimated. 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were heat-sensitive (about 75% inactivation at 50 degrees C for 10 min). The 7 beta-hydroxysteroid dehydrogenase was already present in uninduced cells, but specific activity could be enhanced up to more than 2.5-fold when bacteria were grown in the presence of 7-keto bile acids. Disubstituted bile acids were more effective than trisubstituted ones, ursodeoxycholic acid was ineffective as an inducer. A pH optimum of 10.0 and a molecular weight of about 82,000 were shown for the 7 beta-hydroxysteroid dehydrogenase. The enzyme preparation reduced the 7-keto group of corresponding bile acids. Again the affinities of disubstituted bile acids for the enzyme were higher than those of the trisubstituted bile acids, but no significant differences between conjugated and free bile acids were observed. The 7 beta-hydroxysteroid dehydrogenase was heat-sensitive (72% inactivation at 50 degrees C for 10 min), but was detectable at 4 degrees C for at least 48 h.  相似文献   

13.
W Gibb 《Steroids》1981,37(1):23-31
Recent kinetic studies on the placental microsomal 3 beta-hydroxysteroid dehydrogenase have shown that apparent Km values for 3 beta-hydroxy-5-androsten-17-one (dehydroepiandrosterone) and 3 beta-hydroxy-5-pregnen-20-one (pregnenolone) are 15nM and 40nM respectively, which are orders of magnitude lower than found in earlier studies. The purpose of this study was to investigate the substrate and nucleotide specificity of the 3 beta-hydroxysteroid dehydrogenase, and the ability of various steroids to inhibit the reaction at these lower steroid concentrations. Each steroid inhibited the metabolism of the other competitively, and the Ki values obtained were not significantly different from their respective Km values. The ability of various steroids to inhibit the reaction at concentrations of 100nM was usually less than that found at micromolar concentrations. However, certain steroids showed marked inhibition. For example, estrone and estradiol-17 beta inhibit the oxidation of both substrates competitively with Ki values of between 15 and 24nM. The Km values of dehydroepiandrosterone and pregnenolone with NADP+ as cofactor are higher than those with NAD+ as cofactor and the V values are much lower. These data indicate that in human placental microsomes a single 3 beta-hydroxysteroid dehydrogenase, essentially NAD+ specific, metabolizes dehydroepiandrosterone and pregnenolone.  相似文献   

14.
In corpora lutea of pregnancy of dairy cows delta 5-3 beta-hydroxysteroid dehydrogenase and succinate dehydrogenase were demonstrated histochemically and evaluated densitometrically. Serum progesterone was determined radioimmunologically. Activities per volume unit of delta 5-3 beta-hydroxysteroid dehydrogenase and succinate dehydrogenase in large and small luteal cells as well as progesterone concentrations, exhibited no typical and correlated pattern during pregnancy. Large luteal cells in regressive tissue regions showed weaker delta 5-3 beta-hydroxysteroid dehydrogenase activities than in maturing or well-developed tissue regions. Succinate dehydrogenase activities of small luteal cells were highest in regressive luteal tissue. The results indicate that structural development of bovine luteal tissue during pregnancy is reflected by corresponding enzyme activities.  相似文献   

15.
Using 18beta-glycyrrhetinic acid as a template, the synthesis of a series of secondary amides at the 30-position is described and the effects of these modifications on the SAR of the 11beta-hydroxysteroid dehydrogenase isozymes type 1 and 2 from the rat are investigated. An isoform selective inhibitor has been discovered and compound 5, N-(2-hydroxyethyl)-3beta-hydroxy-11-oxo-18beta-olean-12-en-30-oic acid amide, is highlighted as a very potent and selective inhibitor of 11beta-hydroxysteroid dehydrogenase 2 with an IC(50)=4 pM.  相似文献   

16.
A NADP(+)-dependent 3 beta-hydroxysteroid dehydrogenase activity was localized in the microsomal fraction of rat liver. This enzyme was solubilized and separated completely from 3 alpha-hydroxysteroid dehydrogenase by Matrex red A column chromatography. Partially purified 3 beta-hydroxysteroid dehydrogenase catalyzed the oxidation and reduction between the 3 beta-hydroxyl and 3-ketonic group of steroids or bile acids having no double bond in the A/B ring, but was inactive toward 3 alpha-hydroxyl group. The enzyme required NADP+ for oxidation and NADPH for reduction. The activity was inhibited by p-chloromercuribenzoic acid or p-chloromercuribenzenesulfonic acid at the concentration of 10(-4) M. The molecular weight of the enzyme was estimated to be about 43,000 by Sephadex G-200 column chromatography. From these results, it is concluded that the enzyme is a new type of microsomal NADP+:3 beta-hydroxysteroid dehydrogenase.  相似文献   

17.
The 3 beta-hydroxysteroid dehydrogenase of Pseudomonas testosteroni commercially available was purified by an FPLC step and submitted to sequence determination by peptide analysis. The structure obtained reveals a 253-residue polypeptide chain, with an N-terminal, free alpha-amino group, and a low cysteine content. Comparisons with other hydroxysteroid dehydrogenases recently characterized reveal distant similarities with prokaryotic and, to some extent, also eukaryotic forms of separate specificities. Residue identities with a Streptomyces 20 beta-hydroxysteroid dehydrogenase are 35% and distributed over the entire molecule, whereas residue identities with the mammalian 17 beta-hydroxysteroid dehydrogenase only constitute 20%, and are essentially limited to the N-terminal and central parts, Nevertheless, all these enzymes exhibit a conserved tyrosine residue (position 151 in the present enzyme) noted as possibly having a functional role in some members of this protein family. Combined, the results establish the prokaryotic 3 beta-hydroxysteroid dehydrogenase as belonging to the family of short-chain alcohol dehydrogenases, reveal that the hydroxysteroid dehydrogenases are no more closely related than dehydrogenases with other enzyme activities within the family (e.g. glucose, ribitol, hydroxyprostaglandin dehydrogenases), show several of the mammalian hydroxysteroid dehydrogenases to have subunits of longer size with different patterns of similarity than those of the prokaryotic family members characterized, and define important segments of the coenzyme-binding region for this enzyme group.  相似文献   

18.
When a crude extract of Pseudomonas testosteroni induced with testosterone was subjected to polyacrylamide gel electrophoresis, six bands that stained for 17 beta-hydroxysteroid dehydrogenase activity was observed. A protein fraction containing the enzyme corresponding to the fastest migrating band and devoid of the other hydroxysteroid dehydrogenase activities has been obtained. This preparation appears to be distinct from the previously isolated 3(17) beta-hydroxysteroid dehydrogenase (EC 1.1.1.51) in its chromatography properties on DEAE-cellulose, substrate and cofactor specificity, immunological properties and heat stability. The preparation appears devoid of 3alpha-, 3beta-, 11beta-, 17alpha-, 20alpha-, and 20beta-hydroxysteroid dehydrogenase activities. The enzyme transfers th 4-pro-S-hydrogen of NADH from estradiol-17beta (1,3,5(10)estratriene-3,17beta-diol) to estrone (3-hydroxy-1,3,5(10)-estratriene-17-one).  相似文献   

19.
20.
By analysing mRNAs with the polymerase chain reaction (PCR) and by studying in vitro generated mutants we have identified an intron in the genome of wheat dwarf virus (WDV), a geminivirus of cereals. Polypeptides whose expression is essential for the replication of the viral DNA have been defined. They are encoded by two distinct overlapping open reading frames (ORFs). The joining of these two ORFs by deletion of the intron as well as the introduction of a frameshift mutation within the intron do not prevent replication of the viral genome in suspension culture cells. In contrast to WDV, the geminiviruses of dicotyledonous plants possess a single continuous ORF, highly homologous to the two individual ones of WDV. We propose that mRNA splicing is a common feature of all geminiviruses of the Gramineae and might contribute to their host class specificity. The existence of a functional intron is a novel finding for the plant viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号