首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Eight glycerophosphoglycolipids were isolated from six Gram-positive bacteria. Besides sn-glycero-1-phospho-beta-gentiobiosyldiacylglycerol (i) and sn-glycero-1-phospho-alpha-kojibiosyldiacylglycerol (ii), three novel structures have been established: 1,2-di-O-acyl-3-O-[6-(sn-glycero-1-phospho)-alpha-D-glucopyranosyl-(1 leads to 2)-(6-O-acyl-alpha-D-glucopyranosyl)]glycerol (iii), 1,2-di-O-acyl-3-O-[6-(sn-glycero-1-phospho)-beta-D-glucopyranosyl-(1 leads to 6)-alpha-D-galactopyranosyl-(1 leads to 2)-alpha-D-glucopyranosyl]glycerol (iv), and 1,2-di-O-acyl-3-O-[6-(sn-glycero-1-phospho)-beta-D-glucopyranosyl-(1 leads to 6)-alpha-D-galactopyranosyl-(1 leads to 2)-(6-O-acyl-alpha-D-glucopyranosyl)]glycerol (v). 2. Compound i was isolated from Bacillus licheniformis, Bacillus subtilis and Staphylococcus aureus, compound ii from a group B Streptococcus, compounds ii and iii from Streptococcus lactis, compounds iv and v from Lactobacillus casei. Lactobacillus plantarum contained besides compounds iv and v a glycerophosphate derivative of 1,2-di-O-acyl-3-O-[alpha-D-galactopyranosyl (1 leads to 2)-alpha-D-glucopyranosyl]glycerol. 3. Identical structural features of the described glycerophosphoglycolipids and the corresponding lipoteichoic acids are discussed.  相似文献   

2.
Streptococcus lactis Kiel 42172 contains at least six unusually polar glycerophosphoglycolipids. The predominant one was composed of D-galactose, D-glucose, glycerol, acyl groups and phosphorus in a molar ratio of approx. 3 : 2 : 2 : 3 : 1. By analysis of the breakdown products of HF hydrolysis and Smith-degradation the structure was established to be [Galp (alpha 1 leads to 6)Galp(alpha 1 leads to 3)-sn-glycero(2 comes from 1 alpha Galp)-1-phospho] leads to 6Glcp(alpha 1 leads to 2), acyl leads to Glcp(alpha 1 leads to 3)-acyl2Gro. By HF hydrolysis the other compounds were shown to be in the main also derivatives of GroP leads to 6Glc(alpha 1 leads to 2), acyl leads to 6Glc(alpha 1 leads to 3)acyl2Gro but they released as water-soluble glycosides Gal(alpha 1 leads to 2)Gro, Gal(alpha 1 leads to 3)Gro, Gal(alpha 1 leads to 3)Gro(2 comes from 1 alpha Gal), Gal(alpha 1 leads to 6)Gal(alpha 1 leads to 3)Gro and Gal(alpha 1 leads to 6)Gal-(alpha 1 leads to 6)Gal(alpha 1 leads to 3)Gro(2 comes from 1 alpha Gal), respectively. In the lipid extract Glc(alpha 1 leads to 2), acyl leads to 6Glc(alpha 1 leads to 3)acyl2Gro and GroP leads to 6Glc(alpha 1 leads to 2), acyl leads to 6Glc(alpha 1 leads to 3) acyl2Gro were also observed. This set of compounds is proposed to constitute a biosynthetic series reflecting the individual steps in the synthesis of the lipoteichoic acid of Streptococcus lactis Kiel 42172 which is made up by the same lipid anchor and a non-classical poly(galabiosyl, galactosyl glycerophosphate)-chain (Koch, H.U. and Fischer, W. (1978) Biochemistry 17, 5275--5281).  相似文献   

3.
Studies were carried out on the lipid composition of a halotolerant Staphylococcus epidermidis isolated in pure culture from a growth medium for extreme halophiles containing 25% NaCl. The four major polar lipid components in this bacterium were found to be: (a) glycerophosphoryl diglucosyl diglyceride (10% by weight) with structure 3(1)-O-(-sn-glycerol-1-phosphoryl-6'-O=(beta-D glucopyranosyl-(1 leads to 6)- O-beta-D-glucopyranosyl)-1(3),2-diacyl-sn-glycerol; (b) diglucosyl diglyceride (15% by weight) with structure 3(1)-O-(beta-D-glucopyranosyl (1 leads to 6)-O-beta-D-glucopyranosyl)-1(3),2-diacyl-sn-glycerol; (c) monoglucosyl diglyceride (3% by weight) with structure 3(1)-O-(beta-D-glucopyranosyl)-1(3),2-diacyl-sn-glycerol, and (d) phosphatidylglycerol (60% by weight) with structure 1,2 diacyl-sn-glycero-3-phosphoryl-1'-sn-glycerol. Phosphatidic acid, cardiolipin, lysophosphatidylglycerol and three unidentified phospholipids were also detected in small amounts. Each lipid component had essentially the same fatty acid composition namely, anteiso-15:0 (60-75%), anteiso-17:0 (18-24%), iso-17:0 (8--10%), and small amounts of palmitic and stearic acids (2-5%). The fatty acids were non-randomly distributed in phosphatidylglycerol, the shorter chain anteiso 15:0 fatty acid being exclusively esterified to the 2-position and the longer chain anteiso- and iso-17:0 fatty acids at the 1-position. The fatty acid composition was not affected by increaseing NaCl content in the medium in the rande 0--15% but the proportion of anteiso-15:0 increased greatly when the salt concentration was increased to 25%. The proportions of ionic polar lipids were modified to give an increased net negative charge per mol ionic lipids when NaCl in the medium was increased from 15 to 25%, but the proportions of neutral glycolipids remained fairly constant.  相似文献   

4.
The chemical structure of lipid A from the lipopolysaccharide of the mushroom-associated bacterium Pseudomonas reactans, a pathogen of cultivated mushroom, was elucidated by compositional analysis and spectroscopic methods (MALDI-TOF and two-dimensional NMR). The sugar backbone was composed of the beta-(1'-->6)-linked d-glucosamine disaccharide 1-phosphate. The lipid A fraction showed remarkable heterogeneity with respect to the fatty acid and phosphate composition. The major species are hexacylated and pentacylated lipid A, bearing the (R)-3-hydroxydodecanoic acid [C12:0 (3OH)] in amide linkage and a (R)-3-hydroxydecanoic [C10:0 (3OH)] in ester linkage while the secondary fatty acids are present as C12:0 and/or C12:0 (2-OH). A nonstoichiometric phosphate substitution at position C-4' of the distal 2-deoxy-2-amino-glucose was detected. Interestingly, the pentacyl lipid A is lacking a primary fatty acid, namely the C10:0 (3-OH) at position C-3'. The potential biological meaning of this peculiar lipid A is also discussed.  相似文献   

5.
The effects of dietary n - 3 polyunsaturated fatty acids (PUFA) on fatty acid profiles of rat brain phospholipid subclasses as well as on heart phosphatidylethanolamine through two generations were examined: Three groups of rats were fed 20 weight% fat diets in which approx. 30% of the fatty acids were polyunsaturated, either 17% linoleic acid + 13% C20(-) + C22 polyunsaturates from fish oil or 17% linoleic + 13% alpha-linolenic acid from linseed oil or 30% linoleic acid. The rats of the two generations were killed as adults at 18 weeks of age. The results demonstrated that fish oil was a better source than alpha-linolenic acid for incorporation of n - 3 PUFA into the examined phospholipids. This was seen both in brain and heart tissue and in both generations of rats. In the brain phosphatidylethanolamine (PE) and phosphatidylserine (PS) similar fatty acid profiles were found in 1st and 2nd generation, but fish oil was more efficient than 18:3(n - 3) in increasing the levels of 22:6(n - 3), 20:5(n - 3), 22:5(n - 3) and reducing 20:4(n - 6) and 22:5(n - 6). Fatty acid profiles of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP2) were affected by dietary fats. In PIP and PIP2 of 2nd generation rats 20:4(n - 6) was reduced from 36 to 29% following fish oil intake, whereas alpha-linolenic acid had no effects. The cholesterol/phospholipid ratio was not affected in the brain, neither was the degree of unsaturation of the phospholipids. In heart PE the highest levels of 20:5(n - 3)(2%) and 22:6(n - 3) (36%) were observed following fish oil intake. However, in rats fed alpha-linolenic acid a considerable increase in the level of 22:6(n - 3) was observed from the 1st (21%) to the 2nd generation (26%).  相似文献   

6.
The composition of fatty acids in human milk lipids was determined in 41 women on the 3rd, 4th, 5th and 6th days after labour by the method of gas chromatography. In these investigations no significant differences were demonstrated in the fatty acids in the lipid fractions between these consecutive days. The level of polyunsaturated fatty acids of the n-6 and n-3 groups was about 11.9-13.6%, including linoleic acid (18:2, n-6) about 7.7-9.8%, and alpha-linolenic acid (18:3, n-3) about 0.7-1%. In the analysis group of n-6 fatty acids the determined acids were: linoleic acid (18:2, n-6), gamma-linolenic acid (18:3, n-6), eicosadienoic acid (20:2, n-6), eicosatrienoic acid (20:3, n-6), arachidonic acid (20:4, n-6), docosahexaenoic acid (22:6, n-6). From the group of n-3 acids the identified ones were: alpha-linolenic acid (18:3, n-3), eicosapentaenoic acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3). The obtained quotients of fatty acids n-6 through n-3 on the consecutive days were: 7.2:1-7.8:1, indicating a too low level of the n-3 acids in the investigated milk. The acids prevailing in human milk lipids were: oleic (18:1, n-9) and palmitic (16:0) which accounted for 37-39% and 25-26% respectively. The polyunsaturated to saturated fatty acid ratio (P:S) ranged from 0.28 to 0.33.  相似文献   

7.
The effect of dietary fatty acids on uterine fatty acid composition was studied in rats fed control diet or semi-synthetic diet supplemented with 1.5 microliter/g/day evening primrose oil (EPO) or fish oil (FO). Diet-related changes in uterine lipid were detected within 21 days. Changes of 2- to 20-fold were detected in the uterine n-6 and n-3 essential fatty acids (EFA) and in certain saturated and monounsaturated fatty acids. The FO diet was associated with higher uterine C20 and C22 n-3, and the EPO diet, with higher uterine n-6 fatty acid. High uterine C18:2 n-6 was detected in neutral lipid (NL) of rats fed high concentrations of this fatty acid, but there was little evidence of selective incorporation or retention of C18:2 n-6 by uterine NL. The incorporation of EFA into uterine phospholipids (PL) was greater than NL EFA incorporation, and uterine PL n-3/n-6 ratios showed greater diet dependence. Tissue/diet fatty acid ratios in NL and PL also indicated preferential incorporation/synthesis of C16:1 n-9, and C16:0, and there was greater incorporation of C12:0 and C14:0 into uteri of rats fed EPO and FO. Replacement of 50-60% of arachidonate with n-3 EFA in uterine PL may inhibit n-6 EFA metabolism necessary for uterine function at parturition.  相似文献   

8.
Saturated fatty acids can be synthesized de novo and play a role in determining properties of structural membranes. The effect of dietary essential fatty acids, linoleic acid (18:2(n - 6)) and alpha-linolenic acid (18:3(n - 3)), on the saturated fatty acid content of membrane phospholipid has not previously been considered in newborn nutrition. The studies report the effect of low (1% fatty acids) or high (4%) formula 18:3(n - 3) with low (16%) or high (30-35%) formula 18:2(n - 6) on the saturated and unsaturated fatty acid composition of liver and brain structural lipid of piglets fed formula from birth for 15 days. A significant inverse relationship between the formula % 18:3(n - 3), but not 18:2(n - 6), and the liver phospholipid palmitic acid (16:0) was found. This may indicate a possible effect of dietary 18:3(n - 3) on de novo synthesis of 16:0 and requires further investigation. Monounsaturated fatty acids in both liver and brain were significantly lower in response to high 18:3(n - 3) and to high 18:2(n - 6) plus low 18:1(n - 9) in the formula. Liver phospholipid and brain total lipid % docosahexaenoic acid (22:6(n - 3)) were significantly higher when formula containing 4% rather than 1% 18:3(n - 3) was fed, suggesting that 1% 18:3(n - 3) may limit tissue (n - 3) fatty acid accretion. These results suggest that future studies of essential fatty acid requirements, specifically 18:3(n - 3), should consider possible influences on the saturated fatty acids which also play a functional role in tissue structural lipids.  相似文献   

9.
Diet and postnatal age effect the fatty acid composition of plasma and tissue lipids. This work was designed as a transversal study to evaluate the changes in the fatty acid composition of plasma phospholipids, cholesteryl esters, triglycerides and free fatty acids in preterm infants (28-35 weeks gestational age), fed human milk (HM) and milk formula (MF) from birth to 1 month of life. Sixteen blood samples were obtained from cord, and 19 at 6-8 h after birth, 14 at 1 week and 9 at 4 weeks from HM-fed infants and 18 at 1 week and 14 at 4 weeks from MF-fed ones. Groups had similar mean birth weight, gestational age and sex ratio. The MF provided 69 kcal/dl and contained 16% of linoleic acid and 1.3% of alpha-linolenic acid on the total fat. Plasma lipid fractions were extracted and separated by thin-layer chromatography and fatty acid methyl esters were quantitated by gas liquid chromatography. In plasma phospholipids, linoleic acid (18:2 omega 6) continuously increased from birth to 1 month of age, but no changes were seen as related to type of diet; polyunsaturated fatty acids greater than 18 carbon atoms of both the omega 6 and omega 3 series (PUFA omega 6 greater than 18 C and omega 3 greater than 18 C) dropped from birth to 1 week and continued to decrease in MF-fed infants until 1 month; eicosatrienoic (20:3 omega 6), arachidonic (20:4 omega 6) and docosahexaenoic (22:6 omega 3) were the fatty acids implicated. In cholesteryl esters palmitoleic (16:1 omega 7) and oleic (18:1 omega 9) acids decreased from birth to 1 month and linoleic acid increased and arachidonic acid dropped, especially in MF fed infants. In triglycerides, palmitic, palmitoleic and stearic acid (18:0) decreased during the first month of life; oleic acid remained constant and linoleic acid increased in all infants, but arachidonic acid decreased only in those fed formula. Free fatty acids showed a similar behavior in fatty acids and in plasma triglycerides. Preterm neonates seem to have special requirements of long-chain PUFA and adapted MF should contain these fatty acids in similar amounts to those of HM to allow the maintenance of an adequate tissue structure and physiology.  相似文献   

10.
We have previously reported that fetal rabbit lung tissue in organ culture produces a lamellar body material (pulmonary surfactant) with a lower percentage of disaturated phosphatidylcholine than is typically found in rabbit lung in vivo (Longmuir, K.J., C. Resele-Tiden, and L. Sykes. 1985. Biochim. Biophys. Acta. 833: 135-143). This investigation was conducted to identify all fatty acids present in the lamellar body phosphatidylcholine, and to determine whether the low level of disaturated phosphatidylcholine is due to excessive unsaturated fatty acid at position sn-1, sn-2, or both. Fetal rabbit lung tissue, 23 days gestation, was maintained in culture for 7 days in defined (serum-free) medium. Phospholipids were labeled in culture with [1-14C]acetate or [U-14C]glycerol (to follow de novo fatty acid biosynthesis), or with [1-14C]palmitic acid (to follow incorporation of exogenously supplied fatty acid). Radiolabeled fatty acid methyl esters obtained from lamellar body phosphatidylcholine were first separated by reverse-phase thin-layer chromatography (TLC) into two fractions of 1) 14:0 + 16:1 and 2) 16:0 + 18:1. Complete separation of the individual saturated and monoenoic fatty acids was achieved by silver nitrate TLC of the two fractions. Monoenoic fatty acid double bond position was determined by permanganate-periodate oxidation followed by HPLC of the carboxylic acid phenacyl esters. Lamellar body phosphatidylcholine contained four monoenoic fatty acids: 1) palmitoleic acid, 16:1 cis-9; 2) oleic acid, 18:1 cis-9; 3) cis-vaccenic acid, 18:1 cis-11; and 4) 6-hexadecenoic acid, 16:1 cis-6. In addition, 8-octadecenoic acid, 18:1 cis-8, was found in the fatty acids of the tissue homogenate. The abnormally low disaturated phosphatidylcholine content in lamellar body material was the result of abnormally high levels of monoenoic fatty acid (principally 16:1 cis-9) found at position sn-2. Position sn-1 contained normal levels of saturated fatty acid. The biosynthesis of the unusual n-10 fatty acids was observed from the start of culture throughout the entire 7-day culture period, and was observed in incubations of tissue slices of day 23 fetal rabbit lung. This is the first report of the biosynthesis of n-10 fatty acids (16:1 cis-6 and 18:1 cis-8) in a mammalian tissue other than skin, where these fatty acids are found in the secretory product (sebum) of sebaceous glands.  相似文献   

11.
Wang Z  Li J  Altman E 《Carbohydrate research》2006,341(17):2816-2825
The lipid A components of Aeromonas salmonicida subsp. salmonicida from strains A449, 80204-1 and an in vivo rough isolate were isolated by mild acid hydrolysis of the lipopolysaccharide. Structural studies carried out by a combination of fatty acid, electrospray ionization-mass spectrometry and nuclear magnetic resonance analyses confirmed that the structure of lipid A was conserved among different isolates of A. salmonicida subsp. salmonicida. All analyzed strains contained three major lipid A molecules differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising 4'-monophosphorylated beta-2-amino-2-deoxy-d-glucopyranose-(1-->6)-2-amino-2-deoxy-d-glucopyranose disaccharide, where the reducing end 2-amino-2-deoxy-d-glucose was present primarily in the alpha-pyranose form. Electrospray ionization-tandem mass spectrometry fragment pattern analysis, including investigation of the inner-ring fragmentation, allowed the localization of fatty acyl residues on the disaccharide backbone of lipid A. The tetraacylated lipid A structure containing 3-(dodecanoyloxy)tetradecanoic acid at N-2',3-hydroxytetradecanoic acid at N-2 and 3-hydroxytetradecanoic acid at O-3, respectively, was found. The pentaacyl lipid A molecule had a similar fatty acid distribution pattern and, additionally, carried 3-hydroxytetradecanoic acid at O-3'. In the hexaacylated lipid A structure, 3-hydroxytetradecanoic acid at O-3' was esterified with a secondary 9-hexadecenoic acid. Interestingly, lipid A of the in vivo rough isolate contained predominantly tetra- and pentaacylated lipid A species suggesting that the presence of the hexaacyl lipid A was associated with the smooth-form lipopolysaccharide.  相似文献   

12.
The ability of derivatives of the essential fatty acids linoleic acid (C18:2, omega 6) and alpha-linolenic acid (C18:3, omega 3) to stimulate rates of protein synthesis and degradation was investigated in isolated intact muscles from fasted rabbits. Both omega 6 derivatives examined, arachidonic acid (C20:4, omega 6) and dihomo-gamma-linolenic acid (C20:3, omega 6), when added at concentrations up to 1 microM, stimulated the rate of protein synthesis and the release of prostaglandin F2 alpha (PGF2 alpha). Metabolites of the omega 6 series, namely eicosapentaenoic acid (C20:5, omega 3) and docosahexaenoic acid (C22:6, omega 3), were without effect on the rate of protein synthesis and resulted in a decrease in the release of PGF2 alpha. None of the fatty acids had a significant effect on the rate of protein degradation. Although insulin (100 mu units/ml) also stimulated rates of protein synthesis when added alone, none of the omega 3 or omega 6 fatty acids, when added with insulin at concentrations of 0.2 microM, potentiated the effect of the hormone.  相似文献   

13.
The delta 6-desaturase reaction is regarded to be the rate-limiting step in the conversion of linoleic acid (18:2(n - 6)) to arachidonic acid (20:4(n - 6)). The same is probably also the case with the conversion of alpha-linolenic acid (18:3(n - 3)) to eicosapentaenoic acid (20:5(n - 3)). However, there are very few in vivo studies that directly compared the conversion rate between 18:3(n - 3) and stearidonic acid (18:4(n - 3)), which is the delta 6-desaturated product of 18:3(n - 3). We compared this rate by feeding rats on a lipid-free diet supplemented with lard (9%, w/w) and 18:3(n - 3) ethyl ester (1%) diet or on a diet containing lard (9%) and 18:4(n - 3) ethyl ester (1%). A lard (10%)-supplemented diet was used as the control diet. The fatty acid compositions of total phospholipids, triglycerides and free fatty acids of both liver and plasma were measured after 1 or 3 weeks on different diets. The molar ratio of 20:5(n - 3) of most lipid fractions was about 2-fold higher in rats fed the 18:4(n - 3)-supplemented diet than in rats fed the 18:3(n - 3)-supplemented diet. 18:4(n - 3) was found in the liver lipid fraction in only a very small amount, even in the 18:4(n - 3)-supplemented groups. Thus, desaturation at C-6 is suggested to be the rate-limiting step in the conversion of 18:3(n - 3) to 20:5(n - 3).  相似文献   

14.
The fatty acid desaturation-elongation ability of human T-lymphocytes during blastic transformation was determined both by gas-liquid chromatography and incubation with radiolabeled precursors. Human peripheral blood mononuclear cells (PBMC) were activated with phytohemagglutinin (PHA) and cultured in media supplemented with different fatty acids (18:0, 18:1(n - 9), 18:2(n - 6), 18:3(n - 3) and 20:4(n - 6)) at a final concentration of 30 microM. All the fatty acids added were elongated by activated PBMC and the maximal activity was observed on 20:4(n - 6) (a 25% of conversion to 22:4(n - 6)). Supplementation with stearic acid increased the proportion of oleic (from 21.4% to 23.7%) and eicosaenoic (from 3.1% to 5.7%) acids in cellular lipids, indicating the existence of a delta 9-desaturase activity. Supplementation with linoleic and linoleic acids increased slightly the cell content in their more unsaturated derivatives. Direct measurement of desaturase activities was performed by incubating quiescent and activated PBMC with [1-14C]stearic, [1-14C]linoleic and [1-14C]linolenic acids. Quiescent cells exhibited a very low delta 9-desaturase and no sign of delta 6-desaturase activity. A moderate and progressive activation of delta 9-, delta 6- and delta 5-desaturases was observed during blastic transformation of human PBMC. Up to 8% of 18:0 was converted to monoenes, 4% and 1.5% of 18:2(n - 6) was converted to trienes and tetraenes, respectively, and 14.5% of 18:3(n - 3) was converted to pentaenes. The maximal relative activities were found after 48 h of PHA-stimulation for delta 9-desaturase (around 90 pmol of 18:0 converted per 10(6) cells in the last 24 h) and at 72 h for delta 6- and delta 5-desaturases (around 75 and 140 pmol of 18:2 and 18:3, respectively, converted per 10(7) cells in the last 24 h). Although these activities are not enough to explain all the changes in fatty acid composition of human PBMC during blastic transformation, they may contribute to a more controlled cell phospholipid composition.  相似文献   

15.
The chemical structure of Campylobacter jejuni CCUG 10936 lipid A was elucidated. The hydrophilic backbone of the lipid A was shown to consist of three (1----6)-linked bisphosphorylated hexosamine disaccharides. Neglecting the phosphorylation pattern, a D-glucosamine (2-amino-2-deoxy-D-glucose) disaccharide [beta-D-glucosaminyl-(1----6)-D-glucosamine], a hybrid disaccharide of 2,3-diamino-2,3-dideoxy-D-glucose and D-glucosamine [2,3-diamino-2,3-dideoxy-beta-D-glucopyranosyl-(1----6)-D-glucosamine], and a 2,3-diamino-2,3-dideoxy-D-glucose disaccharide were present in a molar ratio of 1:6:1.2. Although the backbones are bisphosphorylated, heterogeneity exists in the substitution of the polar head groups. Phosphorylethanolamine is alpha-glycosidically bound to the reducing sugar residue of the backbone, though C-1 is also non-stoichiometrically substituted by diphosphorylethanolamine. Position 4' of the non-reducing sugar residue carries an ester-bound phosphate group or is non-stoichiometrically substituted by diphosphorylethanolamine. By methylation analysis it was shown that position 6' is the attachment site for the polysaccharide moiety in lipopolysaccharide. These backbone species carry up to six molecules of ester- and amide-bound fatty acids. Four molecules of (R)-3-hydroxytetradecanoic acid are linked directly to the lipid A backbone (at positions 2, 3, 2', and 3'). Laser desorption mass spectrometry showed that both (R)-3-hydroxytetradecanoic acids linked to the non-reducing sugar unit carry, at their 3-hydroxyl group, either two molecules of hexadecanoic acid or one molecule of tetradecanoic and one of hexadecanoic acid. It also suggested that the (R)-3-(tetradecanoyloxy)-tetradecanoic acid was attached at position 2', whereas (R)-3-(hexadecanoyloxy)-tetradecanoic acid was attached at position 3', or at positions 2' and 3'. Therefore, the occurrence of three backbone disaccharides differing in amino sugar composition and presence of a hybrid disaccharide differentiate the lipid A of this C. jejuni strain from enterobacterial and other lipids A described previously.  相似文献   

16.
The dipyruvylated glycolipid from Mycobacterium smegmatis (Saadat, S., and Ballou, C.E. (1983) J. Biol. Chem. 258, 1813-1818) has been shown to have the following structure in which FA1 is tetra- or hexadecanoic acid and FA2 is 2,4-dimethyl-2-eicosenoic acid. (formula; see text) The fast atom bombardment mass spectrum showed two major ions [M - H]- at m/z 1511 and 1539 (Mr 1512 and 1540) in a ratio of 1.4:1, suggesting that the glycolipid was a mixture of homologs that differed in fatty acid composition by 2 methylene groups. Analysis revealed C14, C16, and C22 fatty acids in ratios of 0.6:0.4:1.0, indicating that 60% of the molecules contained a C14 and C22 fatty acid whereas 40% contained a C16 and C22 fatty acid. The fragmentation pattern showed that a single glucose unit along with the smaller fatty acid could be lost to yield a tetrasaccharide with attached C22 fatty acid, and a second fragmentation yielded a trisaccharide containing 2 pyruvic acids but without attached fatty acid. The C14 and C16 fatty acids were identified as myristic and palmitic acid, whereas the C22 fatty acid was 2,4-dimethyl-2-eicosenoic acid. Precise localization of the fatty acids came from periodate oxidation and methylation analysis.  相似文献   

17.
The mitoinhibitory effect of fumonisin B1 (FB1) on the mitogenic response of epidermal growth factor (EGF) was investigated in primary hepatocyte cultures with respect to the alterations in the omega6 fatty acid metabolic pathway. Fatty acid analyses of hepatocytes showed that EGF treatment resulted in a significant decrease in the relative levels of 20:4omega6 (arachidonic acid) and an increase in 18:2omega6 (linoleic acid). Supplementation of the hepatocyte cultures with 20:4omega6 in the absence of EGF resulted in an increase in the total omega6 and omega6/omega3 fatty acid ratio. Addition of 20:5omega3 (eicosapentaenoic acid) resulted in an increase of the relative levels of the long chain omega3 fatty acids at the expense of the omega6 fatty acids. When 20:4omega6 and 20:5omega3 was added in the presence of EGF, the mitogenic response of EGF was increased and decreased respectively. When compared to the fatty acid profiles in the absence of EGF, the decreased mitogenic response coincided with a decrease of total omega6 fatty acids and total polyunsaturated fatty acids (PUFA). In addition, the saturated and mono-unsaturated fatty acids increased and the polyunsaturated/saturated (P/S) fatty acid ratio decreased which implied a more rigid membrane structure. Addition of prostaglandin E2 (PGE2) and prostaglandin E1 (PGE1) stimulated and inhibited the mitogenic response respectively. Ibuprofen, a known cyclooxygenase inhibitor, and FB1 inhibited the EGF-induced mitogenic response in a dose-dependent manner. The mitoinhibitory effect of FB1 on the EGF response was counteracted by the addition of PGE2. FB1 also disrupts the omega6 fatty acid metabolic pathway in primary hepatocytes, resulting in the accumulation of C18:2omega6 in phospatidylcholine and triacylglicerol. The disruption of the omega6 fatty acid metabolic pathway and/or prostaglandin synthesis is likely to be an important event in the mitoinhibitory effect of FB1 on growth factor responses.  相似文献   

18.
Essential fatty acid metabolism in cultured human airway epithelial cells.   总被引:3,自引:0,他引:3  
To characterize essential fatty acid metabolism of human airway epithelium, we examined the capacity of epithelial cells to incorporate and desaturate/elongate 18:2(n - 6) and the turnover of phospholipid fatty acyl chains in these cells. Epithelial cells were cultured for 5-7 days and incubated with [1-14C]18:2(n - 6) (1 microCi, 100 nmol). The essential fatty acid profile of the cells was readily modified by 18:2(n - 6) supplementation to culture medium. After 4 h incubation, 32 +/- 5.6 nmol of [1-14C]18:2(n - 6) was incorporated into phospholipids (65 +/- 9.5%, of which 74% was incorporated into phosphatidylcholine (PC)) and neutral lipid (31 +/- 10%) per mg protein of cultured cells. 30 +/- 8% of [1-14C]18:2(n - 6) incorporated, was converted to homologous trienes, tetraenes and pentaenes, the major products being 20:3(n - 6) and 20:4(n - 6). The conversion of 18:2(n - 6) was time-dependent and donor age-related. A higher proportion of 20:3(n - 6) and 20:4(n - 6) was incorporated into phosphatidylinositol (PI) and phosphatidylethanolamine (PE). About 10-15% of total products formed from 18:2(n - 6) was released from membrane to culture medium. Both 20:4(n - 6) and 20:5(n - 3) inhibited 18:2(n - 6) incorporation and desaturation. Rate of incorporation of 18:2(n - 6) was more than either 18:1(n - 9) or 16:0. With pulse-chase studies, the half-life of 18:2(n - 6) in PC, PI and PE was estimated to be 5.5, 6.0 and 7.3 h, respectively. These data indicate active metabolism of essential fatty acids in human airway epithelial cells. This metabolism may play a key role in the regulation of membrane properties and function in these cells.  相似文献   

19.
Primary culture is a suitable system to study lipid metabolism and polyunsaturated fatty acid biosynthesis. Sertoli cell-enriched preparations were used to determine the fatty acid composition after 5 and 7 days in culture (serum free) as well as the uptake and metabolism of [1-14C]eicosa-8,11,14-trienoic acid. The addition of unlabeled linoleic acid (0.2 and 2.0 microg/ml) was also evaluated. Fatty acid methyl esters derived from cellular lipids were analyzed by gas liquid chromatography and radiochromatography. After 5 days in culture, cells had significantly less 18:2, 20:4, 22:5 and 24:5 and more 18:3, 20:3, 22:4 and 24:4 n-6 fatty acids than non-cultured cells. On day 7, an additional increment in 22:4 n-6 and a decrease in linoleic, gamma-linoleic and 24:4 n-6 fatty acids were observed. The presence of linoleic acid (low dose) produced a significant decrease in saturated and monounsaturated acids and an increase in 18:2, 20:4 and 22:5 n-6 fatty acids. At a high concentration almost all fatty acids belonging to 18:2 n-6 increased significantly. The drop in 20:4 n-6/20:3 n-6 ratio was considered as an indirect evidence of a Delta 5 desaturase activity depression. This assumption was corroborated by studying the transformation of [1-14C]eicosa-8,11,14-trienoic acid into 20:4, 22:4, 22:5, 24:4 and 24:5 n-6 fatty acids. We conclude that Sertoli cells after 7 days in culture evidenced changes in the fatty acid profile similar to those described under fat deprivation. The addition of linoleic acid reverted this pattern and indicated that the Delta 5 desaturase activity is a limiting step in the polyunsaturated fatty acid biosynthesis.  相似文献   

20.
A combined fatty acid metabolism assay was employed to determine fatty acid uptake and relative utilisation in enterocytes isolated from the pyloric caeca of rainbow trout. In addition, the effect of a diet high in long-chain monoenoic fatty alcohols present as wax esters in oil derived from Calanus finmarchicus, compared to a standard fish oil diet, on caecal enterocyte fatty acid metabolism was investigated. The diets were fed for 8 weeks before caecal enterocytes from each dietary group were isolated and incubated with [1-14C]fatty acids: 16:0, 18:1n-9, 18:2n-6, 18:3n-3, 20:1n-9, 20:4n-6, 20:5n-3, and 22:6n-3. Uptake was measured over 2 h with relative utilisation of different [1-14C]fatty acids calculated as a percentage of uptake. Differences in uptake were observed, with 18:1n-9 and 18:2n-6 showing the highest rates. Esterification into cellular lipids was highest with 16:0 and C18 fatty acids, accounting for over one-third of total uptake, through predominant incorporation in triacylglycerol (TAG). The overall utilisation of fatty acids in phospholipid synthesis was low, but highest with 16:0, the most prevalent fatty acid recovered in intracellular phosphatidylcholine (PC) and phosphatidylinositol (PI), although exported PC exhibited higher proportions of C20/C22 polyunsaturated fatty acids (PUFA). Other than 16:0, incorporation into PC and PI was highest with C20/C22 PUFA and 20:4n-6 respectively. Recovery of labelled 18:1n-9 in exported TAG was 3-fold greater than any other fatty acid which could be due to multiple esterification on the glycerol 'backbone' and/or increased export. Approximately 20-40% of fatty acids taken up were beta-oxidised, and was highest with 20:4n-6. Oxidation of 20:5n-3 and 22:6n-3 was also surprisingly high, although 22:6n-3 oxidation was mainly attributed to retroconversion to 20:5n-3. Metabolic modification of fatty acids by elongation-desaturation was generally low at <10% of [1-14C]fatty acid uptake. Dietary copepod oil had generally little effect on fatty acid metabolism in enterocytes, although it stimulated the elongation and desaturation of 16:0 and elongation of 18:1n-9, with radioactivity recovered in longer n-9 monoenes. The monoenoic fatty acid, 20:1n-9, abundant in copepod oil as the homologous alcohol, was poorly utilised with 80% of uptake remaining unesterified in the enterocyte. However, the fatty acid composition of pyloric caeca was not influenced by dietary copepod oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号