首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to investigate new gene resource for enhancing rice tolerance to salt stress, manganese superoxide dismutase gene from halophilic archaeon (Natrinema altunense sp.) (NaMnSOD) was isolated and introduced into Oryza sativa L. cv. Nipponbare by Agrobacterium-mediated transformation. The transformants (L1 and L2) showed some NaMnSOD expression and increased total SOD and CAT activity, which contributed to higher efficiency of ROS elimination under salt stress. The levels of superoxide anion radicals (O 2 ·? ) and hydrogen peroxide (H2O2) were significantly decreased. In addition, they exhibited higher levels of photosynthesis, whereas lower relative ion leakage and MDA content compared to wild-type plants. Therefore, transgenic seedlings were phenotypically healthier, and heterologous expression of NaMnSOD could improve rice salt tolerance.  相似文献   

2.
通过构建融合番茄RuBP羧化酶小亚基转运肽基因(rbcS-3)和CAT基因编码阅读框(ORF)的双元表达载体,采用农杆菌介导的叶圆盘转化法将融合基因转入烟草,使其能够定向导入叶绿体中发挥作用。在含有50mg/L潮霉素的培养基上筛选获得转CAT烟草30多个株系,并对其进行了分子生物学的验证和生理指标的检测。对获得的抗性植株用PCR、RT-PCR、植株总蛋白Western blot和叶绿体蛋白Western blot分析表明,目的基因已经整合到烟草基因组中,并能正常表达,且在叶绿体rbcS-3转运肽的作用下能定向进入叶绿体中。对转基因植株生理指标的检测发现,在20% PEG6000模拟干旱条件下,野生型烟草的相对电导率提高幅度为43.4%,而转CAT植株的相对电导率仅提高8.8%,表明在干旱胁迫下转CAT烟草的质膜透性小于野生型烟草;经20% PEG6000处理后,野生型和转CAT基因烟草的叶绿素含量都下降,下降幅度分别为68.0%和20.4%;另外,经20% PEG6000处理的野生型烟草叶片的Fv/Fm下降幅度为5.3%,而转CAT基因烟草叶片的Fv/Fm下降幅度0.9%,这些结果表明,在叶绿体中过量表达CAT对干旱胁迫下的细胞质膜、叶绿素和PSⅡ具有一定的保护作用。此外,经150 μmol/L百草枯处理后发现,处理3h后,野生型烟草和转CAT烟草的相对电导率分别比对照提高67.9%和13.5%,而野生型和转CAT烟草的Fv/Fm都下降,降幅分别为23.7%和3.9%,这表明在百草枯氧化胁迫下转CAT烟草的质膜和PSⅡ的损伤程度都小于野生型烟草。总之,豌豆CAT基因在烟草叶绿体中过量表达,提高了转基因烟草的抗旱性和抗氧化性。  相似文献   

3.
Superoxide dismutases (SODs) play important role in stress tolerance of plants. In this study, an MnSOD gene (TaMnSOD) from Tamarix androssowii, under the control of the CaMV35S promoter, was introduced into poplar (Populus davidiana × P. bolleana). The physiological parameters, including SOD activity, malondialdehyde (MDA) content, relative electrical conductivity (REC) and relative weight gain, of transgenic lines and wild type (WT) plants, were measured and compared. The results showed that SOD activity was enhanced in transgenic plants, and the MDA content and REC were significantly decreased compared to WT plants when exposed to NaCl stress. In addition, the relative weight gains of the transgenic plants were 8- to 23-fold of those observed for WT plants after NaCl stress for 30 days. The data showed that the SOD activities that increased in transgenic lines are 1.3–4-folds of that increased in the WT plant when exposed to NaCl stress. Our analysis showed that increases in SOD activities as low as 0.15-fold can also significantly enhance salt tolerance in transgenic plants, suggesting an important role of increased SOD activity in plant salt tolerance.  相似文献   

4.
Tang L  Kwon SY  Kim SH  Kim JS  Choi JS  Cho KY  Sung CK  Kwak SS  Lee HS 《Plant cell reports》2006,25(12):1380-1386
Oxidative stress is a major damaging factor for plants exposed to environmental stresses. In order to develop transgenic potato plants with enhanced tolerance to environmental stress, the genes of both Cu/Zn superoxide dismutase and ascorbate peroxidase were expressed in chloroplasts under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants). SSA plants showed enhanced tolerance to 250 μM methyl viologen, and visible damage in SSA plants was one-fourth that of non-transgenic (NT) plants that were almost destroyed. In addition, when SSA plants were treated with a high temperature of 42°C for 20 h, the photosynthetic activity of SSA plants decreased by only 6%, whereas that of NT plants decreased by 29%. These results suggest that the manipulation of the antioxidative mechanism of the chloroplasts may be applied in the development of industrial transgenic crop plants with increased tolerance to multiple environmental stresses.Communicated by I. S. Chung  相似文献   

5.
To explore the possibility of overcoming the highly phytotoxic effect of SO(2) and salt stress, we introduced the maize Cu/ZnSOD and/or CAT genes into chloroplasts of Chinese cabbage (Brassica campestris L. ssp. pekinensis cv. Tropical Pride) (referred to as SOD, CAT and SOD+CAT plants). SOD+CAT plants showed enhanced tolerance to 400 ppb SO(2), and visible damage was one-sixth that of wild-type (CK) plants. In addition, when SOD+CAT plants were exposed to a high salt treatment of 200 mM NaCl for 4 weeks, the photosynthetic activity of the plants decreased by only 6%, whereas that of CK plants decreased by 72%. SOD plants had higher total APX and GR activities than CK plants. As expected, SOD plants showed levels of protection from SO(2) and salt stress that were moderately improved compared to CK plants. However, CAT plants showed inhibition of APX activity and provided only limited improvements in plant stress tolerance. Moreover, SOD+CAT plants accumulated more K(+), Ca(2+) and Mg(2+) and less Na(+) in their leaves compared with those of CK plants. These results suggest that the expression of SOD and CAT simultaneously is suitable for the introduction of increased multiple stress protection.  相似文献   

6.
Exposure of rice (Oryza sativa L.) seedlings to a high temperature (42°C) for 24 h resulted in a significant increase in tolerance to drought stress. To try to determine the mechanisms of acquisition of tolerance to drought stress by heat shock, the rice small heat-shock protein gene, sHSP17.7, the product of which was shown to act as molecular chaperones in vitro and in vivo in our previous study, was overexpressed in the rice cultivar “Hoshinoyume”. Western and Northern blot analyses showed higher expression levels of sHSP17.7 protein in three transgenic lines than in one transgenic line. Drought tolerance was assessed in these transgenic lines and wild-type plants by withholding water for 6 days for evaluation of the ability of plants to continue growth after water-stress treatments. Although no significant difference was found in water potential of seedlings between transgenic lines and wild-type plants at the end of drought treatments, only transgenic seedlings with higher expression levels of sHSP17.7 protein could regrow after rewatering. Similar results were observed in survival rates after treatments with 30% polyethylene glycol (PEG) 3640 for 3 days. These results suggest that overproduction of sHSP17.7 could increase drought tolerance in transgenic rice seedlings.  相似文献   

7.
Summary The localization of manganese superoxide dismutase (MnSOD) was determined using immunohistochemistry of various tissues of normal and transgenic mice which express the human enzyme, with emphasis on studies of mouse kidney and lung. Mouse kidney and lung were studied using both frozen section analysis and paraffin sections following fixation in a variety of fixatives. Formalin fixation resulted in a loss of antigenicity, while fixation in zinc formalin or B5 fixative gave results similar to those from frozen sections. Immunoperoxidase studies using antibodies to MnSOD showed greater staining in transgenic kidney or lung than in identical tissues in normal mice when appropriate fixation was used. In contrast, equal immunostaining was obtained in kidney or lung from normal and transgenic mice when antibodies to catalase or copper zinc superoxide dismutase were utilized. Immunogold ultrastructural analysis of MnSOD localization for lung and kidney was also performed. As compared to normal mice, transgenic mice exhibited greater staining of the mitochondria of kidney interstitial fibroblasts and glomerular, endothelial, and smooth muscle cells. In the lungs of transgenic animals, all cells showed increased staining; smooth muscle cells demonstrated the most marked increase in immunolabelling. The results indicate that these transgenic mice overexpress MnSOD in their mitochondria, and that this occurs selectively in at least some mesenchymal tissues.This study was supported by the Medical Research Service of the Department of Veterans Affairs (TDO), by National Institutes of Health grants No. CA-41267 (LWO), No. HL-39585 and No. HL-44571 (Y-SH), and by the Department of Anesthesiology Research and Development Funds (DBC, HPC).  相似文献   

8.
Arsenic is a metalloid that occurs naturally at parts per million (ppm) levels in the earth's crust. Natural and human activities have contributed to arsenic mobilization and increased concentration in the environment, such that World Health Organization guidelines for arsenic levels in drinking water are exceeded at many locations, worldwide. This translates into an increased risk of arsenic-related illnesses for millions of people. Recent studies demonstrate that increasing thiol-sinks in transgenic plants by overexpressing the bacterial gamma-glutamylcysteine synthetase (ECS) gene results in a higher tolerance and accumulation of metals and metalloids such as cadmium, mercury, and arsenic. We used Agrobacterium-mediated transformation to genetically engineer eastern cottonwood with a bacterial ECS gene. Eastern cottonwood plants expressing ECS had elevated thiol group levels, consistent with increased ECS activity. In addition, these ECS-expressing plants had enhanced growth on levels of arsenate toxic to control plants in vitro. Furthermore, roots of ECS-expressing plants accumulated significantly more arsenic than control roots (approximately twice as much), while shoots accumulated significantly less arsenic than control shoots (approximately two-thirds as much). We discuss potential mechanisms for shifting the balance of plant arsenic distribution from root accumulation to shoot accumulation, as it pertains to arsenic phytoremediation.  相似文献   

9.
In order to better understand the role of antioxidant enzymes in plant stress protection mechanisms, transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants were developed that overexpress both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts. These plants were evaluated for protection against methyl viologen (MV, paraquat)‐mediated oxidative damage both in leaf discs and whole plants. Transgenic plants that express either chloroplast‐targeted CuZnSOD (C) or MnSOD (M) and APX (A) were developed (referred to as CA plants and AM plants, respectively). These plant lines were crossed to produce plants that express all three transgenes (CMA plants and AMC plants). These plants had higher total APX and SOD activities than non‐transgenic (NT) plants and exhibit novel APX and SOD isoenzymes not detected in NT plants. As expected, transgenic plants that expressed single SODs showed levels of protection from MV that were only slightly improved compared to NT plants. The expression of either SOD isoform along with APX led to increased protection while expression of both SODs and APX provided the highest levels of protection against membrane damage in leaf discs and visual symptoms in whole plants.  相似文献   

10.
11.
Both drought and high salinity stresses are major abiotic factors that limit the yield of agricultural crops. Transgenic techniques have been regarded as effective ways to improve crops in their tolerance to these abiotic stresses. Functional characterization of genes is the prerequisite to identify candidates for such improvement. Here, we have investigated the biological functions of an Oryza sativa Ribosome-inactivating protein gene 18 (OSRIP18) by ectopically expressing this gene under the control of CaMV 35S promoter in the rice genome. We have generated 11 independent transgenic rice plants and all of them showed significantly increased tolerance to drought and high salinity stresses. Global gene expression changes by Microarray analysis showed that more than 100 probe sets were detected with up-regulated expression abundance while signals from only three probe sets were down-regulated after over-expression of OSRIP18. Most of them were not regulated by drought or high salinity stresses. Our data suggested that the increased tolerance to these abiotic stresses in transgenic plants might be due to up-regulation of some stress-dependent/independent genes and OSRIP18 may be potentially useful in further improving plant tolerance to various abiotic stresses by over-expression.  相似文献   

12.
Drought and salinity are the most important abiotic stresses that affect the normal growth and development of plants. Glycine betaine is one of the most important osmolytes present in higher plants that enable them to cope with environmental stresses through osmotic adjustment. In this study, a betaine aldehyde dehydrogenase (BADH) gene from spinach under the control of the stress-induced promoter rd29A from Arabidopsis thaliana was introduced into potato cultivar Gannongshu 2 by the Agrobacterium tumefaciens system. Putative transgenic plants were confirmed by Southern blot analysis. Northern hybridization analysis demonstrated that expression of BADH gene was induced by drought and NaCl stress in the transgenic potato plants. The BADH activity in the transgenic potato plants was between 10.8 and 11.7 U. There was a negative relationship (y = −2.2083x + 43.329, r = 0.9495) between BADH activity and the relative electrical conductivity of the transgenic potato plant leaves. Plant height increased by 0.4–0.9 cm and fresh weight per plant increased by 17–29% for the transgenic potato plants under NaCl and polyethylene glycol stresses compared with the control potato plants. These results indicated that the ability of transgenic plants to tolerate drought and salt was increased when their BADH activity was increased.  相似文献   

13.
The barley HVA1 gene, encoding a member of the group 3 late embryogenesis abundant (LEA) proteins, has previously been introduced into spring wheat cv. Hi-Line to determine its effect on drought tolerance (Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155, 1–9). T4 progeny from six independent transgenic events (lines 111/1, 1/1, 11/2, 84, 765 and 1201) were tested in nine field experiments over six cropping seasons. In the first two seasons, the total biomass per plot and the grain yield per plot of line 111/1 were higher than those of line 1/1, and higher than those of the wild-type control in the second season. The grain yield per plot of line 11/2 was significantly lower than that of the transgenic lines 111/1 and 1/1 in the third season, and this line was not tested further. In the fourth season, the plant height and grain yield per plot of line 111/1 were significantly higher than those of the wild-type control. Under dryland conditions in the fifth season, line 111/1 showed significantly greater plant height, total biomass per plot and grain yield per plot than the wild-type control in at least two of the four locations, as well as across locations. In the sixth season, newly developed transgenic lines 1201 and 765 significantly overyielded the two original transgenic lines 111/1 and 1/1, the non-expressing transgenic line 84 as well as the wild-type control in the three yield attributes and leaf water measurement, namely relative water content (RWC). This result coincided with the rate of HVA1 transgene expression of the different genotypes. Differences in total seed storage protein concentrations between the transgenic lines and the wild-type control within or across environmental conditions were insignificant. These field trials show that the HVA1 gene has the potential to confer drought stress protection in transgenic spring wheat.  相似文献   

14.
15.
We conducted a genetic yeast screen to identify Thermo-tolerance genes (TTOs) in maize kernel cDNA library. During the screening, we identified a maize clone (TTO6) that seemed to confer elevated heat tolerance in comparison to control cells. TTO6 cDNA (GenBank accession no. AY103785) encodes an 11-kDa protein which is 69% similarity to the Arabidopsis GASA4 gene. To further examine heat tolerance in Arabidopsis, we functionally characterized the GASA4 gene and found that heat induced GASA4 expression. Constitutive expression of GASA4 in Arabidopsis led to elevated heat tolerance in transgenic lines. Interestingly, endoplasmic reticulum chaperone expression analysis suggests that GASA4 influences BiP gene expression during heat stress.  相似文献   

16.
In evaluating the relative expression of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD) in vivo in states like Down syndrome in which one dismutase is present at increased levels, we measured activities of both enzymes, in tissues of control and transgenic mice constitutively expressing increased levels of CuZnSOD, during exposure to normal and elevated oxygen tensions. Using SOD gel electrophoresis assay, CuZnSOD and MnSOD activities of brain, lung, heart, kidney, and liver from mice exposed to either normal (21%) or elevated (>99% oxygen, 630 torr) oxygen tensions for 120 h were compared. Whereas CuZnSOD activity was elevated in tissues of transgenic relative to control mice under both normoxic or hyperoxic conditions, MnSOD activities in organs of transgenic mice were remarkably similar to those of controls under both conditions. To confirm the accuracy of this method in quantitating MnSOD relative to CuZnSOD expression, two other methods were utilized. In lung, which is the organ exposed to the highest oxygen tension during ambient hyperoxia, a sensitive, specific ELISA for MnSOD was used. Again, MnSOD protein was not different in transgenic relative to control mice during exposure to air or hyperoxia. In addition, lung MnSOD protein was not changed significantly by exposure to hyperoxia in either group. In kidney, a mitochondrion-rich organ, SOD assay, before and after inactivation of CuZnSOD with diethyldithiocarbamate, was used. MnSOD activity was not different in organs from air-exposed transgenic relative to control mice. The data indicated that expression of MnSOD in vivo was not affected by overexpression of the CuZnSOD and, therefore, the two enzymes are probably regulated independently.  相似文献   

17.
Wang L  Li X  Chen S  Liu G 《Biotechnology letters》2009,31(2):313-319
Leymus chinensis is an important grassland perennial grass. However, its drought tolerance requires to be improved. LEA (late embryogenesis abundant) genes are believed to confer resistance to drought and water deficiency. Using Agrobacterium-mediated transformation, a wheat LEA gene, TaLEA 3 , was integrated into L. chinensis. The transgenic lines showed enhanced growth ability under drought stress during which transgenic lines had increased the relative water content, leaf water potential, relative average growth rate, but decreased the malondialdehyde content compared with the non-transgenic plant. Thus, transgenic breeding is an efficient approach to enhance drought tolerance in L. chinensis.  相似文献   

18.
The methionine sulfoxide reductase B2 (MsrB2) gene catalyzes the reduction of free and protein-bound methionine sulfoxide to methionine and is known to provide tolerance to biotic and abiotic environmental stresses. There are yet to be any reports that MsrB2 enhances drought tolerance. Two drought-tolerant transgenic rice lines, L-8 (single copy) and L-23 (two copy), expressing the Capsicum annuum MsrB2 (CaMsrB2) gene were selected for stress tolerance phenotyping under drought stress conditions. CaMsrB2 enhanced relative water content, maintained substantial quantum yield (F v /F m ratio), and subsequently improved photosynthetic pigments. Interestingly, L-23, carrying two-copy T-DNA insertion, showed greater drought tolerance through more effective stomatal regulation, carotenoid concentration, and osmotic potential than the wild type. High-tech infrared technology (FLIR SC620) was used for the selection of stress-tolerant physiotypes. Later, the IR results were correlated with other tested physiological parameters. The IR images, average plant temperature, and physiological parameters of the treated plants are discussed in detail.  相似文献   

19.
The effect of simultaneous expression of genes encoding three antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1), in the chloroplasts of tobacco plants was investigated under oxidative stress conditions. In previous studies, transgenic tobacco plants expressing both CuZnSOD and APX in chloroplast (CA plants), or DHAR in chloroplast showed enhanced tolerance to oxidative stresses, such as paraquat and salt. In this study, in order to develop transgenic plants that were more resistant to oxidative stress, we introduced the gene encoding DHAR into CA transgenic plants. Mature leaves of transgenic plants expressing all three antioxidant genes (CAD plants) had approximately 1.6–2.1 times higher DHAR activity, and higher ratios of reduced ascorbate (AsA) to DHA, and oxidized glutathione (GSSG) to reduced glutathione (GSH) compared to CA plants. CAD plants were more resistant to paraquat-induced stress, exhibiting only 18.1% reduction in membrane damage relative to CA plants. In addition, seedlings of CAD plants had enhanced tolerance to NaCI (100 mM) compared to CA plants. These results indicate that the simultaneous expression of multiple antioxidant enzymes, such as CuZnSOD, APX, and DHAR, in chloroplasts is more effective than single or double expression for developing transgenic plants with enhanced tolerance to multiple environmental stresses.  相似文献   

20.
In eukaryotes, manganese superoxide dismutase is a nuclear-encoded protein that scavenges superoxide radicals in the mitochondrial matrix. We have isolated two manganese superoxide dismutase genes from Nicotiana plumbaginifolia L. and fused the 5' upstream regulatory region of these genes to the beta-glucuronidase reporter gene. The two gene fusions displayed a differential tissue specificity in transgenic tobacco (Nicotiana tabacum). Promoter activity of the SodA1 gene fusion was found in the pollen, middle layer, and stomium of anthers, but was usually undetectable in vegetative organs of mature plants. The SodA2 gene fusion was expressed in the leaves, stems, roots, and flowers. SodA2 promoter activity was most prominent in the vascular bundles, stomata, axillary buds, pericycle, stomium, and pollen. Histochemical analysis of succinate dehydrogenase activity suggested that the spatial expression of the two gene fusions is generally correlated with mitochondrial respiratory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号