首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dosage compensation is the essential process that equalizes the dosage of X-linked genes between the sexes in heterogametic species. Because all of the genes along the length of a single chromosome are co-regulated, dosage compensation serves as a model system for understanding how domains of coordinate gene regulation are established. Dosage compensation has been best studied in mammals, flies and worms. Although dosage compensation systems are seemingly diverse across species, there are key shared principles of nucleation and spreading that are critical for accurate targeting of the dosage compensation complex to the X-chromosome(s). We will highlight the mechanisms by which long non-coding RNAs function together with DNA sequence elements to tether dosage compensation complexes to the X-chromosome. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.  相似文献   

2.
J. R. Bone  M. I. Kuroda 《Genetics》1996,144(2):705-713
In the fruitfly Drosophila melanogaster, the four male-specific lethal (msl) genes are required to achieve dosage compensation of the male X chromosome. The MSL proteins are thought to interact with cis-acting sites that confer dosage compensation to nearby genes, as they are detected at hundreds of discrete sites along the length of the polytene X chromosome in males but not in females. The histone H4 acetylated isoform, H4Ac16, colocalizes with the MSL proteins at a majority of sites on the D. melanogaster X chromosome. Using polytene chromosome immunostaining of other species from the genus Drosophila, we found that X chromosome association of MSL proteins and H4Ac16 is conserved despite differences in the sex chromosome karyotype between species. Our results support a model in which cis-acting regulatory sites for dosage compensation evolve on a neo-X chromosome arm in response to the degeneration of its former homologue.  相似文献   

3.
4.
Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels. However, in these animals, the X chromosome–specific localization of the complex is partially disrupted, with some nuclei displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly, serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an autosomal repellant.  相似文献   

5.
6.
Birchler JA 《Genetics》1981,97(3-4):625-637
The levels of alcohol dehydrogenase (ADH) do not exhibit a structural gene-dosage effect in a one to four dosage series of the long arm of chromosome one (1L) (Birchler 1979). This phenomenon, termed dosage compensation, has been studied in more detail. Experiments are described in which individuals aneuploid for shorter segments were examined for the level of ADH in order to characterize the genetic nature of the compensation. The relative ADH expression in segmental trisomics and tetrasomics of region 1L 0.72-0.90, which includes the Adh locus, approaches the level expected from a strict gene dosage effect. Region 1L 0.20-0.72 produces a negative effect upon ADH in a similar manner to that observed with other enzyme levels when 1L as a whole is varied (Birchler 1979). These and other comparisons have led to the concept that the compensation of ADH results from the cancellation of the structural gene effect by the negative aneuploid effect. The example of ADH is discussed as a model for certain other cases of dosage compensation in higher eukaryotes.  相似文献   

7.
8.
The X-linked white gene when transposed to autosomes retains only partial dosage compensation. One copy of the gene in males expresses more than one copy but less than two copies in females. When inserted in ectopic X chromosome sites, the mini-white gene of the CaspeR vector can be fully dosage compensated and can even achieve hyperdosage compensation, meaning that one copy in males gives more expression than two copies in females. As sequences are removed gradually from the 5' end of the gene, we observe a progressive transition from hyperdosage compensation to full dosage compensation to partial dosage compensation. When the deletion reaches -17, the gene can no longer dosage compensate fully even on the X chromosome. A deletion reaching +173, 4 bp preceeding the AUG initiation codon, further reduces dosage compensation both on the X chromosome and on autosomes. This truncated gene can still partially dosage compensate on autosomes, indicating the presence of dosage compensation determinants in the protein coding region. We conclude that full dosage compensation requires an X chromosome environment and that the white gene contains multiple dosage-compensation determinants, some near the promoter and some in the coding region.  相似文献   

9.
10.
Greenberg AJ  Yanowitz JL  Schedl P 《Genetics》2004,166(1):279-289
Drosophila melanogaster males have one X chromosome, while females have two. To compensate for the resulting disparity in X-linked gene expression between the two sexes, most genes from the male X chromosome are hyperactivated by a special dosage compensation system. Dosage compensation is achieved by a complex of at least six proteins and two noncoding RNAs that specifically associate with the male X. A central question is how the X chromosome is recognized. According to a current model, complexes initially assemble at approximately 35 chromatin entry sites on the X and then spread bidirectionally along the chromosome where they occupy hundreds of sites. Here, we report that mutations in Trithorax-like (Trl) lead to the loss of a single chromatin entry site on the X, male lethality, and mislocalization of dosage compensation complexes.  相似文献   

11.
We report a genetic characterization of several essential components of the dosage compensation process in Caenorhabditis elegans. Mutations in the genes dpy-26, dpy-27, dpy-28, and the newly identified gene dpy-29 disrupt dosage compensation, resulting in elevated X-linked gene expression in XX animals and an incompletely penetrant maternal-effect XX-specific lethality. These dpy mutations appear to cause XX animals to express each set of X-linked genes at a level appropriate for XO animals. XO dpy animals are essentially wild type. Both the viability and the level of X-linked gene expression in XX animals carrying mutations in two or more dpy genes are the same as in animals carrying only a single mutation, consistent with the view that these genes act together in a single process (dosage compensation). To define a potential time of action for the gene dpd-28 we performed reciprocal temperature-shift experiments with a heat sensitive allele. The temperature-sensitive period for lethality begins 5 hr after fertilization at the 300-cell stage and extends to about 9 hr, a point well beyond the end of cell proliferation. This temperature-sensitive period suggests that dosage compensation is functioning in XX animals by mid-embryogenesis, when many zygotically transcribed genes are active. While mutations in the dpy genes have no effect on the sexual phenotype of otherwise wild-type XX or XO animals, they do have a slight feminizing effect on animals whose sex-determination process is already genetically perturbed. The opposite directions of the feminizing effects on sex determination and the masculinizing effects on dosage compensation caused by the dpy mutations are inconsistent with the wild-type dpy genes acting to coordinately control both processes. Instead, the feminizing effects are most likely an indirect consequence of disruptions in dosage compensation caused by the dpy mutations. Based on the cumulative evidence, the likely mechanism of dosage compensation in C. elegans involves reducing X-linked gene expression in XX animals to equal that in XO animals via the action of the dpy genes.  相似文献   

12.
At the white eye colour locus, there are a number of alleles that have altered expression between males and females. To test these regulatory mutations of the white eye colour locus for their phenotypic expression in metafemales (3X; 2A) compared to diploid females and males, eleven alleles or transduced copies of white were analysed. Two alleles that exhibit dosage compensation between males and females (apricot, blood) also exhibit dosage compensation in metafemales. White-ivory and white-eosin, which fail to dosage compensate in males compared to females, but that are distinct physical lesions, also show a dosage effect in metafemales. Two alleles with greater expression in males than females (spotted, spotted-55) exhibit even lower expression in metafemales. Lastly, five transduced copies of white carrying three different lengths of the white promoter, but that all exhibit higher expression in males, show reduced expression in metafemales, exhibiting an inverse correlation between the level of expression and the dosage of the X chromosome. Because these alleles of white respond to dosage compensation in metafemales as a continuum of the male and female responses, it is concluded that the same basic mechanism of dosage compensation is involved and that the dosage of the X chromosome conditions the sexually dimorphic expression.  相似文献   

13.
14.
15.
The upregulation of the JIL-1 kinase on the male X chromosome and its association with the male-specific lethal (MSL) complex suggest that JIL-1 may play a role in regulating dosage compensation. To directly test this hypothesis we measured eye pigment levels of mutants in the X-linked white gene in an allelic series of JIL-1 hypomorphic mutants. We show that dosage compensation of w(a) alleles that normally do exhibit dosage compensation was severely impaired in the JIL-1 mutant backgrounds. As a control we also examined a hypomorphic white allele w(e) that fails to dosage compensate in males due to a pogo element insertion. In this case the relative pigment level measured in males as compared to females remained approximately the same even in the most severe JIL-1 hypomorphic background. These results indicate that proper dosage compensation of eye pigment levels in males controlled by X-linked white alleles requires normal JIL-1 function.  相似文献   

16.
Both flies and mammals remodel the architecture of the X chromosome to achieve dosage compensation. A novel class of noncoding RNAs that paint entire chromosomes are centrally involved in this process. The genes encoding these unusual RNAs are themselves located on the X, and are key sites that target the X for dosage compensation.  相似文献   

17.
18.
19.
Mank JE  Ellegren H 《Heredity》2009,102(3):312-320
Recent reports have suggested that birds lack a mechanism of wholesale dosage compensation for the Z sex chromosome. This discovery was rather unexpected, as all other animals investigated with chromosomal mechanisms of sex determination have some method to counteract the effects of gene dosage of the dominant sex chromosome in males and females. Despite the lack of a global mechanism of avian dosage compensation, the pattern of gene expression difference between males and females varies a great deal for individual Z-linked genes. This suggests that some genes may be individually dosage compensated, and that some less-than-global pattern of dosage compensation, such as local or temporal, exists on the avian Z chromosome. We used global gene expression profiling in males and females for both somatic and gonadal tissue at several time points in the life cycle of the chicken to assess the pattern of sex-biased gene expression on the Z chromosome. Average fold-change between males and females varied somewhat among tissue time-point combinations, with embryonic brain samples having the smallest gene dosage effects, and adult gonadal tissue having the largest degree of male bias. Overall, there were no neighborhoods of overall dosage compensation along the Z. Taken together, this suggests that dosage compensation is regulated on the Z chromosome entirely on a gene-by-gene level, and can vary during the life cycle and by tissue type. This regulation may be an indication of how critical a given gene's functionality is, as the expression level for essential genes will be tightly regulated in order to avoid perturbing important pathways and networks with differential expression levels in males and females.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号