首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregating Dictyostelium discoideum amoebae periodically emit and relay cAMP, which regulates their chemotaxis and morphogenesis into a multicellular, differentiated organism. Cyclic AMP also stimulates F-actin assembly and chemotactic pseudopodium extension. We used actin-GFP expression to visualise for the first time intracellular F-actin assembly as a spatio-temporal indicator of cell reactions to cAMP, and thus the kinematics of cell communication, in aggregating streams. Every natural cAMP signal pulse induces an autowave of F-actin disassembly, which propagates from each cell's leading end to its trailing end at a linear rate, much slower than the calculated and measured velocities of cAMP diffusion in aggregating Dictyostelium. A sequence of transient reactions follows behind the wave, including anterior F-actin assembly, chemotactic pseudopodium extension and cell advance at the cell front and, at the back, F-actin assembly, extension of a small retrograde pseudopodium (forcing a brief cell retreat) and chemotactic stimulation of the following cell, yielding a 20s cAMP relay delay. These dynamics indicate that stream cell behaviour is mediated by a dual signalling system: a short-range cAMP pulse directed from one cell tail to an immediately following cell front and a slower, long-range wave of intracellular F-actin disassembly, each inducing the other.  相似文献   

2.
Actin filament (F-actin) assembly kinetics determines the locomotion and shape of crawling eukaryotic cells, but the nature of these kinetics and their determining reactions are unclear. Live BHK21 fibroblasts, mouse melanoma cells, and Dictyostelium amoebae, locomoting on glass and expressing Green Fluorescent Protein-actin fusion proteins, were examined by confocal microscopy. The cells demonstrated three-dimensional bands of F-actin, which propagated throughout the cytoplasm at rates usually ranging between 2 and 5 microm/min in each cell type and produced lamellipodia or pseudopodia at the cell boundary. F-actin's dynamic behavior and supramolecular spatial patterns resembled in detail self-organized chemical waves in dissipative, physico-chemical systems. On this basis, the present observations provide the first evidence of self-organized, and probably autocatalytic, chemical reaction-diffusion waves of reversible actin filament assembly in vertebrate cells and a comprehensive record of wave and locomotory dynamics in vegetative-stage Dictyostelium cells. The intensity and frequency of F-actin wavefronts determine locomotory cell projections and the rotating oscillatory waves, which structure the cell surface. F-actin assembly waves thus provide a fundamental, deterministic, and nonlinear mechanism of cell locomotion and shape, which complements mechanisms based exclusively on stochastic molecular reaction kinetics.  相似文献   

3.
The crawling locomotion and shape of eukaryotic cells have been associated with the stochastic molecular dynamics of actin and its protein regulators, chiefly Arp2/3 and Rho family GTPases, in making a cytoskeleton meshwork within cell extensions. However, the cell's actin-dependent oscillatory shape and extension dynamics may also yield insights into locomotory mechanisms. Confocal observations of live Dictyostelium cells, expressing a green fluorescent protein-actin fusion protein, demonstrate oscillating supramolecular patterns of filamentous actin throughout the cell, which generate pseudopodia at the cell edge. The distinctively dissipative spatio-temporal behavior of these structures provides strong evidence that reversible actin filament assembly propagates as a self-organized, chemical reaction-diffusion wave.  相似文献   

4.
The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.  相似文献   

5.
Aggregation-competent amoeboid cells of Dictyostelium discoideum are chemotactic toward cAMP. Video microscopy and scanning electron microscopy were used to quantitate changes in cell morphology and locomotion during uniform upshifts in the concentration of cAMP. These studies demonstrate that morphological and motile responses to cAMP are sufficiently synchronous within a cell population to allow relevant biochemical analyses to be performed on large numbers of cells. Changes in cell behavior were correlated with F-actin content by using an NBD-phallacidin binding assay. These studies demonstrate that actin polymerization occurs in two stages in response to stimulation of cells with extracellular cAMP and involves the addition of monomers to the cytochalasin D-sensitive (barbed) ends of actin filaments. The second stage of actin assembly, which peaks at 60 sec following an upshift in cAMP concentration, is temporally correlated with the growth of new pseudopods. The F-actin assembled by 60 sec is localized in these new pseudopods. These results indicate that actin polymerization may constitute one of the driving forces for pseudopod extension in amoeboid cells and that nucleation sites regulating polymerization are under the control of chemotaxis receptors.  相似文献   

6.
Actin filaments (F-actin) are protein polymers that undergo rapid assembly and disassembly and control an enormous variety of cellular processes ranging from force production to regulation of signal transduction. Consequently, imaging of F-actin has become an increasingly important goal for biologists seeking to understand how cells and tissues function. However, most of the available means for imaging F-actin in living cells suffer from one or more biological or experimental shortcomings. Here we describe fluorescent F-actin probes based on the calponin homology domain of utrophin (Utr-CH), which binds F-actin without stabilizing it in vitro. We show that these probes faithfully report the distribution of F-actin in living and fixed cells, distinguish between stable and dynamic F-actin, and have no obvious effects on processes that depend critically on the balance of actin assembly and disassembly.  相似文献   

7.
BACKGROUND: In the cortical region of motile cells, the actin network rapidly reorganizes as required for movement in various directions and for cell-to-substrate adhesion. The analysis of actin network dynamics requires the combination of high-resolution imaging with a specific fluorescent probe that highlights the filamentous actin structures in live cells. RESULTS: Combining total internal reflection fluorescence (TIRF) microscopy with a method for labeling actin filaments, we analyze the dynamics of actin patterns in the highly motile cells of Dictyostelium. A rapidly restructured network of single or bundled actin filaments provides a scaffold for the assembly of differentiated actin complexes. Recruitment of the Arp2/3 complex characterizes stationary foci with a lifetime of 7-10 s and traveling waves. These structures are also formed in the absence of myosin-II. Arp2/3-actin assemblies similar to those driving the protrusion of a leading edge form freely at the inner face of the plasma membrane. CONCLUSIONS: The actin system of highly motile cells runs far from equilibrium and generates a multitude of patterns within a dynamic filamentous network. Traveling waves are the most complicated patterns based on recruitment of the Arp2/3 complex. They are governed by the propagated induction of actin polymerization. We hypothesize that the actin system autonomously generates primordia of specialized structures such as phagocytic cups or lamellipodia. These primordia would represent an activated state of the actin system and enable cells to respond within seconds to local stimuli by chemotaxis or phagocytic-cup formation.  相似文献   

8.
Cytoimmunofluorescent localization of severin in Dictyostelium amoebae   总被引:3,自引:0,他引:3  
Severin is a 40-kDa Ca2+-activated protein from Dictyostelium that rapidly fragments and disassembles actin filaments in vitro (S.S. Brown, K. Yamamoto, and J.A. Spudich, J. Cell Biol. 93, 205-210, 1982; and K. Yamamoto, J.D. Pardee, J. Reidler, L. Stryer, and J.A. Spudich. J. Cell Biol. 95, 711-719, 1982). To determine if severin is colocalized with actin filaments in vivo, we have used the agar-overlay technique of S. Yumura, H. Mori, and Y. Fukui (J. Cell Biol. 99, 894-899, 1984) to examine the intracellular locations of severin and F-actin in vegetative Dictyostelium amoebae. In rounded cells taken from suspension culture severin colocalized with F-actin at cortical edges while maintaining an endoplasmic presence. Both severin and F-actin were present throughout nascent pseudopods of motile cells, while severin appeared concentrated at the leading edge of fully developed pseudopods. Amoebae feeding on a bacterial lawn formed large phagocytic vesicles that were surrounded by an extensive cell cortex rich in severin. Streaming cells entering aggregates during the Dictyostelium developmental cycle showed severin staining throughout the cytoplasm with F-actin at the cortex. The preferential localization of severin in cytoplasmic regions of vegetative cells undergoing extensive actin cytoskeletal rearrangement prompts consideration of a role for severin-mediated disruption of actin filament networks during pseudopod extension and phagocytosis.  相似文献   

9.
The Ca2+-sensitive actin-binding protein isolated from Dictyostelium discoideum, 30,000-D protein (Fechheimer and Taylor: J. Biol. Chem. 259:4514-4520, 1984;) has recently been localized in filipodia of substrate-adhered amoebae (Fechheimer: J. Cell Biol. 104:1539-1551, 1987). We have determined that this protein has a Mr of 34,000 daltons and is strictly colocalized with actin filaments in both substrate-attached Dictyostelium amoebae and cultured fibroblasts. 3T3 fibroblasts, as well as normal and virally transformed rat kidney fibroblasts (NRK) contain a 34-kilodalton (kD) protein that cross-reacts specifically with antibody to the Dictyostelium bundling protein. Mammalian 34-kD protein is colocalized with F-actin in stress fibers and the cortical cytoskeleton in substrate-adhered fibroblasts. In substrate-adhered vegetative Dictyostelium, F-actin and 34-kD protein are concentrated in regions of the cell cortex exhibiting filipodia and membrane ridges. Multiple filipodia formed after exposure to the chemoattractant folic acid stain intensely for 34-kD protein, implying participation in the assembly of actin bundles during filipod formation. The cortex of pseudopodia also contained high concentrations of bundling protein, but pseudopod interiors did not. In contrast to vegetative Dictyostelium, F-actin and 34-kD protein were not colocalized in cells that had progressed through the developmental cycle. In fruiting bodies, 34-kD protein was detected by immunofluorescence microscopy only in prespore cells, while F-actin appeared in stalk cells and spores.  相似文献   

10.
Endosperm mitotic cells microinjected with fluorescent phalloidin enabled us to follow the in vivo dynamics of the F-actin cytoskeleton. The fluorescent probe immediately bound to plant microfilaments. First, we investigated the active rearrangement of F-actin during chromosome migration, which appeared to be slowed down in the presence of phalloidin. These findings were compared with the actin patterns observed in mitotic cells fixed at different stages. Our second aim was to determine the origin of the actin filaments that appear at the equator during anaphase-telophase transition. It is not clear whether this F-actin is newly assembled at the end of mitosis and could control plant cytokinesis or whether it corresponds to a passive redistribution of broken polymers in response to microtubule dynamics. We microinjected the same cells twice, first in metaphase with rhodamine-phalloidin and then in late anaphase with fluorescein isothiocyanate-phalloidin. This technique enabled us to visualize two F-actin populations that are not co-localized, suggesting that actin is newly assembled during cell plate development. These in vivo data shed new light on the role of actin in plant mitosis and cytokinesis.  相似文献   

11.
F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave.  相似文献   

12.
The exchange of actin filament subunits for unpolymerized actin or for subunits in other filaments has been quantitated by three experimental techniques: fluorescence energy transfer, incorporation of 35S-labeled actin monomers into unlabeled actin filaments, and exchange of [14C]ATP with filament-bound ADP. In the fluorescence energy transfer experiments, actin labeled with 5-(iodoacetamidoethyl)aminonaphthalene- 1-sulfonic acid (IAENS) served as the fluorescent energy donor, and actin labeled with either fluorescein-5-isothiocyanate (FITC) or fluorescein-5-maleimide (FM) served as the energy acceptor. Fluorescent- labeled actins from Dictyostelium amoebae and rabbit skeletal muscle were very similar to their unlabeled counterparts with respect to critical actin concentration for filament assembly, assembly rate, ATP hydrolysis upon assembly, and steady-state ATPase. As evidenced by two different types of fluorescence energy transfer experiments, less than 5% of the actin filament subunits exchanged under a variety of buffer conditions at actin concentrations greater than 0.5 mg/ml. At all actin concentrations limited exchange to a plateau level occurred with a half- time of about 20 min. Nearly identical results were obtained when exchange was quantitated by incorporation of 35S-labeled Dictyostelium actin monomers into unlabeled muscle actin or Dictyostelium actin filaments. Furthermore, the proportion of filament-bound ADP which exchanged with [14C]-ATP was nearly the same as actin subunit exchange measured by fluorescence energy transfer and 35S-labeled actin incorporation. These experiments demonstrate that under approximately physiologic ionic conditions only a small percentage of subunits in highly purified skeletal muscle or Dictyostelium F-actin participate in exchange.  相似文献   

13.
Case LB  Waterman CM 《PloS one》2011,6(11):e26631
At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These "adhesive F-actin waves" require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization.  相似文献   

14.
细胞内肌动蛋白(actin)通过与actin结合蛋白(actin binding proteins,ABPs)相互作用,形成以F-actin为基础多种ABPs参与装配的高度有序的超分子聚合结构,行使各种重要生理功能。在体外聚合条件下,不存在F-actin稳定剂时纯化的actin主要通过自装配形成大尺度的聚集堆积结构;这种表观无序的结构体系由于被认为不具备细胞功能活性而受到忽视。利用激光原子力显微镜(atomic force microscope,AFM)和透射电子显微镜(transmission electron microscope,TEM)技术,对actin体外通过自装配过程形成的大尺度聚集结构进行了细致的观察和分析。研究发现,actin在体外通过自装配过程除了形成无序的蛋白堆积物之外,还能够聚合形成复杂的离散结构,包括树状分支的纤维丛、无规卷曲的纤维簇以及具有不同直径的长纤维等;这些大尺度纤维复合物明显不同于在ABPs或过量F-actin稳定剂参与下形成的由单根微丝和微丝束构成的聚合结构。表明无ABPs或F-actin稳定剂存在的情况下,体外聚合的F-actin在一定条件下可进一步聚集缠绕形成复杂的纤维结构或无序的蛋白堆积物。事实上,actin自装配过程反映了其固有的聚合热力学特性,深入探索将有助于理解ABPs在体内actin超分子聚合结构体系装配中的调控作用及其分子机制。  相似文献   

15.
Eupodia are F-actin-containing cortical structures similar to vertebrate podosomes or invadopodia found in metastatic cells. Eupodia are rich in alpha-actinin and myosin IB/D, but not a Dictyostelium homologue of talin. In the present study, we localized other actin-binding proteins, ABP120, cofilin, coronin, and fimbrin, in the eupodia and examined the three-dimensional organization of their F-actin system by confocal microscopy and transmission electron microscopy. To examine their function, we analyzed the assembly and disassembly dynamics of the F-actin system in eupodia and its relation to lamellipodial protrusion. Actin dynamics was examined by monitoring S65T-GFP-coronin and rhodamine-actin using a real-time confocal unit and a digital microscope system. Fluorescence morphometric analysis demonstrates the presence of a precise spatiotemporal coupling between F-actin assembly in eupodia and lamellipodial protrusion. When a lamellipodium advances to invade a tight space, additional rows of eupodia are sequentially formed at the base of that lamellipodium. These results indicate that mechanical stress at the leading edge modulates the structural integrity of actin and its binding proteins, such that eupodia are formed when anchorage is needed to boost for invasive protrusion of the leading edge.  相似文献   

16.
The role of WASP-interacting protein (WIP) in the process of F-actin assembly during chemotaxis of Dictyostelium was examined. Mutations of the WH1 domain of WASP led to a reduction in binding to WIPa, a newly identified homolog of mammalian WIP, a reduction of F-actin polymerization at the leading edge, and a reduction in chemotactic efficiency. WIPa localizes to sites of new pseudopod protrusion and colocalizes with WASP at the leading edge. WIPa increases F-actin elongation in vivo and in vitro in a WASP-dependent manner. WIPa translocates to the cortical membrane upon uniform cAMP stimulation in a time course that parallels F-actin polymerization. WIPa-overexpressing cells exhibit multiple microspike formation and defects in chemotactic efficiency due to frequent changes of direction. Reduced expression of WIPa by expressing a hairpin WIPa (hp WIPa) construct resulted in more polarized cells that exhibit a delayed response to a new chemoattractant source due to delayed extension of pseudopod toward the new gradient. These results suggest that WIPa is required for new pseudopod protrusion and prompt reorientation of cells toward a new gradient by initiating localized bursts of actin polymerization and/or elongation.  相似文献   

17.
Actin-binding proteins are known to regulate in vitro the assembly of actin into supramolecular structures, but evidence for their activities in living nonmuscle cells is scarce. Amebae of Dictyostelium discoideum are nonmuscle cells in which mutants defective in several actin-binding proteins have been described. Here we characterize a mutant deficient in the 120-kD gelation factor, one of the most abundant F-actin cross-linking proteins of D. discoideum cells. No F-actin cross-linking activity attributable to the 120-kD protein was detected in mutant cell extracts, and antibodies recognizing different epitopes on the polypeptide showed the entire protein was lacking. Under the conditions used, elimination of the gelation factor did not substantially alter growth, shape, motility, or chemotactic orientation of the cells towards a cAMP source. Aggregates of the mutant developed into fruiting bodies consisting of normally differentiated spores and stalk cells. In cytoskeleton preparations a dense network of actin filaments as typical of the cell cortex, and bundles as they extend along the axis of filopods, were recognized. A significant alteration found was an enhanced accumulation of actin in cytoskeletons of the mutant when cells were stimulated with cyclic AMP. Our results indicate that control of cell shape and motility does not require the fine-tuned interactions of all proteins that have been identified as actin-binding proteins by in vitro assays.  相似文献   

18.
Cofilin, a key regulator of actin filament dynamics, binds to G- and F-actin and promotes actin filament turnover by stimulating depolymerization and severance of actin filaments. In this study, cytochalasin D (CytoD), a widely used inhibitor of actin dynamics, was found to act as an inhibitor of the G-actin-cofilin interaction by binding to G-actin. CytoD also inhibited the binding of cofilin to F-actin and decreased the rate of both actin polymerization and depolymerization in living cells. CytoD altered cellular F-actin organization but did not induce net actin polymerization or depolymerization. These results suggest that CytoD inhibits actin filament dynamics in cells via multiple mechanisms, including the well-known barbed-end capping mechanism and as shown in this study, the inhibition of G- and F-actin binding to cofilin.  相似文献   

19.
Stimulation of Dictyostelium cells with a high uniform concentration of the chemoattractant cyclic-AMP induces a series of morphological changes, including cell rounding and subsequent extension of pseudopodia in random directions. Here we report that cyclic-AMP also elicits blebs and analyse their mechanism of formation. The surface area and volume of cells remain constant during blebbing indicating that blebs form by the redistribution of cytoplasm and plasma membrane rather than the exocytosis of internal membrane coupled to a swelling of the cell. Blebbing occurs immediately after a rapid rise and fall in submembraneous F-actin, but the blebs themselves contain little F-actin as they expand. A mutant with a partially inactivated Arp2/3 complex has a greatly reduced rise in F-actin content, yet shows a large increase in blebbing. This suggests that bleb formation is not enhanced by the preceding actin dynamics, but is actually inhibited by them. In contrast, cells that lack myosin-II completely fail to bleb. We conclude that bleb expansion is likely to be driven by hydrostatic pressure produced by cortical contraction involving myosin-II. As blebs are induced by chemoattractant, we speculate that hydrostatic pressure is one of the forces driving pseudopod extension during movement up a gradient of cyclic-AMP.  相似文献   

20.
Tip growth in neuronal cells, plant cells, and fungal hyphae is known to require tip-localized Rho GTPase, calcium, and filamentous actin (F-actin), but how they interact with each other is unclear. The pollen tube is an exciting model to study spatiotemporal regulation of tip growth and F-actin dynamics. An Arabidopsis thaliana Rho family GTPase, ROP1, controls pollen tube growth by regulating apical F-actin dynamics. This paper shows that ROP1 activates two counteracting pathways involving the direct targets of tip-localized ROP1: RIC3 and RIC4. RIC4 promotes F-actin assembly, whereas RIC3 activates Ca(2+) signaling that leads to F-actin disassembly. Overproduction or depletion of either RIC4 or RIC3 causes tip growth defects that are rescued by overproduction or depletion of RIC3 or RIC4, respectively. Thus, ROP1 controls actin dynamics and tip growth through a check and balance between the two pathways. The dual and antagonistic roles of this GTPase may provide a unifying mechanism by which Rho modulates various processes dependent on actin dynamics in eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号