首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three subtypes of HP1, a conserved non-histone chromosomal protein enriched in heterochromatin, have been identified in humans, HP1alpha, beta and gamma. In the present study, we utilized a Drosophila system to characterize human HP1 functions. Over-expression of HP1beta in eye imaginal discs caused abnormally patterned eyes, with reduced numbers of ommatidia, and over-expression of HP1gamma in wing imaginal discs caused abnormal wings, in which L4 veins were gapped. These phenotypes were specific to the HP1 subtypes and appear to reflect suppressed gene expression. To determine the molecular domains of HP1 required for each specific phenotype, we constructed a series of chimeric molecules with HP1beta and HP1gamma. Our data show that the C-terminal chromo shadow domain (CSD) of HP1gamma is necessary for HP1gamma-type phenotype, whereas for the HP1beta-type phenotype both the chromo domain and the CSD are required. These results suggest human HP1 subtypes use different domains to suppress gene expression in Drosophila cells.  相似文献   

2.
Rabbit smooth muscles contain at least three types of myosin heavy chain (MHC) isoforms; SM1, SM2 and SMemb (NMHC-B), the expression of which is developmentally regulated. We have recently reported that smooth muscles with the embryonic phenotype accumulate in the neointimas produced by endothelial denudation or high-cholesterol feeding. In this study, we examined MHC isoform expression in the neointimas and the media of poststenotic dilatation of the rabbit carotid artery, and determined the phenotype of the smooth muscle cell in the dilated segment. We report here that neointimal cells in the dilated segment are smooth muscle cells with the embryonic phenotype as previously reported in our ballooning-injury study. The medial smooth muscles, however, are composed of heterogeneous population of smooth muscles which differ in stage of differentiation as determined by the MHC isoform expression. These results indicate that MHC isoforms are useful molecular markers to identify abnormally proliferating smooth muscles in diseased arteries and to understand the process of atherogenesis occurring following vascular injury.  相似文献   

3.
Yan H  Deng XM  Wu CX 《遗传》2010,32(10):1051-1056
果蝇的平衡染色体在遗传研究中被广泛应用.文章通过分析黑腹果蝇裂翅新突变体与野生型、982紫眼及黑檀体杂交后代裂翅性状情况,首次将裂翅基因定位于3号染色体上,并阐明了裂翅平衡致死、杂合子纯繁的遗传机制,获得了以裂翅为显性标记的3号平衡染色体品系.探索了双平衡染色体显性标记基因聚合的杂交模式,成功建立了以裂翅和卷翅为标记的2号、3号双平衡染色体.裂翅的发现为3号染色体平衡子提供了更加方便识另0的显性翅型标记,同时裂卷翅双平衡体的建立丰富了果蝇常用工具平衡子,可以广泛用于基因定位及突变筛选过程.  相似文献   

4.
5.
The rudimentary wing phenotype was examined in detail, using six different alleles of rudimentary, and a number of points about the genesis of the r phenotype were made. (1) All of the r alleles in which the wings are defective produce wings in which the area of individual hair cells is reduced. The more severely affected the allele, the greater is the reduction in wing cell area. This reduction in area is probably uniform throughout the wing rather than localized to specific wing regions. (2) The total number of cells per wing is also greatly reduced in phenotypically r wings. As with cell area, the more severely affected the allele, the greater the reduction in cell number. However, the reduction in cell number is not uniform throughout the wing. In the less severely affected alleles, the cell number reduction is much greater in those regions of the wing which are drastically altered in shape (truncated), while those wing regions which show only slight size reductions but no overall shape changes have near normal numbers of cells. In the most deformed wings, there is a reduction in cell number throughout the wing, but again those regions with are severely truncated are the most drastically reduced in cell number. Measurements of the amount of chitin per wing indicated that the three most severely affected alleles had as much or more chitin than the wild type. It is suggested that overproduction of chitin in these alleles prevents normal expansion of the wing cells, thus increasing the severity of the wing defect. Finally, the validity and limitations of a quantitative measure of the r phenotype were defined. This measure was utilized to demonstrate a clear-cut effect of nutrition on the expression of the r phenotype.  相似文献   

6.
Mutations at the apterous (ap) locus in Drosophila melanogaster give rise to three distinct phenotypes: aberrant wings, female sterility and precocious adult death. The wing phenotype includes five types of abnormality: blistering, deficiencies, duplications, high-order repetitions and transformation of structures. The mildest phenotype is seen with homozygous apblt animals which have either normal or slightly blistered wings. Most alleles produce, in the homozygote, a deficient wing in which part or all of the wing margin and wing blade is missing, but wing hinge and notum regions are normal. Animals hemizygous for each of 20 ap alleles, as well as apID/apXa heterozygotes, show duplication of parts of the notum associated with complete wing deficiency. Animals heterozygous for apc and the other tested ap alleles show repetitions of parts of the anterior wing margin, an engrailed-like transformation of posterior wing margin into anterior margin or both. Both apblt and apc show similar phenotypes in homozygotes and hemizygotes, yet both produce a less extreme phenotype than that of the other hemizygotes, suggesting that neither mutation causes loss of the entire ap+ function. The 15 alleles that cause precocious death and female sterility occur in six complementation groups based on complementation for these phenotypes. This supports the previous conclusion that the effects of apterous mutations on the wing do not correlate with their effects on viability and fertility. We propose an explanation for the effects of apterous mutations on the wing in which quantitative reductions in the activity of gene product give rise to qualitatively different phenotypes because of different threshold requirements of the ap+ function for critical events in wing disc development.  相似文献   

7.
The vestigial (vg) gene in D. melanogaster, whose mutant phenotype is characterized by wing atrophy, encodes a novel nuclear protein involved in cell proliferation. The original vg mutant (vgBG) displays massive apoptosis in the wing imaginal disc. Here we tested the hypothesis that the vg mutant phenotype could be due: (i) to lack of cell proliferation in null mutants due to the absence of the Vg product and, (ii) to apoptosis in vgBG and other mutants due to the presence of a major Vg truncated product. In agreement with our hypothesis no cell death was observed in null vg mutants, and the anticell death baculovirus P35 product is unable to rescue the mutant phenotype caused by absence of the Vg product. In addition, expression of the antiproliferative gene dacapo, the homolog of p21, induces a mutant wing phenotype without inducing cell death. In contrast the wing phenotype of the original vg mutant could be reproduced by the ectopic expression of the reaper cell death gene when expressed by vg regulatory sequences. In agreement with the hypothesis, the classic vg mutant spontaneously displays an increase in reaper expression in the wing disc and its phenotype can be partially rescued by the P35 product. Finally, we showed that ectopic expression of a truncated Vg product is able on its own to induce ectopic cell death and reaper expression. Our results shed new light on the function of the vg gene, in particular, they suggest that the normal and truncated products affect vg target genes in different ways.  相似文献   

8.
To determine the roles of Drosophila transglutaminase-A (dTG-A), we examined a phenotype induced through ectopic expression of dTG-A. Overexpression of dTG-A in the wing imaginal disc induced an extra wing crossvein phenotype. This phenotype was suppressed by crossing with epidermal growth factor receptor (Egfr) signaling pathway mutant flies. These results indicate that this phenotype, induced by dTG-A, is related to enhancement of the Egfr signaling pathway.  相似文献   

9.
10.
In addition to the heart proper, insects possess wing hearts in the thorax to ensure regular hemolymph flow through the narrow wings. In Drosophila, the wing hearts consist of two bilateral muscular pumps of unknown origin. Here, we present the first developmental study on these organs and report that the wing hearts originate from eight embryonic progenitor cells arising in two pairs in parasegments 4 and 5. These progenitors represent a so far undescribed subset of the Even-skipped positive pericardial cells (EPC) and are characterized by the early loss of tinman expression in contrast to the continuously Tinman positive classical EPCs. Ectopic expression of Tinman in the wing heart progenitors omits organ formation, indicating a crucial role for Tinman during progenitor specification. The subsequent postembryonic development is a highly dynamic process, which includes proliferation and two relocation events. Adults lacking wing hearts display a severe wing phenotype and are unable to fly. The phenotype is caused by omitted clearance of the epidermal cells from the wings during maturation, which inhibits the formation of a flexible wing blade. This indicates that wing hearts are required for proper wing morphogenesis and functionality.  相似文献   

11.
12.
To determine the roles of Drosophila transglutaminase-A (dTG-A), we examined a phenotype induced through ectopic expression of dTG-A. Overexpression of dTG-A in the wing imaginal disc induced an extra wing crossvein phenotype. This phenotype was suppressed by crossing with epidermal growth factor receptor (Egfr) signaling pathway mutant flies. These results indicate that this phenotype, induced by dTG-A, is related to enhancement of the Egfr signaling pathway.  相似文献   

13.
Additional vein (Adv) is a dominant mutation that affects the first wing vein in Drosophila. It also manifests a recessive lethal phenotype and is associated with a large inversion. Using a combination of genetic and cytogenetic techniques, we show that Adv interacts with engrailed (en), likely because one of the inversion breakpoints interferes with en function. Genetic interaction studies reveal that Adv is lethal in trans with various lethal alleles of en and gives an engrailed-like wing phenotype with weak alleles of en. In situ hybridization to polytene chromosomes using en cDNA demonstrates that one of the inversion breakpoints lies within the en coding region. Although the cause of the wing phenotype is not determined herein, it likely is caused by the other inversion breakpoint interfering with a different function. The characterization of this mutation could expedite studies to understand what molecular events result in the Adv phenotype and thereby provide insight into the development of the first wing vein in Drosophila.  相似文献   

14.
The wing of Drosophila melanogaster has long been used as a model system to characterize intermolecular interactions important in development. Implicit in our understanding of developmental processes is the proper trafficking and sorting of signaling molecules, although the precise mechanisms that regulate membrane trafficking in a developmental context are not well studied. We have therefore chosen the Drosophila wing to assess the importance of SNARE-dependent membrane trafficking during development. N-Ethylmaleimide-sensitive fusion protein (NSF) is a key component of the membrane-trafficking machinery and we constructed a mutant form of NSF whose expression we directed to the developing wing margin. This resulted in a notched-wing phenotype, the severity of which was enhanced when combined with mutants of VAMP/Synaptobrevin or Syntaxin, indicating that it results from impaired membrane trafficking. Importantly, we find that the phenotype is also enhanced by mutations in genes for wingless and components of the Notch signaling pathway, suggesting that these signaling pathways were disrupted. Finally, we used this phenotype to conduct a screen for interacting genes, uncovering two Notch pathway components that had not previously been linked to wing development. We conclude that SNARE-mediated membrane trafficking is an important component of wing margin development and that dosage-sensitive developmental pathways will act as a sensitive reporter of partial membrane-trafficking disruption.  相似文献   

15.
[目的]本研究旨在探索DNA甲基化是否通过调控细胞自噬进而影响家蚕Bombyx mori翅的发育.[方法]分别用1和2 μg DNA甲基化特异性抑制剂5-aza-dC处理家蚕卵巢Bm12细胞和家蚕预蛹,荧光显微镜下观察Bm12细胞的数量,利用dot blot检测Bm12细胞中DNA甲基化水平,利用溶酶体染色检测细胞自噬...  相似文献   

16.
17.
U. Thomas  F. Jonsson  S. A. Speicher    E. Knust 《Genetics》1995,139(1):203-213
The Drosophila gene Serrate (Ser) encodes a transmembrane protein with 14 epidermal growth factor--like repeats in its extracellular domain, which is required for the control of cell proliferation and pattern formation during wing development. Flies hetero- or homozygous for the dominant mutation Ser(D) exhibit scalloping of the wing margin due to cell death during pupal stages. Ser(D) is associated with an insertion of the transposable element Tirant in the 3' untranslated region of the gene, resulting in the truncation of the Ser RNA, thereby eliminating putative RNA degradation signals located further downstream. This leads to increased stability of Ser RNA and higher levels of Serrate protein. In wing discs of wild-type third instar larvae, the Serrate protein exhibits a complex expression pattern, including a strong stripe dorsal and a weaker stripe ventral to the prospective wing margin. Wing discs of Ser(D) third instar larvae exhibit additional Serrate protein expression in the edge zone of the future wing margin, where it is normally not detectable. In these cells expression of wing margin specific genes, such as cut and wingless, is repressed. By using the yeast Gal4 system to induce locally restricted ectopic expression of Serrate in the edge zone of the prospective wing margin, we can reproduce all aspects of the Ser(D) wing phenotype, that is, repression of wing margin--specific genes, scalloping of the wing margin and enhancement of the Notch haplo-insufficiency wing phenotype. This suggests that expression of the Serrate protein in the cells of the edge zone of the wing margin, where it is normally absent, interferes with the proper development of the margin.  相似文献   

18.
Mutants of the Drosophila miniature-dusky (m-dy) gene complex display morphogenetic phenotypes (miniature or dusky) caused by a change in the size and/or shape of the epidermal cells comprising the adult wing. In addition to a dusky phenotype, certain Andante-type mutants also exhibit lengthened circadian periods for two different behavioral rhythms. If the latter phenotype results from a direct effect on the circadian pacemaker, the Andante function should be required within the brain. In order to define the tissues that require the morphogenetic and behavioral functions, we have carried out a genetic mosaic analysis. This study demonstrates that normal wing morphogenesis is entirely dependent on the genotype of wing cells. Furthermore, temperature-shift experiments with a temperature-sensitive dy mutant indicate that the morphogenetic function is required during adult development, and after the cessation of wing epidermal cell proliferation. At this time in development, a columnar epithelium in the developing wing becomes flattened into the mature wing blade, and we postulate that the cell-size defect of m-dy mutants results from an alteration of this mor-phogenetic process. In contrast to the wing mor-phogenesis phenotype, the characterization of locomotor activity in mosaic adults revealed a strong correlation between the head genotype and the Andante circadian-period phenotype. This result indicates that neural tissues mediate the rhythm function. Thus, the behavioral and morphogenetic functions require gene expression in distinct tissues. Furthermore, the behavioral results are consistent with a requirement for Andante function within circadian pacemaker neurons. © 1995 Wiley-Liss, Inc.  相似文献   

19.
The dominant Drosophila wing mutation Dichaete is characterised by the deletion of proximal wing structures. By analysing a number of new Dichaete alleles, phenotypic revertants and enhancer piracy lines, we show that the wing phenotype results from ectopic expression of the Sox-domain gene Dichaete. Ectopic expression of the Sox gene results in an increase in cell death in the proximal region of the wing imaginal disc and leads to alterations in the normal expression of wingless. Since ectopic expression of wingless in the proximal region of the wing disc can rescue aspects of the Dichaete phenotype, it is likely that Dichaete specifically interferes with the establishment or maintenance of a critical domain of wingless expression in the wing disc. Received: 20 January 2000 / Accepted: 14 February 2000  相似文献   

20.
The insect wing membrane is usually covered by scales, hairs, and acanthae, which serve diverse functions, such as species-specific coloration pattern, decrease of wind resistance during flight or decrease of wing wettability. Representatives of Palaeoptera (Odonata and Ephemeroptera) have no hairy structures on the wing membrane, but both its sides are fine-sculptured. In this study, the nature of the wing covering was studied using acoustic microscopy, scanning- and transmission electron microscopy followed by a variety of chemical treatments. It was shown that wing microsculptures are not cuticular outgrowths, but a wax covering, which is similar to pruinosity, which has been previously described in several odonate taxa. Data from scanning acoustic microscopy revealed that scratches on the wax covering have material density different from the surrounding material. Various functions of the wax covering are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号