首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parallel stranded (ps) duplexes were constructed by incorporating 7-deaza-2′-deoxyisoguanosine (1a) or its 7-halogenated analogs 1b,c in place of 2′-deoxyisoguanosine. UV and Tm analyses prove the high affinity of ethidium bromide (EB) to these modified duplexes. Steady-state fluorescence measurement shows that the fluorescence is quenched when EB is bound to ps duplexes containing compounds 1a–c. The quenching effect depends on the 7-substituent of the nucleobase.  相似文献   

2.
The synthesis of the 2'-deoxyadenosine analogues 1b, 2b, and 3c modified at the 7- and/or 2-position is described. The effect of 7-chloro and 2-methylthio groups on the duplex stability is evaluated. For that, the nucleosides 1b, 2b, and 3c were converted to the corresponding phosphoramidites 15, 19, and 22, which were employed in the solid-phase oligonucleotide synthesis. In oligonucleotide duplexes, compound 1b forms stable base pairs with dT, of which the separated 1b-dT base pairs contribute stronger than that of the consecutive base pairs. Compound 2b shows universal base pairing properties while its N8 isomer 3c forms duplexes with lower stability.  相似文献   

3.
The pyrazolo[3,4-d]pyrimidine-4,6-diamine nucleosides 2b-d stabilize the dA-dT base pair significantly when the dA-residue is replaced. Oligonucleotide duplexes incorporating 2b-d show a 4-6 degrees C Tm increase per modification. The 7-bromo compound 2b harmonizes the stability of the dA-dT vs. the dG-dC pair. According to this the stability of such duplexes depends no longer on the base pair composition of a DNA molecule.  相似文献   

4.
The phosphoramidites of 8-aza-7-deaza-2'-deoxyisoguanosine (1a) and its bromo derivative 1b as well as of 6-aza-2'-deoxyisocytidine and its 5-methyl derivative (3a,b) were synthesized. Parallel-stranded duplexes containing the nucleosides 1a,b show a significantly enhanced duplex stability compared to those containing 2'-deoxyisoguanosine.  相似文献   

5.
The 9-deazaguanine N7-2'-deoxyribofuranoside (3) as well as the bromo and iodo derivatives 4a,b were synthesized and incorporated in oligonucleotide duplexes and triplexes. Their base pairing properties were investigated and compared with those of the parent purine N7-2'-deoxyribofuanosides.  相似文献   

6.
Oligodeoxynucleotides (ODNs) containing 5-formyl-2′-deoxycytidine (fC) were synthesized by the phosphoramidite method and subsequent oxidation with sodium periodate. The stabilities of duplexes containing A, G, C or T opposite fC were studied by thermal denaturation. It was found that fC:A, fC:C or fC:T base pairs significantly reduce the thermal stabilities of duplexes. Next, single nucleotide insertion reactions were performed using ODNs containing fC as templates and the Klenow fragment of Escherichia coli DNA polymerase I. It was found that: (i) insertion of dGMP opposite fC appears to be less efficient relative to insertion opposite 5-methyl-2′-deoxycytidine (mC); (ii) dAMP is misincorporated more frequently opposite fC than mC, although the frequency of misincorporation seems to be dependent on the sequence; (iii) TMP is misincorporated more frequently opposite fC than mC. These results suggest that fC may induce the transition mutation C·G→T·A and the transversion mutation C·G→A·T during DNA synthesis.  相似文献   

7.
The thermodynamic contributions of rA·dA, rC·dC, rG·dG and rU·dT single internal mismatches were measured for 54 RNA/DNA duplexes in a 1 M NaCl buffer using UV absorbance thermal denaturation. Thermodynamic parameters were obtained by fitting absorbance versus temperature profiles using the curve-fitting program Meltwin. The weighted average thermodynamic data were fit using singular value decomposition to determine the eight non-unique nearest-neighbor parameters for each internal mismatch. The new parameters predict the ΔG°37, ΔH° and melting temperature (Tm) of duplexes containing these single mismatches within an average of 0.33 kcal/mol, 4.5 kcal/mol and 1.4°C, respectively. The general trend in decreasing stability for the single internal mismatches is rG·dG > rU·dT > rA·dA > rC·dC. The stability trend for the base pairs 5′ of the single internal mismatch is rG·dC > rC·dG > rA·dT > rU·dA. The stability trend for the base pairs 3′ of the single internal mismatch is rC·dG > rG·dC >> rA·dT > rU·dA. These nearest-neighbor values are now a part of a complete set of single internal mismatch thermodynamic parameters for RNA/DNA duplexes that are incorporated into the nucleic acid assay development software programs Visual oligonucleotide modeling platform (OMP) and ThermoBLAST.  相似文献   

8.
Structural effect of the anticancer agent 6-thioguanine on duplex DNA   总被引:2,自引:2,他引:0  
The incorporation of 6-thioguanine (S6G) into DNA is an essential step in the cytotoxic activity of thiopurines. However, the structural effects of this substitution on duplex DNA have not been fully characterized. Here, we present the solution structures of DNA duplexes containing S6G opposite thymine (S6G·T) and opposite cytosine (S6G·C), solved by high-resolution NMR spectroscopy and restrained molecular dynamics. The data indicate that both duplexes adopt right-handed helical conformations with all Watson–Crick hydrogen bonding in place. The S6G·T structures exhibit a wobble-type base pairing at the lesion site, with thymine shifted toward the major groove and S6G displaced toward the minor groove. Aside from the lesion site, the helices, including the flanking base pairs, are not highly perturbed by the presence of the lesion. Surprisingly, thermal dependence experiments suggest greater stability in the S6G-T mismatch than the S6G-C base pair.  相似文献   

9.
The synthesis and incorporation into oligodeoxy­nucleotides of two novel, conformationally restricted abasic (AB) site analogs are described. The stability of oligonucleotide 18mer duplexes containing one such AB site opposite any of the four natural DNA bases was investigated by UV melting curve analysis and compared to that of duplexes containing a conformationally flexible propanediol unit 1 or a tetrahydrofuran unit 2 as an AB site analog. No major differences in the melting temperatures (ΔTm 0–3°C) between the different abasic duplexes were observed. All AB duplexes were found to have Tms that were lower by 9–15°C relative to a fully matched 18mer control duplex, and by 4–10°C relative to the corresponding 19mer duplexes in which the AB site is replaced by a mismatched nucleobase. Thus we conclude that the loss of stability of a duplex that is encountered by removal of a nucleobase from the stack cannot be compensated with conformational restriction of the AB site. From the van’t Hoff transition enthalpies obtained from the melting curves, it appears that melting cooperativity is higher for the duplexes containing the conformationally rigid AB sites. Fluorescence quenching experiments with duplexes containing the fluorescent base 2-amino­purine (2AP) opposite the AB sites showed a weak tendency towards more efficient stacking of this base in duplexes containing the conformationally constrained AB sites. Thus, such AB sites may structurally stabilize the cavity formed by the removal of a base. Potential applications emerging from the properties of such conformationally constrained AB sites in DNA diagnostics are discussed.  相似文献   

10.
Nearest-neighbor thermodynamic parameters of the ‘universal pairing base’ deoxyinosine were determined for the pairs I·C, I·A, I·T, I·G and I·I adjacent to G·C and A·T pairs. Ultraviolet absorbance melting curves were measured and non-linear regression performed on 84 oligonucleotide duplexes with 9 or 12 bp lengths. These data were combined with data for 13 inosine containing duplexes from the literature. Multiple linear regression was used to solve for the 32 nearest-neighbor unknowns. The parameters predict the Tm for all sequences within 1.2°C on average. The general trend in decreasing stability is I·C > I·A > I·T ≈ I· G > I·I. The stability trend for the base pair 5′ of the I·X pair is G·C > C·G > A·T > T·A. The stability trend for the base pair 3′ of I·X is the same. These trends indicate a complex interplay between H-bonding, nearest-neighbor stacking, and mismatch geometry. A survey of 14 tandem inosine pairs and 8 tandem self-complementary inosine pairs is also provided. These results may be used in the design of degenerate PCR primers and for degenerate microarray probes.  相似文献   

11.
12.
The base pairing properties of oligonucleotide duplexes containing 8-aza-7-deaza-2′-deoxyisoguanosine, its 7-bromo or its 7-iodo derivative are described. The nucleosides were synthesized on a convergent route, protected and converted into phosphoramidites. Oligonucleotides were prepared on a solid-phase and were hybridized to yield duplexes with parallel (ps) or antiparallel (aps) chain orientation. The 8-aza-7-deaza-2′-deoxyisoguanosine-containing duplexes show almost identical base pairing stability as those containing 2′-deoxyisoguanosine, while the 7-substituted derivatives induce a significant duplex stabilization both in ps and aps DNA. Self-complementary duplexes with parallel chain orientation are exceptionally stable due to the presence of 5′-overhangs. The bulky halogen substituents were found to be well accommodated in the grooves both of aps and ps DNA.  相似文献   

13.
This is the first report to provide comprehensive thermodynamic and structural data concerning duplex, hairpin, quadruplex and i-motif structures in β-L-RNA series. Herein we confirm that, within the limits of experimental error, the thermodynamic stability of enantiomeric structural motifs is the same as that of naturally occurring D-RNA counterparts. In addition, formation of D-RNA/L-RNA heterochiral duplexes is also observed; however, their thermodynamic stability is significantly reduced in reference to homochiral D-RNA duplexes. The presence of three locked nucleic acid (LNA) residues within the D-RNA strand diminishes the negative effect of the enantiomeric, complementary L-RNA strand in the formation of heterochiral RNA duplexes. Similar behavior is also observed for heterochiral LNA-2′-O-methyl-D-RNA/L-RNA duplexes. The formation of heterochiral duplexes was confirmed by 1H NMR spectroscopy. The CD curves of homochiral L-RNA structural motifs are always reversed, whereas CD curves of heterochiral duplexes present individual features dependent on the composition of chiral strands.  相似文献   

14.
Antisense oligonucleotides are small pieces of modified DNA or RNA, which offer therapeutic potential for many diseases. We report on the synthesis of 7′,5′-α-bc-DNA phosphoramidite building blocks, bearing the A, G, T and MeC nucleobases. Solid-phase synthesis was performed to construct five oligodeoxyribonucleotides containing modified thymidine residues, as well as five fully modified oligonucleotides. Incorporations of the modification inside natural duplexes resulted in strong destabilizing effects. However, fully modified strands formed very stable duplexes with parallel RNA complements. In its own series, 7′,5′-α-bc-DNA formed duplexes with a surprising high thermal stability. CD spectroscopy and extensive molecular modeling indicated the adoption by the homo-duplex of a ladder-like structure, while hetero-duplexes with DNA or RNA still form helical structure. The biological properties of this new modification were investigated in animal models for Duchenne muscular dystrophy and spinal muscular atrophy, where exon splicing modulation can restore production of functional proteins. It was found that the 7′,5′-α-bc-DNA scaffold confers a high biostability and a good exon splicing modulation activity in vitro and in vivo.  相似文献   

15.
N Sugimoto  N Satoh  K Yasuda  S Nakano 《Biochemistry》2001,40(29):8444-8451
Peptide nucleic acid (PNA) is an oligonucleotide analogue in which the sugar-phosphate backbone is replaced by an N-(2-aminoethyl)glycine unit to which the nucleobases are attached. We investigated the thermodynamic behavior of PNA/DNA hybrid duplexes with identical nearest neighbors but with different sequences and chain lengths (5, 6, 7, 8, 10, 12, and 16 mers) to reveal whether the nearest-neighbor model is valid for the PNA/DNA duplex stability. CD spectra of 6, 7, and 8 mer PNA/DNA duplexes showed similar signal, while 10, 12, and 16 mer duplexes did not. The average difference in Delta G degrees (37) for short PNA/DNA duplexes with identical nearest-neighbor pairs was only 3.5%, whereas that of longer duplexes (10, 12, and 16 mers) was 16.4%. Therefore, the nearest-neighbor model seems to be useful at least for the short PNA/DNA duplexes. Thermodynamics of PNA/DNA duplexes containing 1--3 bulge residues were also studied. While the stability of the 12 mer DNA/DNA duplex decreased as the number of bulge bases increases, the number of bulge bases in PNA/DNA unchanged the duplex stability. Thus, the influence of bulge insertion in the PNA/DNA duplexes is different from that of a DNA/DNA duplex. This might be due to the different base geometry in a helix which may potentially make hydrogen bonds in a base pair and stacking interaction unfavorable compared with DNA/DNA duplexes.  相似文献   

16.
The influence of locked nucleic acid (LNA) residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes is reported. Optical melting studies indicate that LNA incorporated into an otherwise 2′-O-methyl RNA oligonucleotide usually, but not always, enhances the stabilities of complementary duplexes formed with RNA. Several trends are apparent, including: (i) a 3′ terminal U LNA and 5′ terminal LNAs are less stabilizing than interior and other 3′ terminal LNAs; (ii) most of the stability enhancement is achieved when LNA nucleotides are separated by at least one 2′-O-methyl nucleotide; and (iii) the effects of LNA substitutions are approximately additive when the LNA nucleotides are separated by at least one 2′-O-methyl nucleotide. An equation is proposed to approximate the stabilities of complementary duplexes formed with RNA when at least one 2′-O-methyl nucleotide separates LNA nucleotides. The sequence dependence of 2′-O-methyl RNA/RNA duplexes appears to be similar to that of RNA/RNA duplexes, and preliminary nearest-neighbor free energy increments at 37°C are presented for 2′-O-methyl RNA/RNA duplexes. Internal mismatches with LNA nucleotides significantly destabilize duplexes with RNA.  相似文献   

17.
Recognizing the methylation status of specific DNA sequences is central to the function of many systems in eukaryotes and prokaryotes. Restriction–modification systems have to distinguish between ‘self’ and ‘non-self’ DNA and depend on the inability of restriction endonucleases to cleave their DNA substrates when the DNA is appropriately methylated. These endonucleases thus provide a model system for studying the recognition of DNA methylation by proteins. We have characterized the interaction of R·PvuII with DNA containing the physiologically relevant N4-methylcytosine modification. R·PvuII binds N4mC-modified DNA and cleaves it very slowly. Methylated strands in hemimethylated duplexes were cleaved at a higher rate than in fully methylated duplexes, in parallel with a higher binding affinity for hemimethylated DNA. The co-crystal structures of R·PvuII–DNA, together with a mutagenesis study, have implicated specific amino acids in recognition of the methylatable base; one of these is His84. We report that replacing His84 with Ala reduced the rate of cleavage of unmodified DNA but, in contrast, slightly increased the cleavage of N4mC-modified DNA.  相似文献   

18.
A benzo[f]imidazo[1,5b]-isoquinoline derivative 4 with a 1,2-butandiol linker was prepared by reaction of a trimethylsilylated 5-naphthylidenehydantoin 3 with a 2,3-dideoxy-D-glycero-pentafuranoside 2 in 22% yield. After deprotection, the resulting compound 5 was converted to a DMT protected phosphoramidite building block 7 for standard DNA synthesis. DNA/DNA, DNA/RNA duplexes with 5 inserted as bulges were destabilized, except when the new amidite was used for the synthesis of a zipping duplex.  相似文献   

19.
The cross-linking reaction described previously in the DNA and 2′-O-methyl RNA series is extended to RNA duplexes. A 17mer single-stranded RNA containing the 1,3-trans-{Pt(NH3)2[(GAG)-N7G,N7G]} intrastrand chelate, named G*AG* (* indicating a platinated base) gives, upon pairing with the complementary RNA strand, the G*AG/CUC* interstrand cross-link. The rate of the reaction in 200 mM NaClO4 is similar to that observed for DNA–RNA duplexes. It depends on the added Na+ or Mg2+ cation and on its concentration. RNA duplexes containing GA/GA or AG/AG tandem mismatches in the rearrangement triplet core were also studied. The major interstrand cross-links, G*AG/CGA* and G*AG/AGC*, are accompanied by a minor one involving the central G of the CGA or AGC complementary sequence G*AG/CG*A and G*AG/AG*C. In 200 mM NaClO4, the G*A/GA tandem mismatch does not modify the rate of the cross-linking rearrangement whereas the AG*/AG mismatch slows it down by a factor of four. Our results reflect the predominance of the local structure of the rearrangement core over the nucleophility of the cross-linking base. They also show that the reaction could be used to trap tertiary structures of naturally occurring RNAs, including those with the commonly encountered GA/GA mismatch.  相似文献   

20.
Non-Watson-Crick pairs like the G·U wobble are frequent in RNA duplexes. Their geometric dissimilarity (nonisostericity) with the Watson-Crick base pairs and among themselves imparts structural variations decisive for biological functions. Through a novel circular representation of base pairs, a simple and general metric scheme for quantification of base-pair nonisostericity, in terms of residual twist and radial difference that can also envisage its mechanistic effect, is proposed. The scheme is exemplified by G·U and U·G wobble pairs, and their predicable local effects on helical twist angle are validated by MD simulations. New insights into a possible rationale for contextual occurrence of G·U and other non-WC pairs, as well as the influence of a G·U pair on other non-Watson-Crick pair neighborhood and RNA-protein interactions are obtained from analysis of crystal structure data. A few instances of RNA-protein interactions along the major groove are documented in addition to the well-recognized interaction of the G·U pair along the minor groove. The nonisostericity-mediated influence of wobble pairs for facilitating helical packing through long-range interactions in ribosomal RNAs is also reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号