首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

2.
The major exocellular glycopeptide (peptidophosphogalactomannan) produced by Penicillum charlesii first appears in the culture filtrate when the growth medium is nearly depleted of NH4+. The extent of incorporation of exogenously supplied radioactive precursors (D-[U-14C] GLUCOSE, L-[U-14C]threonine and NaH2(32)PO4) into peptidophosphogalactomannan suggests that approximately 20% of the total quantity of peptidophosphogalactomannan is assembled from constituents taken from the growth medium before NH4+ starvation and that the remainder is assembled from constituents in the medium during NH4" starvation. In the absence of NH4+, an increase in dry weight continues until the medium is depleted of glucose. However, peptidophosphogalactomannan accumulation proceeds until after glucose is depleted and growth is halted. These data suggest that peptidophosphogalactomannan is a product of cellular turnover.  相似文献   

3.
Ramezani M  Resmer KL  White RL 《The FEBS journal》2011,278(14):2540-2551
The pathways of glutamate catabolism in the anaerobic bacterium Fusobacterium varium, grown on complex, undefined medium and chemically defined, minimal medium, were investigated using specifically labelled (13)C-glutamate. The metabolic end-products acetate and butyrate were isolated from culture fluids and derivatized for analysis by nuclear magnetic resonance and mass spectrometry. On complex medium, labels from L-[1-(13)C]glutamate and L-[4-(13)C]glutamate were incorporated into C1 of acetate and equally into C1/C3 of butyrate, while label derived from L-[5-(13)C]glutamate was not incorporated. The isotopic incorporation results and the detection of glutamate mutase and 3-methylaspartate ammonia lyase in cell extracts are most consistent with the methylaspartate pathway, the best known route of glutamate catabolism in Clostridium species. When F. varium was grown on defined medium, label from L-[4-(13)C]glutamate was incorporated mainly into C4 of butyrate, demonstrating a major role for the hydroxyglutarate pathway. Upon addition of coenzyme B(12) or cobalt ion to the defined medium in replicate experiments, isotope was located equally at C1/C3 of butyrate in accord with the methylaspartate pathway. Racemization of D-glutamate and subsequent degradation of L-glutamate via the methylaspartate pathway are supported by incorporation of label into C2 of acetate and equally into C2/C4 of butyrate from D-[3-(13)C]glutamate and the detection of a cofactor-independent glutamate racemase in cell extracts. Together the results demonstrate a major role for the methylaspartate pathway of glutamate catabolism in F. varium and substantial participation of the hydroxyglutarate pathway when coenzyme B(12) is not available.  相似文献   

4.
Administration of supplemental glucose and/or insulin is postulated to improve the outcome from myocardial ischemia by increasing the heart's relative utilization of glucose as an energy substrate. To examine the degree to which circulating glucose and insulin levels actually influence myocardial substrate preference in vivo, we infused conscious, chronically catheterized rats with D-[1-(13)C]glucose and compared steady-state (13)C enrichment of plasma glucose with that of myocardial glycolytic ([3-(13)C]alanine) and oxidative ([4-(13)C]glutamate) intermediary metabolites. In fasting rats, [3-(13)C]alanine-to-[1-(13)C]glucose and [4-(13)C]glutamate-to-[3-(13)C]alanine ratios averaged 0.16 +/- 0.12 and 0.14 +/- 0.03, respectively, indicating that circulating glucose contributed 32% of myocardial glycolytic flux, whereas subsequent flux through pyruvate dehydrogenase contributed 14% of total tricarboxylic acid (TCA) cycle activity. Raising plasma glucose to 11 mmol/l, or insulin to 500 pmol/l, increased these contributions equivalently. At supraphysiological (>6,500 pmol/l) insulin levels, the plasma glucose contribution to glycolysis increased further, and addition of hyperglycemia made it the sole glycolytic substrate, yet [4-(13)C]glutamate-to-[3-(13)C]alanine ratios remained /=40% of myocardial TCA cycle flux.  相似文献   

5.
6.
Cell division in Caulobacter crescentus yields a swarmer and a stalked cell. Only the stalked cell progeny is able to replicate its chromosome, and the swarmer cell progeny must differentiate into a stalked cell before it too can replicate its chromosome. In an effort to understand the mechanisms that limit chromosomal replication to the stalked cell, plasmid DNA synthesis was analyzed during the developmental cell cycle of C. crescentus, and the partitioning of both the plasmids and the chromosomes to the progeny cells was examined. Unlike the chromosome, plasmids from the incompatibility groups Q and P replicated in all C. crescentus cell types. However, all plasmids tested showed a ten- to 20-fold higher replication rate in the stalked cells than the swarmer cells. We observed that all plasmids replicated during the C. crescentus cell cycle with comparable kinetics of DNA synthesis, even though we tested plasmids that encode very different known (and putative) replication proteins. We determined the plasmid copy number in both progeny cell types, and determined that plasmids partitioned equally to the stalked and swarmer cells. We also reexamined chromosome partitioning in a recombination-deficient strain of C. crescentus, and confirmed an earlier report that chromosomes partition to the progeny stalked and swarmer cells in a random manner that does not discriminate between old and new DNA strands.  相似文献   

7.
J774, thioglycollate-elicited mouse peritoneal and BCG-induced rabbit alveolar macrophages all contain high levels of a triacylglycerol hydrolase (EC 3.1.1.3) (TGase) with optimal activity at pH 6.5. The J774 macrophages, a cell line deficient in the calcium-independent mannose 6-phosphate receptor, were found to secrete large quantities of the TGase into the culture medium. In contrast, mouse peritoneal and rabbit alveolar macrophages, which are both mannose 6-phosphate receptor-competent cell types, secreted much lower amounts of neutral TGase. The enzyme was localized in the lysosomes of rabbit alveolar macrophages. Addition of 25 mM NH4Cl induced a 6-fold increase in TGase secretion by alveolar macrophages, while 50 mM NH4Cl induced a 12-fold increase in TGase secretion. NH4Cl had no effect on TGase secretion by J774 macrophages. The TGase secreted by J774 macrophages was internalized by I-cell disease fibroblasts, increasing the cellular content of TGase 10-fold after 8 h. Internalization was inhibited 70% by the addition of 2 mM mannose 6-phosphate to the culture medium, but was not affected by 2 mM mannose or glucose 6-phosphate. After internalization, the neutral TGase was converted to a TGase with a pH optimum of 5.1. These data are consistent with the spontaneous release of a lysosomal enzyme precursor from a calcium-independent mannose 6-phosphate receptor-deficient cell line, indicating that the neutral TGase previously reported in several types of macrophages may be the precursor of the lysosomal acid TGase.  相似文献   

8.
【目的】提高重组谷氨酸棒杆菌发酵L-苯丙氨酸(L-phenylalanine,L-Phe)的产量。【方法】使用正交试验设计以及响应面优化法分别对种子培养基及发酵培养基进行优化,确定了重组谷氨酸棒杆菌发酵L-Phe的最佳种子培养基及最佳发酵培养基。【结果】重组谷氨酸棒杆菌发酵L-Phe最佳种子培养基(g/L):葡萄糖25.0,玉米浆25.0,硫酸铵15.0,硫酸镁1.0,磷酸二氢钾2.0,尿素2.0,p H 6.8-7.0;最佳发酵培养基(g/L):葡萄糖110.0,玉米浆7.0,硫酸铵25.0,硫酸镁1.0,磷酸二氢钾1.0,柠檬酸钠2.0,谷氨酸1.0,碳酸钙25.0,p H 6.8-7.0;在最佳培养基条件下L-Phe产量最高达到9.14 g/L,较优化前的7.46 g/L提高了22.5%。【结论】通过正交试验和响应面分析对重组谷氨酸棒杆菌发酵L-Phe培养基进行优化,明显提高了L-Phe的产量,并确定了葡萄糖、玉米浆和硫酸铵为发酵培养基中影响L-Phe产量的3个关键因子。研究结果为L-Phe的发酵放大提供了依据。  相似文献   

9.
The purpose of this study was to synthesize two new positron emission tomography (PET) probes, N-(4-(2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl)phenyl)-9,10-dihydro-5-[1?F]fluoroethoxy-9-oxo-4-acridine carboxamide ([1?F]3) and quinoline-3-carboxylic acid [2-(4-{2-[7-(2-[1?F]fluoroethoxy)-6-methoxy-3,4-dihydro-1H-isoquinolin-2-yl]ethyl}phenylcarbamoyl)-4,5-dimethoxyphenyl]amide ([1?F]4), and to evaluate the potential of these PET probes for assessing the function of two major drug efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). [1?F]3 and [1?F]4 were synthesized by 1?F-alkylation of each O-desmethyl precursor with [1?F]2-fluoroethyl bromide for injection as PET probes. In vitro accumulation assay showed that treatment with P-gp/BCRP inhibitors (1 and 2) enhanced the intracellular accumulation capacity of P-gp- and BCRP-overexpressing MES-SA/Dx5 cells. In PET studies, the uptake (AUC(brain[0-)?? (min])) of [1?F]3 and [1?F]4 in wild-type mice co-injected with 1 were approximately sevenfold higher than that in wild-type mice, and the uptake of [1?F]3 and [1?F]4 in P-gp/Bcrp knockout mice were eight- to ninefold higher than that in wild-type mice. The increased uptake of [1?F]3 and [1?F]4 was similar to that of parent compounds ([11C]1 and [11C]2) previously described, indicating that radioactivity levels in the brain after injection of [1?F]3 and [1?F]4 are related to the function of drug efflux transporters. Also, these results suggest that the structural difference between parent compounds ([11C]1 and [11C]2) and fluoroethyl analogs ([1?F]3 and [1?F]4) do not obviously affect the potency against drug efflux transporters. In metabolite analysis of mice, the unchanged form in the brain and plasma at 60 min after co-injection of [1?F]4 plus 1 were higher (95% for brain; 81% for plasma) than that after co-injection of [1?F]3 plus 1. [1?F]4 is a promising PET probe to assess the function of drug efflux transporters.  相似文献   

10.
Wang MY  Siddiqi MY  Ruth TJ  Glass A 《Plant physiology》1993,103(4):1259-1267
Short-term influxes of 13NH4+ were measured in intact roots of 3-week-old rice (Oryza sativa L. cv M202) seedlings that were hydroponically grown at 2, 100, or 1000 [mu]M NH4+. Below 1 mM external concentration ([NH4+]0), influx was saturable and due to a high-affinity transport system (HATS). For the HATS, Vmax values were negatively correlated and Km values were positively correlated with NH4+ provision during growth and root [NH4+]. Between 1 and 40 mM [NH4+]0, 13NH4+ influx showed a linear response due to a low-affinity transport system (LATS). The 13NH4+ influxes by the HATS, and to a lesser extent the LATS, are energy-dependent processes. Selected metabolic inhibitors reduced influx of the HATS by 50 to 80%, but of the LATS by only 31 to 51%. Estimated values for Q10 (the ratio of rates at temperatures differing by 10[deg]C) for HATS were greater than 2.4 at root temperatures from 5 to 10[deg]C and were constant at approximately 1.5 between 5 and 30[deg]C for the LATS. Influx of 13NH4+ by the HATS was insensitive to external pH in the range from 4.5 to 9.0, but influx by the LATS declined significantly beyond pH 6.0. The data presented are discussed in the context of the kinetics, energy dependence, and the regulation of ammonium influx.  相似文献   

11.
A class of F' plasmids, designated Fpoh+, was previously shown to be able to replicate extra-chromosomally on Hfr strains by virtue of carrying the specific site or region poh+ (permissive on Hfr) of the E. coli chromosome (Hiraga, 1975, 1976a). These plasmids were now found to replicate on E. coli mafA mutants (mafA1 and mafA23) that cannot support vegetative replication of F and some other F-like plasmids. The derivatives of Fpoh+ that have lost the poh+ site, on the other hand, failed to replicate on mafA mutants. These mutants harboring Fpoh+ (but not Poh- derivatives thereof) exhibit abnormal cell division and form elongated cells, presumably due to competition between Fpoh+ and the host chromosome for some factor(s) essential for the initiation of DNA replication of the both replicons. It is tentatively concluded that the poh+ site is required for F' plasmids to replicate on mafA mutants as well as on Hfr strains. In view of the fact that the mechanism of inhibition of autonomous F DNA replication in mafA mutants and in Hfr strains are clearly different, the present data seem to provide strong support to the notion that the poh+ region contains the replication origin of the E. coli chromosome.  相似文献   

12.
Electric field stimulation (EFS) causes excitatory non adrenergic-non cholinergic (eNANC) and cholinergic constrictions in the guinea pig isolated bronchus, the activation of eNANC and cholinergic nerves respectively. We investigated the effects of [Nphe1]nociceptin(1-13)NH2 ([Nphe1]NC(1-13)NH2), [Phe1(CH2-NH)Gly2]nociceptin(1- 13)NH2 ([F/G] NC(1-13)NH2), and nocistatin (NST) on nociceptin (NC) inhibited constrictions in isolated bronchus of guinea pig. The results show that NC (1 micromol/L) inhibited EFS-induced eNANC and cholinergic constrictions compared with the control, in which nociceptin was not applied. After pretreatment with [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2, or NST, the inhibitions of NC were antagonized by [Nphe1]NC(1-13)NH2 and [F/G]NC(1-13)NH2 but not NST. However, [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2, and NST did not affect the inhibitions induced by morphine. Furthermore, [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2 and NST did not cause any appreciable effects on EFS-induced eNANC and cholinergic constrictions in guinea pig bronchi. The results demonstrate that [Nphe1]NC(1-13)NH2 and [F/G]NC(1- 13)NH2 but not NST act as selective antagonists of the NC receptor and the effects of NC on EFS-induced constrictions of guinea pig isolated bronchus.  相似文献   

13.
A bacterium, designated F199, utilized toluene, naphthalene, dibenzothiophene, salicylate, benzoate, p-cresol, and all isomers of xylene as a sole carbon and energy source. This bacterium was isolated from Middendorf sediments, a Cretaceous age formation that underlies the Southeast Coastal Plain in South Carolina, at a depth of approximately 410 m. F199 is a gram-positive, irregular-shaped bacterium that has a varied cell morphology that is dependent on culture medium type and growth stage. F199 required microaerobic conditions (40 to 80 μM O2) for growth on hydrocarbons, glucose, acetate, and lactate in mineral salts medium but not for growth on rich media. [14C]naphthalene mineralization by F199 was induced by either naphthalene or toulene; however, [14C]toluene mineralization by this strain was induced by toluene but not naphthalene. F199 was also found to harbor two plasmids larger than 100 kb. Restricted F199 plasmid and genomic DNA did not hybridize with toluene (pWW0) or naphthalene (NAH7) catabolic plasmid DNA probes. The presence in the Middendorf formation of bacteria with the capacity for degrading a variety of aromatic compounds suggests that indigenous microorganisms may have potential for in situ degradation of organic contaminants.  相似文献   

14.
Ammonium Uptake by Rice Roots (III. Electrophysiology)   总被引:12,自引:0,他引:12       下载免费PDF全文
The transmembrane electrical potential differences ([delta][psi]) were measured in epidermal and cortical cells of intact roots of 3-week-old rice (Oryza sativa L. cv M202) seedlings grown in 2 or 100 [mu]M NH4+ (G2 or G100 plants, respectively). In modified Johnson's nutrient solution containing no nitrogen, [delta][psi] was in the range of -120 to -140 mV. Introducing NH4+ to the bathing medium caused a rapid depolarization. At the steady state, average [delta][psi] of G2 and G100 plants were -116 and -89 mV, respectively. This depolarization exhibited a biphasic response to external NH4+ concentration similar to that reported for 13NH4+ influx isotherms (M.Y. Wang, M.Y. Siddiqi, T.J. Ruth, A.D.M. Glass [1993] Plant Physiol 103: 1259-1267). Plots of membrane depolarization versus 13NH4+ influx were also biphasic, indicating distinct coupling processes for the two transport systems, with a breakpoint between two concentration ranges around 1 mM NH4+. The extent of depolarization was also influenced by nitrogen status, which was larger for G2 plants than for G100 plants. Depolarization of [delta][psi] due to NH4+ uptake was eliminated by a protonophore (carboxylcyanide-m-chlorophenylhydrazone), inhibitors of ATP synthesis (sodium cyanide plus salicylhydroxamic acid), or an ATPase inhibitor (diethylstilbestrol). The results of these observations are discussed in the context of the mechanisms of NH4+ uptake by high- and low-affinity transport systems operating across the plasma membranes of root cells.  相似文献   

15.
The energetics of ammonium ion transport by Escherichia coli have been studied using [14C]methylammonium as a substrate. Rapid assays for uptake allowed kinetic parameters (CH3NH3+ Km = 36 microM; Vmax = 4 nmol X s-1 X mg-1 to be determined in the absence of CH3NH3+ metabolism. Cells cultured in media containing 1 mM NH4+ failed to express CH3NH3+ transport activity. Methylammonium accumulated at levels which were 100-fold higher than those of the medium. This accumulation was dependent upon the addition of glucose or pyruvate. The entry of CH3NH3+ supported by glucose oxidation in an F1F0-ATPase-deficient mutant was blocked by uncoupler. Transport by wild-type cells under similar conditions was significantly inhibited by arsenate. Thus, CH3NH3+ uptake requires both ATP and an electrochemical H+ gradient. This transport activity was lost upon exposure of E. coli to osmotic shock, but could be recovered by incubation of shocked cells with boiled shock fluid or with glucose plus K+ in the presence of chloramphenicol. Similar reconstitution was observed in K+-depleted parental strains, but not in a mutant defective in K+ transport, demonstrating a requirement for internal K+. However, external K+ proved to be a noncompetitive inhibitor (Ki = 1 mM) of CH3NH3+ uptake by K+ -replete bacteria. External Na+ had no effect on transport. The addition of NH4+ or CH3NH3+ induced a rapid exodus of intracellular 86Rb+, an analog which was able to substitute for K+. The molar ratio of CH3NH3+ uptake to Rb+ exit was 1.12 +/- 0.11. These findings support a mechanism for CH3NH3+ (NH4+) accumulation which requires K+ antiport (exchange) and is driven by the electrochemical K+ gradient.  相似文献   

16.
Tetrammine cobalt(III) phosphate [Co(NH3)4PO4] inactivates Na+/K(+)-ATPase in the E2 conformational state, dependent on time and concentration, according to Eqn (1): Co(NH3)4PO4 + E2 Kd in equilibrium E2.Co(NH3)4PO4k2----E'2.Co(NH3)4PO4. The inactivation rate constant k2 for the formation of a stable E'2.Co(NH3)4PO4 at 37 degrees C was 0.057 min-1; the dissociation constant, Kd = 300 microM. The activation energy for the inactivation process was 149 kJ/mol. ATP and the uncleavable adenosine 5'-[beta, gamma-methylene]triphosphate competed with Co(NH3)4PO4 for its binding site with Ks = 0.41 mM and 5 mM, respectively. MgPO4 competed with Co(NH3)4PO4 linearly, with Ks = 50 microM, as did phosphate (Ks = 16 mM) and Mg2+ (Ks = 160 microM). It is concluded that the MgPO4 analogue binds to the MgPO4-binding subsite of the low-affinity ATP-binding site (of the E2 conformation). Also, Na+ (Ks = 860 microM) protected the enzyme against inactivation in a competitive manner. From the intersecting (slope and intercept linear) noncompetitive effect of Na+ against the inactivation by Co(NH3)4PO4, apparent affinities of K+ for the free enzyme of 41 microM, and for the E.Co(NH3)4PO4 complex of 720 microM, were calculated. Binding of Co(NH3)4PO4 to the enzyme inactivated Na+/K(+)-ATPase and K(+)-activated phosphatase, and, moreover, prevented the occlusion of 86Rb+; however, the activity of the Na(+)-ATPase, the phosphorylation capacity of the high-affinity ATP-binding site and the ATP/ADP-exchange reaction remained unchanged. With Co(NH3)432PO4 a binding capacity of 135 pmol unit enzyme was found. Phosphorylation and complete inactivation of the enzyme with Co(NH3)432PO4 or the 32P-labelled tetramminecobalt ATP ([gamma-32P]Co(NH3)4ATP) at the low-affinity ATP-binding site, allowed (independent of the purity of the Na+/K(+)-ATPase preparation) a further incorporation of radioactivity from 32P-labelled tetraaquachromium(III) ATP ([gamma-32P]CrATP) to the high-affinity ATP-binding site with unchanged phosphorylation capacity. However, inactivation and phosphorylation of Na+/K(+)-ATPase by [gamma-32P]CrATP prevented the binding of Co(NH3)4 32PO4 or [gamma-32P]Co(NH3)4ATP to the enzyme. [gamma-32P]CO(NH3)4ATP and Co(NH3)432PO4 are mutually exclusive. The data are consistent with the assumption of a cooperation of catalytic subunits within an (alpha,beta)2-diprotomer, which change their interactions during the Na+/K(+)-pumping process. Our findings seem not to support a symmetrical Repke and Stein model of enzyme action.  相似文献   

17.
GTP-cyclohydrolase was isolated from the Fe-deficient cells of Pichia guilliermondii and purified 440-fold by treatment of extracts with streptomycin sulfate as well as by protein fractionation with (NH4)2SO4 at 25-45% saturation, gel filtration through Sephadex G-200 and DEAE-cellulose chromatography. The curves for the dependence of specific activity of GTP-cyclohydrolase on substrate and cofactor concentrations are non-hyperbolic; the values of [S]0.5 for GTP and Mg2+ are 2.2 X 10(-5) and 2 X 10(-4) M, respectively. The enzyme activity is inhibited by pyrophosphate ([I]0.5 = 5.8 X 10(-4) M), orthophosphate ([I]0.5 = 4.5 X 10(-3) M), heavy metal ions and chelating agents. The temperature optimum for the enzyme activity lies at 42-45 degrees C. The enzyme is labile at 4 degrees C but can well be stored at -15 degrees C. The pyrimidine product of the cyclohydrolase reaction, 2.5-diamino-6-oxy-4-ribosyl-aminopyrimidine-5'-phosphate, as well as pyrophosphate were purified from the reaction medium and identified.  相似文献   

18.
The purpose of this study was to assess the level of agreement between two techniques commonly used to measure exogenous carbohydrate oxidation (CHO(EXO)). To accomplish this, seven healthy male subjects (24 +/- 3 yr, 74.8 +/- 2.1 kg, V(O2(max)) 62 +/- 4 ml x kg(-1) x min(-1)) exercised at 50% of their peak power for 120 min on two occasions. During these exercise bouts, subjects ingested a solution containing either 144 g glucose (8.7% wt/vol glucose) or water. The glucose solution contained trace amounts of both [U-13C]glucose and [U-14C]glucose to allow CHO(EXO) to be quantified simultaneously. The water trial was used to correct for background 13C enrichment. 13C appearance in the expired air was measured using isotope ratio mass spectrometry, whereas 14C appearance was quantified by trapping expired CO(2) in solution (using hyamine hydroxide) and adding a scintillator before counting radioactivity. CHO(EXO) measured with [13C]glucose ([13C]CHO(EXO)) was significantly greater than CHO(EXO) measured with [14C]glucose ([14C]CHO(EXO)) from 30 to 120 min. There was a 15 +/- 4% difference between [13C]CHO(EXO) and [14C]CHO(EXO) such that the absolute difference increased with the magnitude of CHO(EXO). Further investigations suggest that the difference is not because of losses of CO2 from the trapping solution before counting or an underestimation of the "strength" of the trapping solution. Previous research suggests that the degree of isotopic fractionation is small (S. C. Kalhan, S. M. Savin, and P. A. Adam. J Lab Clin Med89: 285-294, 1977). Therefore, the explanation for the discrepancy in calculated CHO(EXO) remains to be fully understood.  相似文献   

19.
A protein fraction [precipitate obtained between 40 and 65% (NH4)2SO4 satn.] prepared from cambial cells, differentiating xylem cells and differentiated xylem cells of pine and fir trees contained all the enzymes required for the nucleoside diphosphate sugar interconversions. By using UDP-D-[U-14C]glucose or UDP-D-[U-14C]galactose, UDP-D-[U-14C-]glucuronic acid and UDP-D-[U-14C]xylose as substrates, the activities of UDP-D-galactose 4-epimerase (DC 5.1.3.2), UDP-D-xylose 4-epimerase(EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D-glucuronate 4-epimerase (EC5.1.3.6), UDP-d-glucuronate decarboxylase (EC 4.1.1.35) were measured at different stages of cell-wall development. The specific activities and the activities per cell of these enzymes varied during differentiation of cambium to xylem according to the type polysaccharide synthesized. Variations were also found between the two species investigated. These data, compared with those obtained in out previous work on angiosperms [see the preceding paper, Dalessandro & Northcote (1977) Biochem. J. 162, 267-279], suggest that some control of polysaccharide synthesis operates at the level of the formation of the precursors of pectin and hemicellulose syntheses.  相似文献   

20.
Changes in several parameters involved in the control of metabolism were correlated with changes in glucose utilization in rat brain slices incubated under conditions which reduced glucose oxidation by 40 to 70%. The parameters included: the concentrations of ATP, ADP, AMP, and the adenylate energy charge; the cytoplasmic oxidation-reduction state ([NAD+]/[NADH]), determined from the [pyruvate]/[lactate] equilibrium; the mitochondrial oxidation-reduction state, determined from the [NH4+] ]2-oxoglutarate]/[glutamate] Equilibrium; the cytoplasmic and mitochondrial oxidation-reduction potentials (in volts), calculated from the respective [NAD+]/ [NADH] ratios using the Nernst equation; and the difference between the cytoplasmic and mitochondrial [NAD+]/[NADH] potentials. The conversion of [3, 4-14C] glucose to 14CO2 and of [U-14C] glucose to acetylcholine and to lipids, proteins, and nucleic acids by the brain slices were also determined. The values obtained by subtracting the mitochondrial from the cytoplasmic [NAD+1/[NADH] potentials correlated more closely with glucose utilization than did other parameters, under the conditions studied. For the synthesis of acetylcholine, the correlation coefficient was 0.96, and for the production of 14CO2 from [3, 4-14C] glucose it was 0.82.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号