首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor beta (TGF-beta) stimulates protein complex formation on a TGF-beta response element (TAE) found in the distal portion (-1624) of the collagen alpha 1(I) promoter. To identify the fibroblast proteins in this complex, an expression library constructed from human embryonic lung fibroblasts mRNA was screened using a tetramer of TAE. Y-box binding protein (YB-1), was identified as a protein in the TAE-protein complex. The protein expressed by phage clones formed a specific complex with labeled TAE but not mutated TAE (mTAE) similar to the complex formed with nuclear protein. Nuclear protein-TAE complexes isolated from native gels contained YB-1 by Western analysis. TGF-beta treatment increased the amount of YB-1 protein in nuclear extracts, decreased its amount in cytoplasm, but did not alter the steady state levels of YB-1 mRNA. A full-length YB-1 protein expressed in human lung fibroblasts was primarily located in the nucleus with punctate staining in cytoplasmic regions. The expression of YB-1 decreased in the cytoplasm after 2 h of TGF-beta treatment. Therefore, the increased binding activity seen in TGF-beta-stimulated nuclear extracts was due primarily to relocalization of YB-1 from the cytoplasm to the nuclear compartment. Co-transfection of YB-1 cDNA with a collagen promoter-reporter construct caused a dose-dependent activation of collagen promoter activity in rat fibroblasts whereas the promoter with a mutation in the TAE element was not sensitive to YB-1 co-expression. In conclusion, we have identified YB-1 as a protein that interacts with a TGF-beta response element in the distal region of the collagen alpha 1(I) gene. YB-1 protein activates the collagen promoter and translocates into the nucleus during TGF-beta addition to fibroblasts, suggesting a role for this protein in TGF-beta signaling.  相似文献   

2.
Experiments designed to examine the role of the first intron in regulation of the Col1a1 gene by transfection and in transgenic mice have led to conflicting conclusions. Recently, Hormuzdi et al. [Hormuzdi, S.G., Penttinen, R., Jaenisch, R., Bornstein, P., 1998. A gene-targeting approach identifies a function for the first intron in expression of the alpha1(I) collagen. Mol. Cell. Biol. 18, 3368-3375.] created a targeted deletion in this intron in mice and demonstrated an age-dependent reduction in expression of the mutated allele in lung and skeletal muscle. In this study, intratracheal instillation of bleomycin in mice was used to induce pulmonary fibrosis in control and intron-deleted animals. This stimulus for collagen synthesis was associated with a marked upregulation of the intron-deleted allele in mutant mice. Our results establish that the inhibition of expression of the mutant Col1a1 gene is not fixed, since the gene can still respond to physiological signals. We propose that cis-acting elements, elsewhere in the gene, can compensate for the lack of intronic sequences in the mutated Col1a1 allele and account for the conditional nature of the inhibition. This model has the potential to resolve the conflicting results of previous transfection and transgenic experiments in which different fragments of the Col1a1 gene were used.  相似文献   

3.
4.
Loss-of-function approaches by the Cre/loxP technology have provided powerful tools for functional analyses of genes of interest expressed preferentially in a particular tissue. Here we describe the generation of transgenic mouse lines expressing Cre recombinase under the control of the promoter/enhancer unit of the gene for the alpha2 chain of collagen type I (Col1alpha2). As an expression vector, we used a P1-derived artificial chromosome (PAC), which harbors approximately 100 kb carrying the col1alpha2 gene. The improved coding sequence of the Cre recombinase was introduced to replace the first exon of col1alpha2. Cre expression was determined by immunohistochemistry and Cre-mediated onset of beta-galactosidase expression in ROSA26R-Cre reporter mice. In four analyzed transgenic lines, Cre recombinase was efficiently expressed during embryogenesis and in adult animals in cells of mesenchymal origin, such as dermal fibroblasts, mesenchymal cells of blood vessel walls, and cells in fibrous connective tissues surrounding internal organs.  相似文献   

5.
Transforming growth factor beta (TGF-β) stimulates protein complex formation on a TGF-β response element (TAE) found in the distal portion (−1624) of the collagen alpha 1(I) promoter. To identify the fibroblast proteins in this complex, an expression library constructed from human embryonic lung fibroblasts mRNA was screened using a tetramer of TAE. Y-box binding protein (YB-1), was identified as a protein in the TAE–protein complex. The protein expressed by phage clones formed a specific complex with labeled TAE but not mutated TAE (mTAE) similar to the complex formed with nuclear protein. Nuclear protein–TAE complexes isolated from native gels contained YB-1 by Western analysis. TGF-β treatment increased the amount of YB-1 protein in nuclear extracts, decreased its amount in cytoplasm, but did not alter the steady state levels of YB-1 mRNA. A full-length YB-1 protein expressed in human lung fibroblasts was primarily located in the nucleus with punctate staining in cytoplasmic regions. The expression of YB-1 decreased in the cytoplasm after 2 h of TGF-β treatment. Therefore, the increased binding activity seen in TGF-β-stimulated nuclear extracts was due primarily to relocalization of YB-1 from the cytoplasm to the nuclear compartment. Co-transfection of YB-1 cDNA with a collagen promoter–reporter construct caused a dose-dependent activation of collagen promoter activity in rat fibroblasts whereas the promoter with a mutation in the TAE element was not sensitive to YB-1 co-expression. In conclusion, we have identified YB-1 as a protein that interacts with a TGF-β response element in the distal region of the collagen alpha 1(I) gene. YB-1 protein activates the collagen promoter and translocates into the nucleus during TGF-β addition to fibroblasts, suggesting a role for this protein in TGF-β signaling.  相似文献   

6.
《The Journal of cell biology》1996,134(5):1333-1344
We have identified three DNase I-hypersensitive sites in chromatin between 15 and 17 kb upstream of the mouse pro alpha 2 (I) collagen gene. These sites were detected in cells that produce type I collagen but not in cells that do not express these genes. A construction containing the sequences from -17 kb to +54 bp of the mouse pro alpha 2 (I) collagen gene, cloned upstream of either the Escherichia coli beta- galactosidase or the firefly luciferase reporter gene, showed strong enhancer activity in transgenic mice when compared with the levels seen previously in animals harboring shorter promoter fragments. Especially high levels of expression of the reporter gene were seen in dermis, fascia, and the fibrous layers of many internal organs. High levels of expression could also be detected in some osteoblastic cells. When various fragments of the 5' flanking sequences were cloned upstream of the 350-bp proximal pro alpha 2(I) collagen promoter linked to the lacZ gene, the cis-acting elements responsible for enhancement were localized in the region between -13.5 and -19.5 kb, the same region that contains the three DNase I-hypersensitive sites. Moreover, the DNA segment from -13.5 to -19.5 kb was also able to drive the cell-specific expression of a 220-bp mouse pro alpha 1(I) collagen promoter, which is silent in transgenic mice. Hence, our data suggest that a far-upstream enhancer element plays a role in regulating high levels of expression of the mouse pro alpha 2(I) collagen gene.  相似文献   

7.
8.
9.
10.
Leukocyte infiltration is characteristic of lung injury and fibrosis, and its role during tissue repair and fibrosis is incompletely understood. We found that overexpression of IL-5 in transgenic mice (IL-5(TG)) or by adenoviral gene transfer increased bleomycin (blm)-induced lung injury, fibrosis, and eosinophilia. Surprisingly, blm-treated IL-5-deficient (IL-5(-/-)) mice also developed pronounced pulmonary fibrosis but characterized by marked T lymphocyte infiltration and absence of eosinophilia. In both murine strains however, induction of lung TGF-beta expression was evident. Purified lung eosinophils from blm-treated IL-5(TG) mice stimulated alpha-smooth muscle actin and collagen expression in mouse lung fibroblasts, without affecting proliferation. Furthermore instillation of purified eosinophils into murine lungs resulted in extension of blm-induced lung fibrosis, thus confirming a role for eosinophils. However, lung T lymphocytes from blm-treated IL-5(-/-) mice were able to stimulate fibroblast proliferation but not alpha-smooth muscle actin or collagen expression. Blocking T cell influx by anti-CD3 Abs abrogated lung fibrosis, thus also implicating T lymphocytes as a key participant in fibrosis. Pulmonary fibrosis in IL-5(TG) mice was preferentially associated with type 2 cytokines (IL-4 and IL-13), whereas fibrotic lesions in IL-5(-/-) animals were accompanied by proinflammatory cytokine (TNF-alpha, IL-1beta, and IFN-gamma) expression. We suggest that eosinophils and T cells contribute distinctly to the development of blm-induced lung fibrosis potentially via their production of different cytokine components, which ultimately induce TGF-beta expression that is intimately involved with the fibrosis.  相似文献   

11.
We sought to determine the cis-acting elements responsible for the pattern of tissue specific expression of the mouse alpha 2(I) collagen gene. Using an RNase protection assay we first verified that expression of the alpha 2(I) collagen gene is mainly confined to tendons, bone, and skin in mice. Both transgenic mice and DNA transfection of tissue culture cells were used as experimental approaches. Transgenic mice lines were generated harboring chloramphenicol acetyltransferase (CAT) chimeric genes that contained either (a) 2000 base pairs (bp) of 5'-flanking sequences of the mouse alpha 2(I) collagen gene plus additional sequences between +418 and +1524 of the first intron of this gene or (b) the same promoter sequences without intron sequences or (c) the 350-bp proximal promoter sequences. Transgenic mice containing both types of 2000-bp promoters showed a pattern of CAT expression that was tissue specific. The presence of sequences of the first intron in the transgene did not increase the level of promoter activity. Transgenic mice harboring the 350-bp alpha 2(I) collagen promoter also showed a pattern that was tissue-specific except that high level expression also occurred in the brain. This suggests that negative regulation is an important component of tissue-specific expression. In order to analyze the first 350 bases in detail, we performed transient expression experiments, using promoter fragments attached to the luciferase reporter gene. Fibroblasts, which show a high level expression of the endogenous alpha 2(I) collagen gene, and B cells, in which the gene is silent, were transfected with a series of deletions and substitution mutations within the proximal 350-bp promoter. These experiments were unable to define unique cell-specific cis-acting elements. However, when the sequence between -315 and -284 was tandemly repeated upstream of a minimal alpha 2(I) collagen promoter (-41 to +54), the activity of this construction was considerably higher in fibroblasts than in B cells when compared with the minimal promoter itself. In gel retardation assays, the levels of complexes that bind to this sequence were higher in fibroblast nuclear extracts than in myeloma nuclear extracts. Our results are consistent with the hypothesis that the -315 to -284 DNA sequence participates in the cell-specific control of the alpha 2(I) collagen gene in fibroblasts.  相似文献   

12.
13.
Connective tissue growth factor (CTGF) is a cysteine-rich peptide synthesized and secreted by fibroblastic cells after activation with transforming growth factor beta (TGF-beta) that acts as a downstream mediator of TGF-beta-induced fibroblast proliferation. We performed in vitro and in vivo studies to determine whether CTGF is also essential for TGF-beta-induced fibroblast collagen synthesis. In vitro studies with normal rat kidney (NRK) fibroblasts demonstrated CTGF potently induces collagen synthesis and transfection with an antisense CTGF gene blocked TGF-beta stimulated collagen synthesis. Moreover, TGF-beta-induced collagen synthesis in both NRK and human foreskin fibroblasts was effectively blocked with specific anti-CTGF antibodies and by suppressing TGF-beta-induced CTGF gene expression by elevating intracellular cAMP levels with either membrane-permeable 8-Br-cAMP or an adenylyl cyclase activator, cholera toxin (CTX). cAMP also inhibited collagen synthesis induced by CTGF itself, in contrast to its previously reported lack of effect on CTGF-induced DNA synthesis. In animal assays, CTX injected intradermally in transgenic mice suppressed TGF-beta activation of a human CTGF promoter/lacZ reporter transgene. Both 8-Br-cAMP and CTX blocked TGF-beta-induced collagen deposition in a wound chamber model of fibrosis in rats. CTX also reduced dermal granulation tissue fibroblast population increases induced by TGF-beta in neonatal mice, but not increases induced by CTGF or TGF-beta combined with CTGF. Our data indicate that CTGF mediates TGF-beta-induced fibroblast collagen synthesis and that in vivo blockade of CTGF synthesis or action reduces TGF-beta-induced granulation tissue formation by inhibiting both collagen synthesis and fibroblast accumulation.  相似文献   

14.
Cre-mediated gene deletion in the mammary gland.   总被引:22,自引:1,他引:21       下载免费PDF全文
To delete genes specifically from mammary tissue using the Cre-lox system, we have established transgenic mice expressing Cre recombinase under control of the WAP gene promoter and the MMTV LTR. Cre activity in these mice was evaluated by three criteria. First, the tissue distribution of Cre mRNA was analyzed. Second, an adenovirus carrying a reporter gene was used to determine expression at the level of single cells. Third, tissue specificity of Cre activity was determined in a mouse strain carrying a reporter gene. In adult MMTV-Cre mice expression of the transgene was confined to striated ductal cells of the salivary gland and mammary epithelial cells in virgin and lactating mice. Expression of WAP-Cre was only detected in alveolar epithelial cells of mammary tissue during lactation. Analysis of transgenic mice carrying both the MMTV-Cre and the reporter transgenes revealed recombination in every tissue. In contrast, recombination mediated by Cre under control of the WAP gene promoter was largely restricted to the mammary gland but occasionally observed in the brain. These results show that transgenic mice with WAP-Cre but not MMTV-Cre can be used as a powerful tool to study gene function in development and tumorigenesis in the mammary gland.  相似文献   

15.
16.
Plasminogen activator inhibitor-1 (PAI-1)-deficient transgenic mice have improved survival and less fibrosis after intratracheal bleomycin instillation. We hypothesize that PAI-1 deficiency limits scarring through unopposed plasminogen activation. If this is indeed true, then we would expect increased urokinase-type plasminogen activator (uPA) expression to result in a similar reduction in scarring and improvement in mortality. To test our hypothesis, using the tetracycline gene regulatory system, we have generated a transgenic mouse model with the features of inducible, lung-specific uPA production. After doxycycline administration, these transgenic animals expressed increased levels of uPA in their bronchoalveolar lavage (BAL) fluid that accelerated intrapulmonary fibrin clearance. Importantly, this increased plasminogen activator production led to a reduction in both lung collagen accumulation and mortality after bleomycin-induced injury. These results suggest that PAI-1 deficiency does protect against the effects of bleomycin-induced lung injury through unopposed plasmin generation. By allowing the manipulation of plasminogen activation at different phases of the fibrotic process, this model will serve as a powerful tool in further investigations into the pathogenesis of pulmonary fibrosis.  相似文献   

17.
18.
To test the hypothesis of an extra-dermal origin of dermal fibroblasts, parabiosis, and transplantation models were developed utilizing a collagen promoter green fluorescent protein (GFP) reporter transgene expressed in dermal fibroblasts. Parabiotic pairs were treated with bleomycin to induce the skin fibrosis that was evaluated for a dense deposition of collagen and inflammatory cell infiltrates in the thickened dermis in comparison with parabiotic pairs treated with saline. Although, in all cases, repeated injection of bleomycin for 4 weeks induced skin fibrosis, only a few GFP positive cells were detected in skin samples from some of the treated non-transgenic mice. Unexpectedly, similar results were observed in saline treated controls. Furthermore, bone marrow chimeras were created in which non-transgenic recipient mice received injections of bone marrow cell preparations isolated from pOBCol3.6GFP transgenic mice. After bone marrow chimerism had been successfully established, fibrotic lesions in the skin were induced by local bleomycin injections. Donor GFP expressing cells were observed in the skin from all recipient mice. However, no difference in the presence of GFP expressing cells was observed between non-treated mice or mice treated with bleomycin or saline. A large number of GFP expressing cells were observed in the lung preparations from all chimeric mice. Mac-3 antibody immunostaining confirmed a macrophage phenotype for these GFP expressing cells suggesting the expression of the pOBCol3.6GFP transgene in a non-collagen producing cell. Based on these observations, we found no evidence of circulating dermal fibroblast progenitors that participate in the development of bleomycin-induced skin fibrosis.  相似文献   

19.
20.
To investigate whether the human pro alpha 1(I) collagen chain could form an in vivo functional interspecies heterotrimer with the mouse pro alpha 2(I) collagen chain, we introduced the human COL1A1 gene into Mov13 mice which have a functional deletion of the endogenous COL1A1 gene. Transgenic mouse strains (HucI and HucII) carrying the human COL1A1 gene were first generated by microinjecting the COL1A1 gene into wild-type mouse embryos. Genetic evidence indicated that the transgene in the HucI strain was closely linked to the endogenous mouse COL1A1 gene and was X linked in the HucII transgenic strain. Northern (RNA) blot and S1 protection analyses showed that the transgene was expressed in the appropriate tissue-specific manner and as efficiently as the endogenous COL1A1 gene. HucII mice were crossed with Mov13 mice to transfer the human transgene into the mutant strain. Whereas homozygous Mov13 embryos die between days 13 and 14 of gestation, the presence of the transgene permitted apparently normal development of the mutant embryos to birth. This indicated that the mouse-human interspecies collagen I heterotrimer was functional in the animal. The rescue was, however, only partial, as all homozygotes died within 36 h after delivery, with signs of internal bleeding. This could have been due to a functional defect in the interspecies hybrid collagen. Extensive analysis failed to reveal any biochemical or morphological abnormalities of the collagen I molecules in Mov13-HucII embryos. This may indicate that there was a subtle functional defect of the interspecies hybrid protein which was not revealed by our analysis or that another gene has been mutated by the retroviral insertion in the Mov13 mutant strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号