首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two bacterial perhydrolase genes, perPA and perBC, were cloned from Pseudomonas aeruginosa and Burkholderia cepacia, respectively, using PCR amplification with primers designed to be specific for conserved amino acid sequences of the already-known perhydrolases. The amino acid sequence of PerPA was identical to a putative perhydrolase of P. aeruginosa PAO1 genome sequences, whereas PerBC of B. cepacia was a novel bacterial perhydrolase showing similarity of less than 80% with all other existing perhydrolases. Most importantly, the perPA gene was expressed as a soluble intracellular form to an extent of more than 50% of the total protein content in Escherichia coli. Two perhydrolase enzymes were confirmed to exhibit the halogenation activity towards Phenol Red and monochlorodimedone. These results suggested that we successfully obtained the newly identified members of the bacterial perhydrolase family, expanding the pool of available perhydrolases.  相似文献   

2.
Pseudomonas aeruginosa is an important opportunistic human pathogen, causing various infections that are often very persistent. P. aeruginosa infections are the major cause of death in cystic fibrosis patients. Infections are difficult to treat since P. aeruginosa is resistant to most antibiotics and its antibiotic susceptibility is decreased when it is present in biofilms. P. aeruginosa produces many exoproducts (including toxins and hydrolytic enzymes) that are involved in virulence. Recent research has elucidated many mechanisms and pathways that regulate the production of these virulence factors. The regulation is extremely complex and many components are influenced by environmental conditions. Quorum sensing is a key regulatory system, which itself is affected by many other regulators. Targeting the regulation of pathogenicity factors provides a novel strategy for combating P. aeruginosa infections. Degradation of acyl homoserine lactones, the signaling molecules of the quorum-sensing system, is a promising therapeutic treatment option.  相似文献   

3.
The leading cause of morbidity and mortality in cystic fibrosis (CF) continues to be lung infections with Pseudomonas aeruginosa biofilms. Co-colonization of the lungs with P aeruginosa and Burkholderia cepacia can result in more severe pulmonary disease than P. aeruginosa alone. The interactions between P. aeruginosa biofilms and B. cepacia are not yet understood; one possible association being that mixed species biofilm formation may be part of the interspecies relationship. Using the Calgary Biofilm Device (CBD), members of all genomovars of the B. cepacia complex were shown to form biofilms, including those isolated from CF lungs. Mixed species biofilm formation between CF isolates of P. aeruginosa and B. cepacia was readily achieved using the CBD. Oxidation-fermentation lactose agar was adapted as a differential agar to monitor mixed biofilm composition. Scanning electron micrographs of the biofilms demonstrated that both species readily integrated in close association in the biofilm structure. Pseudomonas aeruginosa laboratory strain PAO1, however, inhibited mixed biofilm formation of both CF isolates and environmental strains of the B. cepacia complex. Characterization of the soluble inhibitor suggested pyocyanin as the active compound.  相似文献   

4.
Burkholderia cepacia is now recognised as a life-threatening pathogen among several groups of immunocompromised patients. In this context, the proposed large-scale use of these bacteria in agriculture has increased the need for a better understanding of the genetics of the species forming the B. cepacia complex. Until now, little information has been available on the bacteriophages of the B. cepacia complex. Transducing phages, named NS1 and NS2, were derived from the lysogenic B. cepacia strains ATCC 29424 and ATCC 17616. The frequency of transduction per phage particle ranged from 1.0x10(-8) to 7.0x10(-6) depending on the phage and recipient strain used. The host range of NS1 and NS2 differed but in each case included environmental and clinical isolates, and strains belonging to several species and genomovars of the B. cepacia complex. The host range of both phages also included Pseudomonas aeruginosa. Some B. cepacia complex isolates were sensitive to the well-characterised P. aeruginosa transducing phages, B3, F116L and G101. The lytic activity of NS1 and NS2 was inhibited by B. cepacia lipopolysaccharide suggesting that this moiety is a binding site for both phages. The molecular size of the NS1 and NS2 genomes was approximately 48 kb.  相似文献   

5.
Several strains of Burkholderia vietnamiensis, isolated from the rhizosphere of rice plants, and four strains formerly known as Pseudomonas cepacia including two collection strains and two clinical isolates were compared for siderophore production and iron uptake. The B. vietnamiensis (TVV strains) as well as the B. cepacia strains (ATCC 25416 and ATCC 17759) and the clinical isolates K132 and LMG 6999 were all found to produce ornibactins under iron starvation. The two ATCC strains of B. cepacia additionally produced the previously described siderophores, pyochelin and cepabactin. Analysis of the ratio of isolated ornibactins (C4, C6 and C8) by HPLC revealed nearly identical profiles. Supplementation of the production medium with ornithine (20 mm) resulted in a 2.5-fold increase in ornibactin synthesis. Ornibactin-mediated iron uptake was independent of the length of the acyl side chain and was observed with all strains of B. vietnamiensis and B. cepacia, but was absent with strains of Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas stutzeri, known to produce pyoverdines or desferriferrioxamines as siderophores. These results suggest that ornibactin production is a common feature of all Burkholderia strains and that these strains develop an ornibactin-specific iron transport system which is distinct from the pyoverdine-specific transport in Pseudomonas strains.  相似文献   

6.
The effect of concentrated cell-free extracellular material from stationary-phase cultures of Burkholderia cepacia 10661 and Pseudomonas aeruginosa PAO1 on virulence factor production in B. cepacia was assessed. While increasing concentrations of the B. cepacia exoproduct caused a slight increase in siderophore, lipase, and protease production in the producing organism, a significant in productivity was observed for all three virulence factors with the addition of the PAO1 exoproduct. Moreover, the addition of the exoproduct from a strain of P. aeruginosa producing reduced amounts of autoinducer caused only a slightly greater response than that of the control. Both B. cepacia 10661 and P. aeruginosa PAO1, along with two matched clinical isolates of both organisms obtained from a cystic fibrotic patient, were shown to produce variable amounts of three different types of autoinducer. The potential for interspecies signalling in microbial pathogenicity is discussed.  相似文献   

7.
Abstract Chromosomal location of trp genes of a strain Burkholderia cepacia (formerly Pseudomonas cepacia ) has been determined by transduction using a generalized transducing phage CP75 and by molecular analysis for a cosmid plasmid clone with trp genes isolated from the genomic gene library of the strain. The trp genes were classified into three linkage groups and they all were closely linked on a short chromosomal region probably in the order ( trpA, trpB, trpF)-(trpC, trpD)-trpE .  相似文献   

8.
Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.  相似文献   

9.
Burkholderia cepacia was originally described as the causative agent of bacterial rot of onions, and it has now emerged as an important opportunistic pathogen causing severe chronic lung infections in patients having cystic fibrosis. Burkholderia cepacia is now classified into nine very closely related species (previously designated as genomovars), all of which have been isolated from both environmental and clinical sources and are collectively known as the B. cepacia complex. The alternative extracytoplasmic function sigma factor, sigmaE, has been determined in several bacterial species as making substantial contributions to bacterial survival under stress conditions. Here, we report the identification and characterization of the rpoE gene, encoding sigmaE, of B. cepacia. It is highly similar to sigmaE of other bacteria, including Escherichia coli and Pseudomonas aeruginosa. Studies using an rpoE knockout mutant of B. cepacia revealed that many stress adaptations, including osmotic, oxidative, desiccation, carbon, and nitrogen stress, were independent of sigmaE. Similarly, biofilm formation; production of exopolysaccharides, N-acyl homoserine lactones, and several exoenzymes; and onion pathogenicity were not affected by the absence of sigmaE. In contrast, sigmaE contributed to the adaptation to heat stress and phosphate starvation.  相似文献   

10.
AIMS: To investigate the dynamics of binary culture biofilm formation through use of both the Sorbarod model of biofilm growth and the constant depth film fermenter (CDFF). METHODS AND RESULTS: Pseudo steady-state biofilm cultures of laboratory and clinical strains of Pseudomonas aeruginosa, selected on the basis of their ability to produce a Burkholderia cepacia growth-inhibitory substance, were established on Sorbarod filters and challenged with corresponding planktonic grown cultures of B. cepacia. Reverse challenges were also conducted. Both B. cepacia and P. aeruginosa were able to form steady-state monoculture biofilms after 48 h growth. When steady-state biofilms of B. cepacia NTCT 10661 were challenged with planktonically grown P. aeruginosa PAO1 known to produce a B. cepacia growth-inhibitory substance, the immigrant population was rapidly and almost completely bound to the biofilm, displacing B. cepacia. By contrast, established biofilms of P. aeruginosa PAO1 resisted immigration of B. cepacia 10661. Similar experiments conducted with a nongrowth inhibitory substance producing clinical pairing of P. aeruginosa 313113 and B. cepacia 313113 led to the formation of stable, mixed biofilm populations in both instances. Moreover, co-inoculation with these clinical isolates resulted in a stable, mixed steady-state biofilm. Similar observations were made for biofilms generated in CDFFs. In such instances following pan-swapping between two monoculture CDFFs, B. cepacia 313113 was able to integrate into an established P. aeruginosa 313113 biofilm to form a stable binary biofilm. CONCLUSIONS: Establishment of a mixed species community follows a specific sequence of inoculation that may either be due to some degree of match between co-colonizers or that P. aeruginosa predisposes uncolonized sections of the surface to permit B. cepacia colonization. SIGNIFICANCE AND IMPACT OF THE STUDY: Colonization of a surface with one bacterial species confers colonization resistance towards other species. Disinfection of a surface might well increase the probability of pathogen harbourage.  相似文献   

11.
The flagellar protein (flagellin) was isolated and purified from strains of Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia. A significant difference was observed in the molecular weight of different flagellin preparations obtained from these bacterial isolates. Antiserum prepared against S. maltophilia flagellin did not react with flagellin of P. aeruginosa or/and B. cepacia on Immunoblot or in indirect ELISA. In addition the anti-flagellin did not agglutinate P. aeruginosa and B. cepacia. No inhibition of motility of P. aeruginosa and B. cepacia was observed in presence of antiserum; though the latter inhibited the motility of S. maltophilia. The results of the present study prove that no specific relationship existed among all the studied flagellar proteins obtained from closely related bacteria.  相似文献   

12.
The evidence has been obtained that various species, as well as individual strains having pathogenicity factors, produced different effect on the functional activity of immunocompetent B and T lymphocytes of mice infected intraperitoneally. The injection of live P. aerruginosa PA 103 and B. cepacia 8240 cells resulted in imunosuppression of antibody-forming cells, synthesizing antibodies to heterologous antigens. On the contrary, in the animals infected with B. cepacia 8236 the functional activity of B lymphocytes increased. An increase in the proliferative activity of spleen cells was noted in the presence of T and B mitogens after the infection of mice with P. aeruginosa PA 103 in comparison with B. cepacia 8236 and B. cepacia 8240 which produced a faintly pronounced modulating effect. The pathogenesis mechanisms of infections induced by these microorganisms as well as the development of chronic, persisting forms of the infectious process are discussed.  相似文献   

13.
Hwang G  Kang S  El-Din MG  Liu Y 《Biofouling》2012,28(6):525-538
Extracellular polymeric substances (EPS) significantly influence bacterial adhesion to solid surfaces, but it is difficult to elucidate the role of EPS on bacterial adhesion due to their complexity and variability. In the present study, the effect of EPS on the initial adhesion of B. cepaciaepacia PC184 and P. aeruginosa PAO1 on glass slides with and without an EPS precoating was investigated under three ionic strength conditions. The surface roughness of EPS coated slides was evaluated by atomic force microscopy (AFM), and its effect on initial bacterial adhesion was found to be trivial. X-ray photoelectron spectroscopy (XPS) studies were performed to determine the elemental surface compositions of bacterial cells and substrata. The results showed that an EPS precoating hindered bacterial adhesion on solid surfaces, which was largely attributed to the presence of proteins in the EPS. This observation can be attributed to the increased steric repulsion at high ionic strength conditions. A steric model for polymer brushes that considers the combined influence of steric effects and DLVO interaction forces is shown to adequately describe bacterial adhesion behaviors.  相似文献   

14.
15.
A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicity.  相似文献   

16.
As the result of testing three different variants, the experimental models of persisting infection for P. aeruginosa and B. cepacia have been developed. These doses differ in the time of administration, doses of antibiotics and the infective doses of the microorganisms. The administration of the sub-inhibiting concentration of antibiotics for 5 days and the subsequent infection of laboratory animals (non-inbred mice) B. cepacia strains in a dose of LD50 leads to a considerable increase in the survival rate of mice and to a longer period (up to 20 days) of obtaining inoculative material from the spleen. The isolated cultures are characterized by a sharply slower growth on artificial culture media (up to 5-7 days as compared with 24-48 hours for the initial culture). The newly developed models have made it possible to control different stages of the infectious process in the induced increase or decrease of the virulent properties of the infective agent and in changes in the immune status of the host. As the result of these studies, in some mice (10%) infected with B. cepacia after the injection of gamma-hydroxybutyric acid lactone the infection has taken the acute form, while in the mice infected with P. aeruginosa no such effect has been observed. On the contrary, in the mice infected with P. aeruginosa and then receiving cyclophosphamide the transition of the infection into the acute form has been observed in 30% of the animals. In the mice infected with B. cepacia no such effect has been noted after the injection of this preparation. Different effects produced by cyclophosphamide and lactone are discussed from the positions of "quorum sensing" in pathogenic bacteria.  相似文献   

17.
18.
Three genes from Pseudomonas aeruginosa involved in threonine biosynthesis, hom, thrB and thrC, encoding homoserine dehydrogenase (HDH), homoserine kinase (HK) and threonine synthase (TS), respectively, have been cloned and sequenced. The hom and thrc genes lie at the thr locus of the P. aeruginosa chromosome map (31 min) and are likely to be organized in a bicistronic operon. The encoded proteins are quite similar to the Hom and TS proteins from other bacterial species. The thrB gene was located by pulsed-field gel electrophoresis experiments at 10 min on the chromosome map. The product of this gene does not share any similarity with other known ThrB proteins. No phenotype could be detected when the chromosomal thrB gene was inactivated by an insertion. Therefore the existence of isozymes for this activity is postulated. HDH activity was feedback inhibited by threonine; the expression of all three genes was constitutive. The overall organization of these three genes appears to differ from that in other bacterial species.  相似文献   

19.
Abstract Burkholderia cepacia (Pseudomonas cepacia) is now recognised as an important pathogen in cystic fibrosis patients, and several reports have suggested that sputum-culture-proven colonisation occurs despite the presence of specific antibody. In an attempt to establish the use of antibody studies as diagnostic and prognostic indicators of B. cepacia infection, we have examined the IgG response to B. cepacia outer membrane proteins and lipopolysaccharide in patients also colonised with P. aeruginosa . The B. cepacia strains were grown in a modified iron-depleted chemically defined medium and outer membrane components examined by SDS-PAGE and immunoblotting. IgG antibodies were detected against B. cepacia outer membrane antigens, which were not diminished by extensive preadsorption with P. aeruginosa . The response to B. cepacia O-antigen could be readily removed by adsorption of serum either with B. cepacia whole cells or purified LPS, whereas we were unable to adsorb anti-outer membrane protein antibodies using B. cepacia whole cells. The inability to adsorb anti-outer membrane protein antibodies using B. cepacia whole cells maybe due to non-exposed surface epitopes. Several B. cepacia sputum-culture negative patients colonised with P. aeruginosa had antibodies directed against B. cepacia outer membrane protein. This study suggests that there is a specific anti- B. cepacia LPS IgG response, which is not due to antibodies cross-reactive with P. aeruginosa . Our studies indicate that much of the B. cepacia anti-outer membrane protein response is specific and not attributable to reactivity against co-migrating LPS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号