首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)(6)-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance (g(j,ss)) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells (V(j)) compared with homotypic gap junctions and/or an asymmetrical V(j) dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.  相似文献   

2.
Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to ~1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.  相似文献   

3.
Gap junctions: structure and function (Review)   总被引:16,自引:0,他引:16  
Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to approximately 1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.  相似文献   

4.
缝隙连接是由多基因家族编码的连接蛋白构成的、细胞间的跨膜水相通道。目前已确定小鼠连接蛋白基因家族含有20个成员,人类连接蛋白基因家族含有21个成员,其中有19种在人类和小鼠中均有表达,具有很高的同源性;不同的连接蛋白可形成同型和异型两种连接子,不同类型连接子可形成4种不同类型的缝隙连接通道。越来越多的研究表明,连接蛋白基因突变与人类遗传性疾病密切相关。  相似文献   

5.
M M Falk  L K Buehler  N M Kumar    N B Gilula 《The EMBO journal》1997,16(10):2703-2716
Several different gap junction channel subunit isotypes, known as connexins, were synthesized in a cell-free translation system supplemented with microsomal membranes to study the mechanisms involved in gap junction channel assembly. Previous results indicated that the connexins were synthesized as membrane proteins with their relevant transmembrane topology. An integrated biochemical and biophysical analysis indicated that the connexins assembled specifically with other connexin subunits. No interactions were detected between connexin subunits and other co-translated transmembrane proteins. The connexins that were integrated into microsomal vesicles assembled into homo- and hetero-oligomeric structures with hydrodynamic properties of a 9S particle, consistent with the properties reported for hexameric gap junction connexons derived from gap junctions in vivo. Further, cell-free assembled homo-oligomeric connexons composed of beta1 or beta2 connexin were reconstituted into synthetic lipid bilayers. Single channel conductances were recorded from these bilayers that were similar to those measured for these connexons produced in vivo. Thus, this is the first direct evidence that the synthesis and assembly of a gap junction connexon can take place in microsomal membranes. Finally, the cell-free system has been used to investigate the properties of alpha1, beta1 and beta2 connexin to assemble into hetero-oligomers. Evidence has been obtained for a selective interaction between individual connexin isotypes and that a signal determining the potential hetero-oligomeric combinations of connexin isotypes may be located in the N-terminal sequence of the connexins.  相似文献   

6.
Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the alpha- and beta-connexin subgroups but not the gamma-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.  相似文献   

7.
Cx43 is widely expressed in many different cell types, and many of these cells also express other connexins. If these connexins are capable of mixing, the functional properties of channels containing heteromeric connexons may substantially influence intercellular communication between such cells. We used biochemical strategies (sedimentation through sucrose gradients, co-immunoprecipitation, or co-purification by Ni-NTA chromatography) to examine heteromeric mixing of Cx43 with other connexins (including Cx26, Cx37, Cx40, Cx45, and Cx56) in transfected cells. These analyses showed that all of the tested connexins except Cx26 formed heteromeric connexons with Cx43. We used the double whole-cell patch-camp technique to analyze the electrophysiological properties of gap junction channels in pairs of co-expressing cells. Cx37 and Cx45 made a large variety of functional heteromeric combinations with Cx43 based on detection of many different single channel conductances. Most of the channel event sizes observed in cells co-expressing Cx40 and Cx43 were similar to those of homomeric Cx43 or Cx40 hemichannels in homo- or hetero-typic configurations. Our data suggest several different possible consequences of connexin co-expression: (1) some combinations of connexins may form heteromeric connexons with novel proeprties; (2) some connexins may form heteromeric channels that do not have unique properties, and (3) some connexins may be incompatible for heteromeric mixing.  相似文献   

8.
Cx43 is widely expressed in many different cell types, and many of these cells also express other connexins. If these connexins are capable of mixing, the functional properties of channels containing heteromeric connexons may substantially influence intercellular communication between such cells. We used biochemical strategies (sedimentation through sucrose gradients, co-immunoprecipitation, or co-purification by Ni-NTA chromatography) to examine heteromeric mixing of Cx43 with other connexins (including Cx26, Cx37, Cx40, Cx45, and Cx56) in transfected cells. These analyses showed that all of the tested connexins except Cx26 formed heteromeric connexons with Cx43. We used the double whole-cell patch-camp technique to analyze the electrophysiological properties of gap junction channels in pairs of co-expressing cells. Cx37 and Cx45 made a large variety of functional heteromeric combinations with Cx43 based on detection of many different single channel conductances. Most of the channel event sizes observed in cells co-expressing Cx40 and Cx43 were similar to those of homomeric Cx43 or Cx40 hemichannels in homo- or hetero-typic configurations. Our data suggest several different possible consequences of connexin co-expression: (1) some combinations of connexins may form heteromeric connexons with novel proeprties; (2) some connexins may form heteromeric channels that do not have unique properties, and (3) some connexins may be incompatible for heteromeric mixing.  相似文献   

9.
During the development of the mammary gland, duct-lining epithelial cells progress through a program of expansive proliferation, followed by a terminal differentiation that allows for the biosynthesis and secretion of milk during lactation. The role of gap junction proteins, connexins, in the development and function of this secretory epithelium was investigated. Connexins, Cx26 and Cx32, were differentially expressed throughout pregnancy and lactation in alveolar cells. Cx26 poly-(A)(+) RNA and protein levels increased from early pregnancy, whereas Cx32 was detectable only during lactation. At this time, immunolocalization of connexins by confocal microscopy and immunogold labeling of high-pressure frozen freeze-substituted tissue showed that both connexins colocalized to the same junctional plaque. Analysis of gap junction hemichannels (connexons) isolated from lactating mammary gland plasma membranes by a rate-density centrifugation procedure, followed by immunoprecipitation and by size-exclusion chromatography, showed that Cx26 and Cx32 were organized as homomeric and heteromeric connexons. Structural diversity in the assembly of gap junction hemichannels demonstrated between pregnant and lactating mammary gland may account for differences in ionic and molecular signaling that may physiologically influence the onset and/or maintenance of the secretory phenotype of alveolar epithelial cells.  相似文献   

10.
Cx43 is widely expressed in many different cell types, and many of these cells also express other connexins. If these connexins are capable of mixing, the functional properties of channels containing heteromeric connexons may substantially influence intercellular communication between such cells. We used biochemical strategies (sedimentation through sucrose gradients, co-immunoprecipitation, or co-purification by Ni-NTA chromatography) to examine heteromeric mixing of Cx43 with other connexins (including Cx26, Cx37, Cx40, Cx45, and Cx56) in transfected cells. These analyses showed that all of the tested connexins except Cx26 formed heteromeric connexons with Cx43. We used the double whole-cell patch-camp technique to analyze the electrophysiological properties of gap junction channels in pairs of co-expressing cells. Cx37 and Cx45 made a large variety of functional heteromeric combinations with Cx43 based on detection of many different single channel conductances. Most of the channel event sizes observed in cells co-expressing Cx40 and Cx43 were similar to those of homomeric Cx43 or Cx40 hemichannels in homo- or hetero-typic configurations. Our data suggest several different possible consequences of connexin co-expression: (1) some combinations of connexins may form heteromeric connexons with novel proeprties; (2) some connexins may form heteromeric channels that do not have unique properties, and (3) some connexins may be incompatible for heteromeric mixing.  相似文献   

11.
Oligomerization of connexins is a critical step in gap junction channel formation. Some members of the connexin family can oligomerize with other members and form functional heteromeric hemichannels [e.g. Cx43 (connexin 43) and Cx45], but others are incompatible (e.g. Cx43 and Cx26). To find connexin domains important for oligomerization, we constructed chimaeras between Cx43 and Cx26 and studied their ability to oligomerize with wild-type Cx43, Cx45 or Cx26. HeLa cells co-expressing Cx43, Cx45 or Cx26 and individual chimaeric constructs were analysed for interactions between the chimaeras and the wild-type connexins using cell biological (subcellular localization by immunofluorescence), functional (intercellular diffusion of microinjected Lucifer yellow) and biochemical (sedimentation velocity through sucrose gradients) assays. All of the chimaeras containing the third transmembrane domain of Cx43 interacted with wild-type Cx43 on the basis of co-localization, dominant-negative inhibition of intercellular communication, and altered sedimentation velocity. The same chimaeras also interacted with co-expressed Cx45. In contrast, immunofluorescence and intracellular diffusion of tracer suggested that other domains influenced oligomerization compatibility when chimaeras were co-expressed with Cx26. Taken together, these results suggest that amino acids in the third transmembrane domain are critical for oligomerization with Cx43 and Cx45. However, motifs in different domains may determine oligomerization compatibility in members of different connexin subfamilies.  相似文献   

12.
The assembly of connexins (Cxs) into gap junction intercellular communication channels was studied. An in vitro cell-free synthesis system showed that formation of the hexameric connexon hemichannels involved dimeric and tetrameric connexin intermediates. Cx32 contains two putative cytoplasmic calmodulin-binding sites, and their role in gap junction channel assembly was investigated. The oligomerization of Cx32 into connexons was reversibly inhibited by a calmodulin-binding synthetic peptide, and by W7, a naphthalene sulfonamide calmodulin antagonist. Removing the calmodulin-binding site located at the carboxyl tail of Cx32 limited connexon formation and resulted in an accumulation of intermediate connexin oligomers. This truncation mutant, Cx32Delta215, when transiently expressed in COS-7 cells, accumulated intracellularly and had failed to target to gap junctions. Immunoprecipitation studies suggested that a C-terminal sequence of Cx32 incorporating the calmodulin-binding site was required for the formation of hetero-oligomers of Cx26 and Cx32 but not for Cx32 homomeric association. A chimera, Cx32TM3CFTR, in which the third transmembrane and proposed channel lining sequence of Cx32 was substituted by a transmembrane sequence of the cystic fibrosis transmembrane conductance regulator, did not oligomerize in vitro and it accumulated intracellularly when expressed in COS-7 cells. The results indicate that amino-acid sequences in the third transmembrane domain and a calmodulin-binding domain in the cytoplasmic tail of Cx32 are likely candidates for regulating connexin oligomerization.  相似文献   

13.
14.
Gap junction proteins, connexins, possess many properties that are atypical of other well-characterized integral membrane proteins. Oligomerization of connexins into hemichannels (connexons) has been shown to occur after the protein exits the endoplasmic reticulum. Once delivered to the cell surface, connexons from one cell pair with connexons from a neighboring cell, a process that is facilitated by calcium-dependent cell adhesion molecules. Channels cluster into defined plasma membrane domains to form plaques. Unexpectedly, gap junctions are not stable (half-life <5 h) and are thought to be retrieved back into the cell in the form of double membrane structures when one cell internalizes the entire gap junction through endocytosis. Evidence exists for both proteasomal and lysosomal degradation of gap junctions, and it remains possible that both mechanisms are involved in connexin degradation. In addition to opening and closing of gap junction channels (gating), the formation and removal of gap junctions play an essential role in regulating the level of intercellular communication.  相似文献   

15.
Rat heart and other organs contain mRNA coding for connexin43, a polypeptide homologous to a gap junction protein from liver (connexin32). To provide direct evidence that connexin43 is a cardiac gap junction protein, we raised rabbit antisera directed against synthetic oligopeptides corresponding to two unique regions of its sequence, amino acids 119-142 and 252-271. Both antisera stained the intercalated disc in myocardium by immunofluorescence but did not react with frozen sections of liver. Immunocytochemistry showed anti-connexin43 staining of the cytoplasmic surface of gap junctions in isolated rat heart membranes but no reactivity with isolated liver gap junctions. Both antisera reacted with a 43-kD polypeptide in isolated rat heart membranes but did not react with rat liver gap junctions by Western blot analysis. In contrast, an antiserum to the conserved, possibly extracellular, sequence of amino acids 164-189 in connexin32 reacted with both liver and heart gap junction proteins on Western blots. These findings support a topological model of connexins with unique cytoplasmic domains but conserved transmembrane and extracellular regions. The connexin43-specific antisera were used by Western blots and immunofluorescence to examine the distribution of connexin43. They demonstrated reactivity consistent with gap junctions between ovarian granulosa cells, smooth muscle cells in uterus and other tissues, fibroblasts in cornea and other tissues, lens and corneal epithelial cells, and renal tubular epithelial cells. Staining with the anti-connexin43 antisera was never observed to colocalize with antibodies to other gap junctional proteins (connexin32 or MP70) in the same junctional plaques. Because of limitations in the resolution of the immunofluorescence, however, we were not able to determine whether individual cells ever simultaneously express more than one connexin type.  相似文献   

16.
In vertebrates, the protein subunits of intercellular channels found in gap junctions are encoded by a family of genes called connexins. These channels span two plasma membranes and result from the association of two half channels, or connexons, which are hexameric assemblies of connexins. Physiological analysis of channel formation and gating has revealed unique patterns of connexin-connexin interaction, and uncovered novel functional characteristics of channels containing more than one type of connexin protein. Structure-function studies have further demonstrated that unique domains within connexins participate in the regulation of different functional properties of intercellular channels. Thus, gap junctional channels can contain more than one connexin, and this structural heterogeneity has functional consequencesin vitro. Moreover, emerging evidence for the existence of intercellular channels containing multiple connexins in native tissues suggests that the functional diversity generated by connexin-connexin interaction could contribute to complex communication patterns that have been observedin vivo.  相似文献   

17.
Locke D  Liu J  Harris AL 《Biochemistry》2005,44(39):13027-13042
Cell extraction with cold nonionic detergents or alkaline carbonate prepares an insoluble membrane fraction whose buoyant density permits its flotation in discontinuous sucrose gradients. These lipid "rafts" are implicated in protein sorting and are attractive candidates as platforms that coordinate signal transduction pathways with intracellular substrates. Gap junctions form a direct molecular signaling pathway by end-to-end apposition of hemichannels containing one (homomeric) or more (heteromeric) connexin isoforms. Residency of channels composed of Cx26 and/or Cx32 in lipid rafts was assessed by membrane insolubility in alkaline carbonate or different concentrations of Triton X100, Nonidet P40 and Brij-58 nonionic detergents. Using Triton X100, insoluble raft membranes contained homomeric Cx32 channels, but Cx26-containing channels only when low detergent concentrations were used. Results were similar using Nonidet P40, except that Cx26-containing channels were excluded from raft membranes at all detergent concentrations. In contrast, homomeric Cx26 channels were enriched within Brij-58-insoluble rafts, whereas Cx32-containing channels partitioned between raft and nonraft membranes. Immunofluorescence microscopy showed prominent colocalization only of nonjunctional connexin channels with raft plasma membrane; junctional plaques were not lipid rafts. Rafts prepared by different extraction methods had considerable quantitative and qualitative differences in their lipid compositions. That functionally different nonjunctional connexin channels partition among rafts with distinct lipid compositions suggests that unpaired Cx26 and/or Cx32 channels exist in membrane domains of slightly different physicochemical character. Rafts may be involved in trafficking of plasma membrane connexin channels to gap junctions.  相似文献   

18.
The assembly of gap junction intercellular communication channels was studied by analysis of the molecular basis of the dysfunction of connexin 32 mutations associated with the X-linked form of Charcot-Marie-Tooth disease in which peripheral nervous transmission is impaired. A cell-free translation system showed that six recombinant connexin 32 mutated proteins-four point mutations at the cytoplasmic amino terminus, one at the membrane aspect of the cytoplasmic carboxyl terminus, and a deletion in the intracellular loop-were inserted into microsomal membranes and oligomerised into connexon hemichannels with varying efficiencies. The functionality of the connexons was determined by the ability of HeLa cells expressing the respective connexin cDNAs to transfer Lucifer yellow. The intracellular trafficking properties of the mutated connexins were determined by immunocytochemistry. The results show a relationship between intracellular interruption of connexin trafficking, the efficiency of intercellular communication, and the severity of the disease phenotype. Intracellular retention was explained either by deficiencies in the ability of connexins to oligomerise or by mutational changes at two targeting motifs. The results point to dominance of two specific targeting motifs: one at the amino terminus and one at the membrane aspect of the cytoplasmically located carboxyl tail. An intracellular loop deletion of six amino acids, associated with a mild phenotype, showed partial oligomerisation and low intercellular dye transfer compared with wild-type connexin 32. The results show that modifications in trafficking and assembly of gap junction channels emerge as a major feature of Charcot-Marie-Tooth X-linked disease.  相似文献   

19.
Low molecular weight GTP-binding proteins and their cellular interactions were examined in cardiac muscle. Heart homogenate was separated into various subcellular fractions by differential and sucrose density gradient centrifugation. Various fractions were separated by sodium dodecyl sulfate-gel electrophoresis, blotted to nitrocellulose, and GTP-binding proteins detected by incubating with [alpha-32]GTP. Three polypeptides of M(r) 23,000, 26,000, and 29,000 were specifically labeled with [alpha-32P]GTP in all the fractions examined and enriched in sarcolemmal membranes. The 23-kDa polypeptide was labeled to a higher extent with [alpha-32P]GTP than the 26- and 29-kDa polypeptides. A polypeptide of M(r) 40,000 was weakly labeled with [alpha-32P]GTP in the sarcolemmal membrane and tentatively identified as Gi alpha by immunostaining with anti-Gi alpha antibodies. Cytosolic GTP-binding proteins were labeled with [alpha-32P]GTP and their potential sites of interaction investigated using the blot overlay approach. A polypeptide of 32 kDa present in sarcolemmal membranes, intercalated discs, and enriched in heart gap junctions was identified as a major site of interaction. The low molecular weight GTP-binding proteins associated with the 32-kDa polypeptide through a complex involving cytosolic components of M(r) 56,000, 36,000, 26,000, 23,000, and 12,000. A monoclonal antibody against connexin 32 from liver strongly recognized the 32-kDa polypeptide in heart gap junctions, whereas polyclonal antibodies only weakly reacted with this polypeptide. The low molecular weight GTP-binding proteins associated with a 32-kDa polypeptide in liver membranes that was also immunologically related to connexin 32. These results indicate the presence of a subset of low molecular weight GTP-binding proteins in a membrane-associated and a cytoplasmic pool in cardiac muscle. Their association with a 32-kDa component that is related to the connexins suggests that these polypeptides may be uniquely situated to modulate communication at the cell membrane.  相似文献   

20.
Pathways and control of connexin oligomerization   总被引:6,自引:0,他引:6  
Connexins form gap junction channels that link neighboring cells into an intercellular communication network. Many cells that express multiple connexins produce heteromeric channels containing at least two connexins, which provides a means to fine tune gap junctional communication. Formation of channels by multiple connexins is controlled at two levels: by inherent structural compatibilities that enable connexins to hetero-oligomerize and by cellular mechanisms that restrict the formation of heteromers by otherwise compatible connexins. Here, I discuss roles for secretory compartments beyond the endoplasmic reticulum in connexin oligomerization and evidence that suggests that membrane microdomains help regulate connexin trafficking and assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号