首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
To explain cotransport function, the "alternating access" model requires that conformational changes of the empty transporter allow substrates to bind alternatively on opposite membrane sides. To test this principle for the GAT1 (GABA:Na+:Cl-) cotransporter, we have analyzed how its charge-moving partial reactions depend on substrates on both membrane sides in giant Xenopus oocyte membrane patches. (a) "Slow" charge movements, which require extracellular Na+ and probably reflect occlusion of Na+ by GAT1, were defined in three ways with similar results: by application of the high-affinity GAT1 blocker (NO-711), by application of a high concentration (120 mM) of cytoplasmic Cl-, and by removal of extracellular Na+ via pipette perfusion. (b) Three results indicate that cytoplasmic Cl- and extracellular Na+ bind to the transporter in a mutually exclusive fashion: first, cytoplasmic Cl- (5-140 mM) shifts the voltage dependence of the slow charge movement to more negative potentials, specifically by slowing its "forward" rate (i.e., extracellular Na+ occlusion); second, rapid application of cytoplasmic Cl- induces an outward current transient that requires extracellular Na+, consistent with extracellular Na+ being forced out of its binding site; third, fast charge-moving reactions, which can be monitored as a capacitance, are "immobilized" both by cytoplasmic Cl- binding and by extracellular Na+ occlusion (i.e., by the slow charge movement). (c) In the absence of extracellular Na+, three fast (submillisecond) charge movements have been identified, but no slow components. The addition of cytoplasmic Cl- suppresses two components (tau < 1 ms and 13 micros) and enables a faster component (tau < 1 micros). (d) We failed to identify charge movements of fully loaded GAT1 transporters (i.e., with all substrates on both sides). (e) Under zero-trans conditions, inward (forward) GAT1 current shows pronounced pre-steady state transients, while outward (reverse) GAT1 current does not. (f) Turnover rates for reverse GAT1 transport (33 degrees C), calculated from the ratio of steady state current magnitude to total charge movement magnitude, can exceed 60 s(-1) at positive potentials.  相似文献   

2.
We have developed an alternating access transport model that accounts well for GAT1 (GABA:Na+:Cl-) cotransport function in Xenopus oocyte membranes. To do so, many alternative models were fitted to a database on GAT1 function, and discrepancies were analyzed. The model assumes that GAT1 exists predominantly in two states, Ein and E(out). In the Ein state, one chloride and two sodium ions can bind sequentially from the cytoplasmic side. In the Eout state, one sodium ion is occluded within the transporter, and one chloride, one sodium, and one gamma-aminobutyric acid (GABA) molecule can bind from the extracellular side. When Ein sites are empty, a transition to the Eout state opens binding sites to the outside and occludes one extracellular sodium ion. This conformational change is the major electrogenic GAT1 reaction, and it rate-limits forward transport (i.e., GABA uptake) at 0 mV. From the Eout state, one GABA can be translocated with one sodium ion to the cytoplasmic side, thereby forming the *Ein state. Thereafter, an extracellular chloride ion can be translocated and the occluded sodium ion released to the cytoplasm, which returns the transporter to the Ein state. GABA-GABA exchange can occur in the absence of extracellular chloride, but a chloride ion must be transported to complete a forward transport cycle. In the reverse transport cycle, one cytoplasmic chloride ion binds first to the Ein state, followed by two sodium ions. One chloride ion and one sodium ion are occluded together, and thereafter the second sodium ion and GABA are occluded and translocated. The weak voltage dependence of these reactions determines the slopes of outward current-voltage relations. Experimental results that are simulated accurately include (a) all current-voltage relations, (b) all substrate dependencies described to date, (c) cis-cis and cis-trans substrate interactions, (d) charge movements in the absence of transport current, (e) dependencies of charge movement kinetics on substrate concentrations, (f) pre-steady state current transients in the presence of substrates, (g) substrate-induced capacitance changes, (h) GABA-GABA exchange, and (i) the existence of inward transport current and GABA-GABA exchange in the nominal absence of extracellular chloride.  相似文献   

3.
The transport stoichiometry of the electrogenic sodium-bicarbonate cotransporter (SLC4A5 or NBCe2) in mouse choroid plexus was examined. Whole-cell recording methods measured the currents carried by the NBCe2, using experimental solutions determined to minimise the contributions of the other ion conductances present. Increases in outward current were observed when 21.2 mM was added to the bath solution in the presence of Na+, but not N-methyl-d-glucamine. This -induced current was completely abolished by 500 μM 4,4′-diisothiocyanostilbene-2,2′-disulphonic acid. The reversal potential for the -induced current was −95.1 ± 7.1 mV (n = 11), a value which corresponds to a NBCe2 transport stoichiometry of 3 with 1 Na+. The NBCe2, with this stoichiometry, will mediate the efflux of and Na+ from the cell into the cerebrospinal fluid at the apical membrane of the choroid plexus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号